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Abstract—Recently, many schemes have been proposed for
detecting and healing coverage holes to achieve full coverage
in wireless sensor networks (WSNs). However, none of these
schemes aim to find the shortest node movement paths to heal
the coverage holes, which could significantly reduce energy
usage for node movement. Also, current hole healing schemes
require accurate knowledge of sensor locations; obtaining this
knowledge consumes high energy. In this paper, we propose
a DElaunay-based Coordinate-free Mechanism (DECM) for
full coverage. Based on rigorous mathematical analysis, DECM
can detect coverage holes and find the locally shortest paths
for healing holes in a distributed manner without requiring
accurate node location information. Simulation results and
experimental results from the real-world GENI Orbit testbed
show that DECM achieves superior performance in terms of
the energy-efficiency and effectiveness of hole healing compared
to previous schemes.

Keywords-wireless sensor networks; coverage holes; node
movement; energy usage;

I. INTRODUCTION

In wireless sensor networks (WSNs), sensor nodes may
die due to battery drain or environmental causes. Also, nodes
may deviate from their assigned positions due to the effects
of uncontrollable factors (e.g., ocean waves). Coverage holes
hamper the ability of WSNs to detect events and reduce
network reliability. Therefore, it is crucial to equip the sensor
nodes with efficient hole detection and healing capabilities
in order to ensure full coverage of the target field.

Numerous schemes have been proposed for healing cover-
age holes in WSNs. Many of these [1]–[13] leverage sensor
movement to improve network coverage. Since mechanical
movement is much more energy-expensive than electronic
communications [14], the node moving distance should be
minimized [15]. However, none of the previous hole healing
works aim to find the shortest paths of node movement,
which could greatly enhance the energy-efficiency. Also,
all of these schemes require accurate knowledge of node
locations. However, simple localization solutions, such as
equipping each node with a GPS receiver or manual config-
uration using coordinates [4], [16]–[18], are either energy-
expensive or impractical for WSNs in some cases [19].

To overcome the drawbacks, we propose a DElaunay-
based Coordinate-free Mechanism (DECM) for full coverage
in WSNs. Based on rigorous mathematical analysis, DECM
can find the locally shortest paths for node movement in

Figure 1. Delaunay triangulation.

healing coverage holes in a distributed manner without
accurate location information.

In this paper, we first present a mathematical model that
provides a sufficient and necessary condition for the full
coverage of a triangle that has no other nodes inside its
circumcircle. DECM is a distributed scheme in which every
