SOAP: A Social Network Aided Personalized and
Effective Spam Filter to Clean Your E-mail Box

Ze Li and Haiying Shen
Department of Electrical and Computer Engineering
Clemson University
Clemson, SC 29631
Email: {zel, shenh} @clemson.edu

Abstract—The explosive growth of unsolicited emails has
prompted the development of numerous spam filtering tech-
niques. A Bayesian spam filter is superior to a static keyword-
based spam filter because it can continuously evolve to tackle
new spam by learning keywords in new spam emails. However,
Bayesian spam filters can be easily poisoned by avoiding spam
keywords and adding many innocuous keywords in the emails. In
addition, they need a significant amount of time to adapt to a new
spam based on user feedback. Moreover, few current spam filters
exploit social networks to assist spam detection. In order to de-
velop an accurate and user-friendly spam filter, in this paper, we
propose a SOcial network Aided Personalized and effective spam
filter (SOAP). Unlike previous filters that focus on parsing key-
words (e.g, Bayesian filter) or building blacklists, SOAP exploits
the social relationship among email correspondents to detect
the spam adaptively and automatically. SOAP integrates three
components into the basic Bayesian filter: social closeness-based
spam filtering, social interest-based spam filtering, and adaptive
trust management. We evaluate performance of SOAP based on
the trace data from Facebook. Experimental results show that
SOAP can greatly improve the performance of Bayesian spam
filters in terms of the accuracy, attack-resilience and efficiency of
spam detection. We also find that the performance of Bayesian
spam filters is the lower bound of SOAP.

I. INTRODUCTION

Internet email is one of the most popular communication
methods in the realm of our business and daily lives. Internet
email has been reliable throughout most of its long history.
However, spam is becoming the penultimate problem in
email systems, accelerating at an alarming speed. Unsolicited
commercial emails have increased from approximately 10%
of overall email volume in 1998 to as much as 80% today [1].
Currently, 120 billion spam emails are sent per day [2], with
a projected cost of $338 billion by 2013 [3]. Spam emails
interfere with both email service providers and end users. It
forces users to search legitimate (i.e., non-spam) emails in
an inbox filled with spam. Spam emails also take up a huge
amount of bandwidth that otherwise could be used to transmit
more useful information.

The fundamental way to prevent spam is to make it un-
profitable to send spam emails and thereby destroying the
spammers’ underlying business model [4]. Oscar et. al. in-
dicated that there is a strong relationship between the average
cost of sending spam, spam detection accuracy and spam
filter deployment [4]. Specifically, any measure that stops
spam from reaching users’ inboxes with probability p and is

deployed by users with probability ¢ increases the average
cost of sending spam by 1/(1 — pq). This means that in order
to increase the cost, a spam filter should increase detection
accuracy p and user deployment ¢g. Such a spam filter should
be attack-resilient, personalized and user-friendly.

The attack-resilient and personalized features are important
to achieve higher accuracy. A higher accurate filter generates
less false positives and false negatives. False positives are the
legitimate emails that are mistakenly regarded as spam emails.
False negatives are the spam emails that are not detected.
There are primarily two types of spam filter attacks: poison
attack and impersonation attack. In a poison attack, many le-
gitimate keywords are added to a spam email, thus decreasing
its probability of being detected as spam. In an impersonation
attack, a spammer impersonates the identities of ordinary users
by forging their IDs or compromising their computers. An
estimated 50% - 80% of all spam worldwide was sent by
compromised computers, also known as zombies [5], in the
year of 2005. An attack-resilient spam filter can detect spam
emails in these attacks.

By personalized, we mean that an accurate spam filter
should consider the social situation of a particular individual
in detecting spam. First, it considers social closeness between
correspondents. Closer social relationship between two per-
sons implies high trust between them [6]. People treat emails
sent by strangers and acquaintances differently. Emails con-
taining keywords such as “lose weight” are usually regarded
as spam. However, such keywords may be in the emails sent
between members of a health club. Commercial emails are
usually considered as spam. However, the email sender may
be the receiver’s friend and believes the advertisement-like in-
formation benefits the receiver. Second, a spam filter considers
different (dis)interests of individuals. For example, an email
about “football” is not spam to football fans, but is spam to
those who are not interested in football. Thus, determining
a legitimate mail is different from person to person. A user-
friendly (i.e., easy-to-use) spam filter does not require a large
amount of manual spam detection activities from users.

However, few previous spam filtering approaches can meet
the requirements of being user-friendly, attack-resilient and
personalized. We list the main approaches in Table I with
their features. Most approaches do not take into account the
different closeness relationship and (dis)interests of individu-

als. They usually consider unsolicited commercial emails and
investment request emails as spam. This traditional view of
spam is not sufficiently accurate.

Previous spam filter approaches can be mainly divided
into two categories: content-based and identity-based. In the
content-based category, emails are parsed and scored based
on the keywords and patterns which are typical in spam.
The simplest spam filter is static keyword-based filter [7],
in which a spam keyword blacklist is built. However, it
cannot adapt to the continuously changing characteristics of
spam. Machine learning approaches [8]-[15] can adaptively
learn new spam keywords. In these approaches, the spam
filters are trained with a corpus of both spam and legitimate
emails. Characteristics of the spam and legitimate emails
are identified respectively. The characteristics are used to
automatically categorize future emails into the two classes.
However, machine learning approaches still suffer from a
number of problems. First, in order to increase the efficiency
and accuracy of training, the spam filters are normally
installed in an email server to collect all the training samples.
Thus, they are not personalized. Second, the spam filters are
vulnerable to poison attacks. Third, the spam filters are not
user-friendly. They require a lot of user efforts to manually
distinguish the spam from legitimate emails for training.

TABLE 1
FEATURES OF SPAM FILTERS

Approaches Person- Attack-resilient User-
PP) alized [Impersonation|Poison|friendly
Content-based spam filters
Static keyword [7] No Yes No No
Machine learning [8]-[17] No Yes No No
(Collaborative [18]-[20] No Yes No Yes
Identity-based spam filters
Black/white list [21]-[24] No No Yes No
Social interaction-based [25]-[28] No No Yes Yes
[Reputation [29] No No Yes No
Social network aided content and identity based spam filter
ISOAP [Yes] Yes [Yes T Yes

Identity-based spam filters focus on the identities of email
senders. In the simplest method, a user manually selects
addresses of the emails that (s)he would like to accept or reject
and put them into whitelist and blacklist, respectively [21]-
[24]. Social interaction-based spam filters [25]-[28] exploits
friends-of-friends (FoF) relationships among email correspon-
dents to create whitelist and blacklist. Since these spam filters
disregard email content, they are resilient to poison attacks.
Additionally, because these filters automatically identify spam-
mers from normal users according to their communication
pattern, they are user-friendly. However, they are not per-
sonalized. In addition, they are vulnerable to impersonation
attacks. If a user’s email account is compromised or the user’s
ID is forged by a spammer, the user’s friends can be easily
attacked by the spammer because of the highly clustered nature
of people’s interaction network [30]. Moreover, as indicated
in [31], the assumption that person A’s friend of friend is also
A’s friend is not generally true. For example, A and B are
friends in a math class and B and C' are friends in the gym.
Then, A and C' may not be friends if A does not go to the gym.

On-line social networks have gained significant popularity

recently. The users in a social network are linked based on
their social relationships. In this paper, we propose a SOcial
network Aided Personalized and effective spam filter (SOAP)
for spam detection to meet the three requirements. In the
SOAP applications, users are encouraged to provide their
social information such as (dis)interests, religions, occupation
and affiliation in order to avoid spam. Different from social
interaction-based spam filters [25]-[28] that focus on the
interaction via emails, SOAP explores personal information
in the social network and infers the relationship closeness and
(dis)interests of individuals for accurate spam detection.

SOAP leverages social networks and combines three com-
ponents into a basic Bayesian filter:

(1) Social closeness-based spam filtering. SOAP calculates
the closeness between nodes based on social relationship.
Since nodes with higher closeness have less probability
to send spam emails to each other, emails from nodes
with lower closeness are checked more strictly and vice
versa. This component helps SOAP to be resilient to poison

attacks.
(2) Social interest-based spam filtering. SOAP infers nodes’
(dis)interests based on social profiles. The inferred

information helps the filter to enhance the accuracy
of spam detection with the consideration of individual
preference. This component contributes to the personalized
feature of SOAP.

(3) Adaptive trust management. In order to tackle
impersonation attacks, SOAP relies on the additive-
increase/multiplicative-decrease algorithm (AIMD) [32]
to adjust the trust values of nodes which are used to tune
closeness values to block emails from low-trust nodes or
normal nodes impersonated by spammers.

SOAP can rapidly determine spam and adapt to new spam
keywords. It achieves a high spam detection accuracy due to
its personalized and attack-resilient features. In addition, it is
user-friendly as it does not need much user effort to identify
spam and legitimate emails. Meanwhile, its highly accurate
and automatic spam detection reduces the training time of the
Bayesian filter. Further, rather than using a centralized server
to collect user social information as in RE [26], SOAP can
collect the information in a decentralized manner, reducing
the burden caused by information querying on the centralized
server. Authentication and encryption techniques can be used
in SOAP to increase its communication security, and these
techniques are orthogonal to the study in this paper.

The remaining part of the paper is organized as follows.
Section II gives a brief overview of the existing spam filter ap-
proaches. Section III describes the design of SOAP. Section IV
evaluates the performance of the SOAP. Finally, Section V
concludes the paper.

II. RELATED WORK

The vast quantities of spam that are distributed blindly in
bulk has stimulated many spam filtering approaches. These

approaches can be mainly separated into two classes: content-
based and identity-based.

Content-based Approaches: The basic approach of content-
based spam filter is the static keyword list [33]. If the
keywords in the email match the keywords in the spam
keyword list, then the email is regarded as spam. However, its
static feature makes it easy for a spammer to evade filtering
by tweaking the message.

The second category of content-based approaches are
machine learning-based approaches including Bayesian
filter [16], decision trees [8], [9], Support Vector Machine
(SVM) [10], [11], Bayes Classifier [12]-[14] and a
combination of these techniques [15]. In this approach,
the filter is trained to distinguish the keywords in spam
and legitimate emails. A learning algorithm is used to find
the characteristics of the spam and legitimate emails. Then,
future messages can be automatically categorized as highly
likely to be spam, to be legitimate, or somewhere in between.
Bayesian filter [16] is one of the widely used machine
learning techniques. It parses an email into keywords, assigns
a weight to each keyword indicating the probability that the
email containing the keyword is spam, and infers the email’s
posterior probability of spam based on the keyword weights.

The third category of content-based approaches is
collaborative spam filtering. Once a spam email is detected
by one user, other users in the community can prevent the
spam email later on by querying others whether the received
email is spam or not. SpamNet [20] uses a central server
to connect all participants of the collaborative spam filter.
SpamWatch [19] is a distributed spam filter based on the
Tapestry Distributed Hash Table (DHT) system. Kong et
al. [18] proposed a distributed spam filter to increase the
scalability of centralized collaborative spam filter. The
spam filter leverages email networks for collaborative spam
detection. Users query all of their email clients to see if
another user has labeled a suspect message as spam.
Identity-based Approaches: The simplest identity-based
spam filtering approaches are blacklist and whitelist ap-
proaches [21]-[24], which check the email senders for spam
detection. Whitelist and blacklist maintain a list of addresses
of people whose emails should not and should be blocked by
the spam filter, respectively. Some server-side solution [24]
records the number and frequency of the same email sent
to multiples destinations from specific IP addresses. If the
number and frequency exceed thresholds, the node with the
corresponding IP address is blocked.

Boykin et al. [25], [28] constructed a graph in which
vertices represent email addresses and direct edges represent
email interactions. Emails are identified as spam, valid or
unknown based on the local clustering coefficient of the
graph subcomponent. This is based on the principle that the
social communication network of a normal node has a higher
clustering coefficient than a spam node. RE [26] is a whitelist
spam filtering system based on social links. It is based on the
assumption that all friends and FoF are trustable. Hameed [27]
proposed LENS that extend FoF network by adding trusted

Social closeness-
based spam filtering

Adaptive trust
management

Social (dis)interest
-based spam filtering

e

Bayesian filter

@Training

parse

\%\‘ r‘(@) Keyword @

Spam email Incominé}inail
Fig. 1. The structure of the SOAP.

users from outside of their FoF networks to mitigate spam
beyond social circles. Only the emails to a particular recipient
have been vouched by the trusted nodes can be sent into
the network. However, if a legitimate user’s computer is
compromised by a spammer, many people will be easily
targeted by the spammer through social networks characterized
by high clustering and short paths [30]. Also, such social
interaction-based method is not sufficiently effective in
dealing with legitimate emails from a sender out of the social
network of the receiver. Golbeck et al. [29] proposed an email
scoring mechanism based on an email-network augmented
with reputation ratings. An email is considered as spam if
the reputation score of the email sender is very low.

III. SOAP: SOCIAL NETWORK BASED BAYESIAN SPAM
FILTER

A. System Overview

SOAP is a personalized, attack-resilient and user-friendly
social network based Bayesian spam filter. Unlike current
social network based filters that focus on email interaction
networks [18], [26], [27], [29], SOAP also leverages social
information including (dis)interests and people relationships.
SOAP encourages users to indicate their (dis)interests and their
social relationship with their email correspondents in order to
receive less spam and lose less legitimate emails. Using this
information, SOAP can build a social network connecting the
users. SOAP can also be used as a plugin in current on-line
social online networks, such as Facebook, MySpace, to filter
out the spam-like comments posted on walls or pictures.

Figure 1 shows the structure of SOAP. SOAP integrates
three new components to the Bayesian filter: (1) social
closeness-based spam filtering, (2) social interest-based spam
filtering, and (3) adaptive trust management. Based on the
collected social information, SOAP infers node closeness and
email preference for individuals. The Bayesian filter keeps
a list of spam keywords and corresponding weights showing
the probability that the email containing the keyword is
spam. For simplicity, we call the weight as the keyword’s
weight. Based on the three social-based components, after
parsing the keywords of an email, SOAP adjusts the weights
of the keywords. Then, SOAP resorts to the Bayesian filter
for spam evaluation. The weights are adjusted based on the
closeness between the receiver and the sender, the receiver’s
(dis)interests, and the receiver’s trust of the sender. If the
closeness is high, the likelihood that the emails sent between
them are spam is low, and then the weight is decreased

and vice versa. However, it is possible that close nodes
will be compromised. This problem is handled by the trust
management component. For those nodes with low closeness,
the emails are evaluated based on the user’s (dis)interests.
As mentioned, content-based spam filters focus on email
content and can prevent impersonation attacks. Identity-based
spam filters focus on the communication relationship between
correspondents and hence are resilient to the poison attacks.
SOAP combines the advantages of both types of spam filters.
The accurate results from SOAP become training data to
automatically train the Bayesian filer, thus making the filter
user-friendly and personalized and reducing the training time.
In the section below, the following issues will be addressed.

e How does the basic Baysian filter work? (Section III-B)

e How to calculate the closeness of individuals in a dis-
tributed manner and how to integrate the closeness con-
sideration into the Baysian filter? (Section III-C)

e How to infer the (dis)interests of individuals and integrate
the email preference consideration into the Baysian filter?
(Section III-D)

e How to adjust trust value to avoid impersonation attacks?
(Section III-E)

e How do the different components in SOAP cooperate for
spam detection? (Section III-F)

B. Overview of the Basic Bayesian Spam Filter

Bayesian filter has a list of keywords along with their
probabilities to identify an email as a spam email or a
legitimate email. The list is built by training the filter. During
training, given a pool of emails, a user manually indicates
whether each email is spam or not. We use P(.S) and P(L)
to denote the probability that an email is a spam email
and a legitimate email, respectively. The filter parses each
email for spam keywords. It calculates the probabilities that
a word w appears in a spam email and a legitimate email,
denoted by P(w|S) and P(w|L) respectively. After training,
the calculated probabilities are used to compute the probability
that an email with a particular set of keywords in it belongs to
either category. Then, the probability that an email including
a set of keywords W is spam is:

P(S,W) _ I, P(wilS)P(S)
P(W) II; P(wilS)P(S) + 1, P(wi|L)P(L)’

The Bayesian filter sets a threshold, denoted by 7'. If an
email’s parsed keywords is Wy and P(S|W;) > T, then the
email is spam. Otherwise, it is legitimate.

P(S|W) = (1

C. Social Closeness-based Spam Filtering

The probability that two persons with high closeness send
spam to each other is low unless their machines are under
impersonation attacks. Thus, the closeness between individuals
can be utilized to improve the accuracy of spam detection.
SOAP loosely checks emails between individuals with high
closeness and strictly checks emails between individuals with
low closeness. In this section, we propose an algorithm to
calculate social closeness values.

SOAP relies on node social relationship, such as kinship,
friendship and colleague, to determine node closeness values.
SOAP sets different weights for different social relationships
for node closeness measurement. For example, the closeness of
kinship relationship usually weights more than business rela-
tionship. We use w(u, v) to denote the weight of a relationship

between node w and v.

1) Closeness of Adjacent Nodes: In a social network, more
relationships between two adjacent nodes make them closer.
Thus,

C(u,v) = Zwi(u, v) (2)
1=1

where n is the number of relationships between u and wv,

w;(u,v) is the relationship weight of the i** relationship.

2) Closeness of Non-adjacent Nodes: Based on the close-
ness value between any two adjacent nodes, the closeness
of non-adjacent nodes can be calculated with the aid of
relationship transitivity, in which relationship closeness can
be passed along the nodes. The closeness transitivity should
capture three properties in order to correctly reflect the social
relationship.

= @ ©

VO (u.k,)y=C(u.k,)ec ¥
Fig. 2.

Closeness propagation property.

Property 3.1: Closeness propagation property. The close-
ness between node A and other nodes exponentially decreases
with their distances. As shown in Figure 2, it can be illustrated
by C(u, ki) = Clu, k1) - e < 1).

As shown in Figure 2, the more hops between node u and
node k;, the less closeness between them. The closeness value
is decreased to an extremely small value when the distance
exceeds 3 hops. This relationship has been confirmed by other
studies. Binzel et al. [6] discovered that a reduction in social
distance between two persons significantly increases the trust
between them. Swamynathan et al. [34] found that people
normally do e-commerce business with people within 2-3 hops
in their social networks.

High closeness Low closeness High c\oseness

M
C(k, k)

Cu.v)<min C(k,.k,.,) [

Fig. 3.
Property 3.2: Weakest link property. The weakest link in
a social path (not necessary disjoint path) is the direct link
between adjacent nodes that has the minimum closeness,
denoted by mini<;<,C(k;, ki+1). The closeness between two
non-adjacent nodes v and v is upper bounded by the closeness
of the weakest link between w and v. That is, for a social
network path from node u to node v with n nodes in the
middle, C'(u,v) < mini<;<,C(k;, k;41), where node k; is in
the path between v and v.
According to Property 3.1, the closeness value decreases as
the social distance between two nodes increases. In Figure 3,

Weakest link property.

if person u knows v though person ki, then the closeness
between v and v must be less than that between k7 and v,
ie., C(u,v) < C(v, k;).

Property 3.3: Closeness accumulation property. The more
social paths that exist between node u and node v, the higher
closeness they have. Specifically, if node » and node v have
p social pathes between them, their closeness through p paths
denoted by C(u,v,p) is

P

C(u,v,p) = Y (Con(u,v)). 3)

m=1
The underlying idea is that if person u has more ways to
get in touch with person v, u has higher closeness with v.
We design a closeness calculation formula that merges the

above three properties:
p

Clukisip) = 3 (cm(u, k) - (cm(ki,km)/w)i) @)

m=1

where ¢ is a scale parameter to control the closeness scale
rate in each hop in closeness propagation, and

> maxl<w<i(C(km,1,k:x) UC(u, k1)).

We can see that this formula meets Properties 3.1, 3.2 and
3.3.

3) Distributed Closeness Calculation Algorithm: In social
networks, each person has a friend list. Based on the personal
information of his/her friends, the closeness values with ad-
jacent friends can be calculated. Most current social network
have a cental server to store all information of individuals in
the social network. However, such a centralized method may
generate a single point of failure, and hence is not scalable. We
propose a distributed algorithm for the closeness calculation.
Specifically, a source node broadcasts a query message with
a specified TTL along the FOF links. Upon receiving the
message, an intermediate node decreases TTL by 1 and inserts
its closeness values with its neighbors into the message and
then forwards it to its neighbors. The process continues until
TTL becomes 0. Then, the destination node directly sends the
message back to the source node. As a result, the source node
retrieves all closeness values of the nodes in the path to the
destination. It calculates its closeness with each of the node
depending on Equation (4).

It was shown that the average hops between any two persons
in the world are within 6 hops [35]. Hence, we set TTL=6/2=3
for two reasons. (1) Broadcasting along more hops produces
high overhead, and (2) Property 3.1 indicates the closeness
decreases exponentially. Therefore, the source has very low
closeness to the nodes far away from itself, and the emails
from these nodes should be strictly checked.

4) Integration with Bayesian Filter: In the Bayesian filter,
email keywords are weighted to show the likelihood that an
email is spam. SOAP adjusts the keyword weights based
on the closeness between the email receiver and the sender
in determining spam. Specifically, high closeness reduces
weights and low closeness increases weights. Thus, emails
from people with high closeness are regarded as legitimate
emails with high probability, while emails from strangers or

people with low closeness are further checked strictly. The
keyword tuning function is:

W (key)e ks (C=k)ir Oy, v) > kys
W(key)¢ (£>1) if C(u,v) < ky.

where W (key) is the weight of a keyword, ky is a scale

parameter to adjust the decreasing rate of W (key), and k;
is a location parameter to determine where the origin of
exponential decreasing is located [36]. If C(u,v) = k¢, then
the weight is not changed. If C'(u,v) > k¢, then W(key)
is decreased by a factor of eFs (C(wv)=k) If C(u,v) < ki,
then W (key) is increased by a factor of £ (£ > 1). £ can be
adjusted by users with different accuracy requirement. Higher
& makes an email to have a higher probability to be regarded
as spam. ¢ normally is set to be 1 in order to reduce false
positives.

W (key) = { ®)

D. Social Interest-based Spam Filtering

The social interest-based spam filtering component aims to
make SOAP personalized in order to increase the spam de-
tection accuracy. It is actually a content-based spam detection
method. By matching the keywords in an email and the email
receiver’s social (dis)interests, SOAP increases and decreases
the probability of these keywords to be spam respectively.
Then the Bayesian filter calculates the probability that the
email is spam based on Formula (1).

SOAP relies on a rule-based inference system [37] to infer
user preference. The inference system has three components.
The profile component is a database containing all useful
information parsed from users’ profiles in the social network.
Such information includes interests, occupation, affiliates and
so on. The inference rules component contains all the rules that
are used for the inference of (dis)interests. Such rules can be
rational reasoning based on non-monotonic logic or people’s
common sense. The inference engine component determines
the applicability of the rules in the context of the current
profile, and selects the most appropriate rules for the inference.

1) Integration with Bayesian Filter: Bayesian filter detects
spam by directly matching the keywords in an email with
the keywords in the spam filter. SOAP integrates a receiver’s
(dis)interests social information into the matching process. If
an email keyword is within the receiver’s interests, SOAP
decreases the spam weight of the keyword in order to increase
the probability that the email is legitimate. On the other hand,
if an email keyword is within the receiver’s disinterests, SOAP
increases the spam weight of the keyword in order to increase
the probability that the email is spam. Then, SOAP relies on
the basic Bayesian filter (Section III-B) for spam detection.
SOAP is a personalized spam filter since it considers individual
(dis)interests in spam detection.

For a spam keyword within an individual’s interests, its
weight is tuned by:

W(keyinterest) = W(keyintere‘st) ce Pt (6)
where keyinterest 1S the spam keyword in interests and py is
a scale parameter. As py increases, W (keyinterest) decreases.
Therefore, the probability that the email is a spam decreases.

As a result, emails interested by a receiver usually will not be
regarded as spam. Therefore, SOAP can reduce false positives
in traditional spam filters that lack the personalized feature.

If a spam keyword matches the disinterests of an email
receiver, the weight of the keyword is adjusted by

W(keydisinterest) - W(keydisinterest) - efp (7)

where keygisinterest 18 the spam keyword in disinterests. As
pp increases, the weight of the spam keyword is increased.
Thus, even if a spammer has added many legitimate words into
an email in order to disguise spam keywords, as long as the
email has keywords in disinterests, it has high probability to be
regarded as spam. The more disinterest keywords an email has,
the higher probability the email will be rejected. Meanwhile,
since the (dis)interests of different persons are different, it
is very difficult for a spammer to modify the keywords in a
spam email to match the interests and avoid disinterests of a
person. In this way, SOAP resists spam poison attacks.

E. Adaptive Trust Management

Recall that in impersonation attacks, a spammer imperson-
ates the identities of benign computers by forging their IDs
or compromising them to send spam. Due to the power-law
and small-world characters of social networks, impersonation
can spread spam extremely fast. In order to avoid imper-
sonation attacks, SOAP integrates an adaptive trust manage-
ment component. Specifically, a node tracks rapid behavior
changes of close-relationship nodes. It uses the additive-
increase/multiplicative-decrease algorithm (AIMD) [32] to ad-
just node trust. Node trust is used to update node closeness for
the detection of false negatives due to compromised attacks.

AIMD is a feedback control algorithm used in TCP Conges-
tion Avoidance. It combines linear growth of the transmission
rate with an exponential reduction when congestion takes
place. AIMD aims for a balance between responsiveness to
congestion and utilization of available capacity. Similarly,
SOAP aims for a balance between responsiveness to false
negatives and acceptance of trustable emails. In SOAP, node
A initially assumes node B with high closeness is trustworthy
until it receives a spam email (i.e., false negative) from B.

We use t(; ;) to denote the trust value of node j regarded
by node ¢. The maximum trust value ¢,,4, = 1 and ¢ < {,,42.
t is initially set to ¢,,4,. When node ¢ receives a spam email
from sender j, node j changes the trust value of ¢ by

When a node receives a legitimate mail from a sender, then
tig) =ty 0 (0<b<1). ©)

In this way, SOAP can sensitively adjust node trust value to
quickly react to zombies, thus reducing false negatives.

It is important to determine appropriate values for a and b.
Smaller a (i.e., faster trust decrease) and b (i.e., slower trust
increase) lead to less false negatives, but more false positives.
On the other hand, larger a and b result in less false positives,
but more false negatives. In order to maximally reduce false

negatives without concurrently generating more false positives,
SOAP complements AIMD with a new strategy. That is, when
a user notices a legitimate email in the junk box (i.e., false
positive), it increases the node trust by

tig) =ty b (a>1). (10)

In order to reach the optimal point between the false negatives
and false positives, parameters a and b are the functions of
the number of false negatives and false positives respectively,
denoted by ny, and ng,. Specifically, a = F(ng,) is a
decreasing function and b = F(ny,) is an increasing function.
In other words, if ny,1 < npp2, thenay > ag. i nyppr < njppo,
then by < by. Briefly, larger ny,, leads to smaller a, and larger
ny, leads to larger b. The functions are designed in this way
so that when there are a large number of false negatives,
a decreases in order to quickly reduce node trust value to
reduce false negatives. On the other hand, when there are a
large number of false positives, b increases in order to quickly
increase the trust value to reduce false positives.

After the trust value is updated, the closeness value between
node ¢ and node j is updated by

F. The Integration of Components in SOAP

Figure 1 shows how the different components in SOAP
cooperate with each other for accurate spam examination of
an incoming email. Using the social closeness-based spam
filtering algorithm, a node calculates the closeness of other
nodes with itself and keeps a list for the closeness values. In
phase (1), when a node receives an email, SOAP parses out
the keywords in the email.

For each keyword, the basic Bayesian filter calculates the
probability that it is spam keyword. In phase (2), the different
components adjust the probability in order to increase the
accuracy of spam detection. First, based on the closeness
between the email sender and receiver, the probability of each
keyword is adjusted (Equation (5)). Second, if the closeness
is above a pre-determined threshold, this email is legitimate.
Otherwise, the social interest-based spam filtering algorithm
is used. If the keywords match the interests of the receiver,
it means the email is useful to the receiver. Subsequently,
the probabilities of these keywords are decreased based on
Equation (6). On the other hand, if the keywords are within the
disinterested list of the receiver, it means the email is useless
to the receiver. Then, the probabilities of these keywords are
increased based on Equation (7). Finally, according to the
probabilities of the keywords, the Bayesian filter determines
whether the email is spam. In phase (3), the email is for-
warded to the Inbox and the Junk box correspondingly. The
results are used for spam detection training in phase (4). The
Bayesian training enables SOAP to automatically determine
whether an email is spam later on. A user usually recovers
legitimate emails in the junk box by using the “not spam”
function, and deletes spam emails directly without reading
them. Based on these false negatives and false positives, the

97.0%

96%
94% @
92%
90%
88%
86%
84%

96.0%
95.0%
94.0%
93.0% -
92.0%

"""""""""""""""" ~-Bayesian
-SOAP-1(1)-1(D)
< SOAP-1(1)-5(D)

91.0%
90.0%
89.0%

Accuracy rate

% —-Bayesian
.

80% -~
78%

Accuracy rate
P,
I
U
2,
D

B SOAP-1(1)-5(D)
H-SOAP-5(1)-1(D) _*-SOAP-5(1)-5(D)

Accuracy rate

~-SOAP-I(-1(D) |

-5-SOAP-3(1)-3(D)
-5-SOAP-3(1)-3(D)

—%-SOAP-5(1)-1(D)
> SOAP-5(1)-5(D).

Bayesian SOAP SOAP
wo wo
interest closeness

1000 2000

2w
=2
= =
Chod
=@
3
Z =
87
=x
£3
5=
chad
2o
S
o
87
2o
=2
=
chad

3000
Sample size

4000 5000 6000 10 20 30 40 50 60 70

Number of training cycles

Fig. 4. Accuracy. Fig. 5.

adaptive trust management in SOAP adjusts node trust and
tune node closeness accordingly (Equation (11)). The goal
of trust management is to counter impersonation attacks, i.e.,
reducing false negatives while restricting false positives.

IV. PERFORMANCE EVALUATION

A. Experiment Methodology

We evaluated the performance of SOAP compared to the
Bayesian filter [16] (Bayesian in short) and the RE [26]
interaction-based spam filter through simulations.

TABLE II
LIST OF SOAP PARAMETERS
Value

Kinship=In relationship=2; Colleague
= Classmate = 1.5; Familiar=1;

Parameter
Closeness value

Closeness scale rate

Scale parameter of closeness
Location parameter of closeness k=

Scale parameter pr =3,pp =3
AIMD parameters a=0.5, b=0.1

We have built a social network based on data crawled from
Facebook. We selected two users with no social relationship
in Clemson University as seed nodes and built a friend graph
using the breadth first search through each node’s friend list.
We skipped the users whose personal information cannot be
accessed. Finally, a connected social network with 32344 users
was established for SOAP. The average number of friends per
node is 32.51 and the average path length of the graph is
3.78. The personal information such as religion and interests of
each node was parsed and stored in the node. We merged sub-
category interests into a higher level category. For example,
Mozart is classified into classic music, and the book Gone with
the Wind is classified into literature. The average number of
interests per person after merging is 6.64. The links between
persons are weighted based on their relationship indicated in
their profiles in Facebook.

We collected 9500 emails including 2000 spam and 7500
legitimate mails from the spam-assassin project [38], and 500
commercial emails from the email boxes of five members in
our lab. Among the emails, we randomly chose 6000 emails as
training sample for Bayesian and SOAP. The parameters used
in the simulation are shown in Table II. We continuously chose
random 4 pairs of nodes at a time and let them send an email
to each other until 40000 pairs were chosen. The email sent
was randomly selected from the repository of the collected
emails. We assume persons with closeness > 2 do not send
spam to each other except in the case of impersonation attacks.

Accuracy vs. # of emails.

Fig. 6. Training time.

B. Detection Accuracy

We define the metric of accuracy rate as the ratio between
the number of successfully classified emails and the number
of all received emails. Also, we use SOAP-x(I)-y(D) to denote
SOAP with interest scale parameter p;=x and pp=y. Figure 4
shows the average accuracy rate of Bayesian, SOAP without
the interest-based spam filtering component, SOAP without the
social closeness-based spam filtering component, and SOAP
with all components with different p; and pp. The experi-
mental results show that Bayesian produces lower accuracy
than all other methods. Without the interest-based component
or the closeness-based component, SOAP still achieves higher
accuracy than Bayesian. SOAP with all components achieves
the highest accuracy. The improved performance of SOAP
without closeness-based component is because the interest-
based component can identify the emails that match the
receiver’s disinterests but are generally regarded as legitimate,
and the emails that match the receiver’s interests but are gen-
erally regarded as spam. The improved performance of SOAP
without interest-based component is because the closeness-
based component can identify the legitimate mails from close
nodes. Legitimate emails containing general spam keywords
are regarded as spam by Bayesian, but are correctly classified
by SOAP considering node social closeness.

We can also see from the figure that SOAP-3(1)-3(D) and
SOAP-5(1)-5(D) produce the highest accuracy rates. When
pr=pp, SOAP does not bias either interest or disinterest
keywords. Recall that a higher keyword weight means higher
probability that an email is considered as spam. Giving the
same weight to interest and disinterest keywords leads to
a fair judgement on email keywords, thus generating high
detection accuracy. Since the weights generated by pr=pp=
3 and py=pp= 5 based on Equations (6) and (7) are very
close, SOAP-3(I)-3(D) and SOAP-5(I)-5(D) have close accu-
racy rates. Although p; and pp in SOAP-1(I)-1(D) are also
the same, as the keyword weight it generates is extremely
small, the disinterest/interest filtering feature of SOAP is not
demonstrated. Therefore, its accuracy is much less than SOAP-
3(1)-3(D) and SOAP-5(I)-5(D). SOAP-1(I)-5(D) and SOAP-
5(I)-1(D) produce lower detection accuracy as they give higher
weight to either disinterest keywords or interest keywords.
Since SOAP strictly checks emails with keywords of high
weight, their results are biased.

The results imply that the different components in SOAP
play important roles in spam detection. Their synergetic

100%

a" 9 ﬁ @ @ Loy
80%

045 | <-Bayesian | ..o
04 1-©-SOAP

S
>

60%

o
>

=~ Well-trained Bayesian
—*%=SOAP a=0.1
—6-SOAP a=0.5

40%

I
=~

- Bayesian
©-SOAP
HRE

Accuracy rate
Accuracy rate

-%-SOAP a=0.8 0% (g

Decreased accuracy

_|—EI— RE _ _ 0% 0

= = = £l 10 20 30

3 4 5
umber of received spam

Fig. 7. Impersonation attacks. Fig. 8.

efforts contribute to the high accuracy of SOAP. The social
closeness-based spam filtering component checks emails
based on the closeness between the receiver and the sender. A
smaller closeness value leads to more strict checking, while
a larger closeness value leads to loose checking. Since the
emails sent between people with close relationship normally
has low probability to be spam, the spam detection accuracy
rate can be increased. The interest-based spam filtering
component increases the spam detection accuracy by filtering
out the emails in the receiver’s disinterests and accepts the
emails that match the receiver’s interests. The experimental
results imply that the values of p; and pp in the interest-based
spam filtering component need to be equal and large.

Figure 5 demonstrates the accuracy rate of SOAP and
Bayesian with different training sample sizes. It shows that
SOAP always produces a higher accuracy rate than Bayesian,
and the accuracy rate of Bayesian increases as the sample size
grows. SOAP has less dependency on data training because the
social profile provides personal information for accurate spam
detection. In contrast, Bayesian completely relies on data train-
ing and needs a significant amount of time to learn a new spam
keyword. More training samples help to enhance its accuracy.

C. Training Time

We further compare the training time needed for SOAP
and Bayesian to achieve the same accuracy. We define a
training cycle as the time period of training that enables
a node to learn a new type of spam. Figure 6 shows the
accuracy rate versus the number of training cycles. We observe
that the accuracy of both SOAP and Bayesian increases as
the training cycle increases. Unlike SOAP which exhibits
slight increase because its accuracy is already very high, the
accuracy of Bayesian grows rapidly. Moreover, Bayesian needs
about 60 cycles to learn a certain category of keywords to
reach the same accuracy rate as SOAP, while SOAP already
achieves high accuracy with one training cycle. This is because
the social interest-based spam filtering component infers the
(dis)interests of users from their on-line social profiles. Instead
of letting user manually train the Bayesian filter to detect the
spam, SOAP can detect spam without learning based on social
networks. Thus, SOAP does not need as much training time
to achieve high spam detection accuracy rate.

D. Resilience to Impersonation Attacks

In this experiment, we consider the impersonation attack
in which a spammer impersonates the identities of the benign

Number of training cycles

Trust adjustment.

50 60 70 80 0 5 10 15

Number of good words

Fig. 9. Poison attack.

senders by forging their IDs or compromising their computers.
We used a completely trained Bayesian with 6000 sample
size to test how fast SOAP can adjust trust values to filter
the spam from an impersonated node. To mimic the behavior
of impersonation attacks, we randomly selected 4 random
nodes to continuously send 10 spam emails to 4 nodes whose
closeness values are > 2. The simulation finishes after 250 pair
of nodes are selected. Recall that in SOAP, a node decreases
another node’s trust value if it receives spam from that node.

Figure 7 shows the average accuracy rate versus the average
number of spam emails between the selected pairs. The figure
shows that initially when a receiver receives spam from a
highly-trustworthy sender, the spam detection accuracy is
low. This is because SOAP trusts emails from close persons
initially, and its closeness-based filtering component reduces
the weight of spam keywords in emails sent from close people.
Once the receiver detects the spam, it immediately reduces
the trust value of the sender and checks the emails from
the sender more strictly. This process is demonstrated in the
figure. As more spam emails are received by the receivers,
SOAP’s accuracy rate grows rapidly. For SOAP with a < 0.5,
its spam filtering accuracy rate is higher than Bayesian after
receiving only one spam email. This is because using AIMD
for trust adjustment, the accuracy rate of SOAP increases
exponentially. A small a leads to a high trust value decreasing
rate. Because Bayesian has been already well-trained, its
accuracy rate remains high. We notice that the accuracy rate
of RE remains 0. RE always regards the email senders in the
whitelist trustable. Therefore, if spammers impersonate the
identities of the persons in the whitelist, their spam will be
accepted by all in the impersonated persons’ FOF network.
As RE has no trust adjustment mechanism, the accuracy rate
of RE is low.

In this experiment, in addition to legitimate emails, nodes
randomly send spam emails to their close nodes. Bayesian is
only trained with partial spam keywords. Figure 8 shows the
accuracy rate versus the training cycle of Bayesian, SOAP and
RE. The figure shows that it takes 20 — 30 training cycles for
SOAP to adjust the trust to an appropriate value that reaches
the maximum spam detection performance. It also shows that
Bayesian takes 50—60 cycles to learn the new spam keywords.
This result matches the observation in Figure 6 that Bayesian
needs more training time without using a social network, while
SOAP needs less cycles relying on a social network. The result
verifies the effectiveness of the adaptive trust management

component in SOAP. RE exhibits poor performance with less
than 20% accuracy rate. The reason is the same as in Figure 7.

E. Resilience to Poison Attacks

In this experiment, we test the performance of Bayesian
and SOAP under poison attacks. In this attack, extra legiti-
mate keywords are added into spam to avoid to be detected.
Figure 9 shows the decreased accuracy versus the number of
legitimate keywords. As expected, the accuracy of both SOAP
and Bayesian decreases. The detection accuracy of Bayesian
decreases much faster than SOAP. This is because SOAP’s
interest-based spam filtering component only focuses on the
receivers’ (dis)interest keywords in the emails regardless of
other legitimate keywords. Because a spam is always sent out
by flooding, it is unlikely for a spammer to search the interests
of an individual receiver to poison his/her spam filter. SOAP’s
personalized feature enables it to avoid poison attacks to a
certain degree. In contrast, Bayesian is not personalized and
is vulnerable to poison attacks. Some emails do not contain
the (dis)interest keywords of the receiver. In this case, SOAP
resorts to its basic Bayesian function for spam detection. Thus,
its detection accuracy also decreases. Since RE is an identity-
based spam filter, its accuracy is not affected by the content
of an email. Thus, its performance does not change as more
legitimate keywords are added into spam emails.

V. CONCLUSION

A personalized, attack-resilient and user-friendly spam
filter is needed to effectively combat spammers in order to
reduce spam emails. However, most of current spam filters
cannot meet these requirements. Some filters are vulnerable to
spam filter attacks and some are not user-friendly. Few spam
filters rely on social network to achieve personalized spam
filtering to increase spam detection accuracy. In this paper, a
SOcial network Aided Personalized and effective spam filter
(SOAP) is proposed to meet the requirements. SOAP offers
three new components to be integrated into the Bayesian filter.
The social closeness-based spam filtering component prevents
spam poison attacks, the social interest-based spam filtering
component helps to realize personalized spam filtering, and the
adaptive trust management component prevents impersonation
attacks. More accurate spam filtering results function as input
for Bayesian automatic training, leading to less need of user’s
effort to distinguish spam emails. The results of trace driven
experiments show that SOAP improves the performance of
Bayesian networks in term of spam detection accuracy and
training time. In the future, we plan to build a real testbed for
testing the performance of SOAP with real interaction samples.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-OCI 1064230, CNS-1049947, CNS-1025652, CNS-
1025649, and CNS-0917056, Microsoft Research Faculty Fel-
lowship 8300751, and Sandia National Laboratories grant
10002282.

(1]
(2]
(3]
[4]

(5]
(6]

(7]
(8]
9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]

(18]

[28]
[29]
(30]

[31]
(32]

[33]
(34]
(35]
[36]
(37]

(38]

REFERENCES

Messaging Anti-Abuse Working Group. MAAWG email metrics pro-
gram. Technical report, First Quarter 2006 Report, 2006.

Happy spamiversary! http://www.newscientist.com/.

Tracking the high cost of spam. http://www.redcondor.com/company/.
P. O. Boykin and V. Roychowdhury. Personal email networks: an
effective anti-spam tool. IEEE COMPUTER, 2004.

Cisco. Spammers continue innovation. http://ironport.com/.

C. Binzel and D. Fehr. How social distance affects trust and cooperation:
experimental evidence from A slum. In Proc. of ERF, 2009.

L. F. Cranor and B. A. LaMacchia. Spams. ACM Communications,
1998.

X. Carreras, L. Mrquez, and J. Salgado. Boosting trees for anti-spam
email filtering. In Proc. of RANLP, 2001.

P. Haider, U. Brefeld, and T. Scheffer. Supervised clustering of streaming
data for email batch detection. In Proc. of ICML, 2007.

J. A. K. Suykens and J. Vandewalle. Least squares support vector
machine classifiers. Neural processing letters, 1999.

S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on
biased samples. In Proc. of NIPS, 2007.

I. Kononenko. Semi-naive Bayesian classifier. In Machine Learning,
1991.

S.J. Delany and P. Cunningham. An assessment of case-based reasoning
for spam filtering. Artifical intelligent review, 2005.

F. Fdez-Riverola, E. Iglesias, F. Diaz, J. R. Mendez, and J. M. Corchado.
Spamhunting: sn instance-based reasoning system for spam labeling and
filtering. Decision Support System, 2007.

W. Zhao and Z. Zhang. Email classification model based on rough set
theory. In Proc. of AMT, 2005.

M. Uemura and T. Tabata. Design and evaluation of a bayesian-filter-
based image spam filtering method. In Proc. of ISA, 2008.

M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian
approach to filtering junk e-mail. In Proc. of AAAI Workshop on
Learning for Text Categorization, 1998.

J. S. Kong, P. O. Boykin, B. A. Rezaei, N. Sarshar, and V. P. Roychowd-
hury. Let your cyberalter ego share information and manage spam. /[EEE
COMPUTER, 2006.

F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. D.
Kubiatowicz. Approximate object location and spam filtering on peer-
to-peer systems. In Proc. of Middleware, 2003.

SPAMNET. http://www.cloudmark.com.

DNS Real-time Black List. http://www.dnsrbl.com/index.html.
Spambhaus, http://www.spamhaus.org/sbl/index.lasso.

blars.org, http://www.blars.org/.

SpamCop Blocking List, http://spamcop.net/bl.shtml.

O. Boykin and V. Roychowdhury. Personal email networks: an effective
anti-spam tool. JEEE COMPUTER, 2004.

S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and
H. Yu. RE: reliable email. In Proc. of NSDL, 2006.

S. Hameed and P. Hui. Lens: Leveraging anti-social network against
spam. Technical Report Technical Report No. IFI-TB-2010-02, Institute
of Computer Science, University of Gttingen, Germany.

P. Oscar Boykin and Vwani P. Roychowdhury. Leveraging social
networks to fight spam. Computer, (4):61-68, 2005.

J. James and J. Hendler. Reputation network analysis for email filtering.
In Proc. of CEAS, 2004.

C. Wilson, B. Boe, A. Sala, K. Puttasway, and B. Zhao. User interactions
in social networks and implications. In Proc. of EuroSys, 2009.

F. Heider. Attitudes and cognitive organization. J. of Psychology, 1946.
J. F. Kurose and K. W. Ross. Computer networking: A top-down
approach (5th edition). 2009.

GFI Software. Why bayesian filtering is the most effective antispam
technology. http://www.gfi.com/whitepapers/why-bayesian-filtering.pdf.
G. Swamynathan, C. Wilson, B. Boe, K. C. Almeroth, and B. Y.
Zhao. Can social networks improve e-Commerce: a study on social
marketplaces. In Proc. of WOSN, 2008.

S. MILGRAM. The small world problem. In Psychology, 1967.

L. B. Koralov and Y. G. Sinai. Theory of probability and random
processes. Berlin New York Springer, 2007.

R. Brachman and H. Levesque. Knowledge representation and reasoning.
Morgan Kaufmann, 2004.

Spam Assassin, http://spamassassin.apache.org/.

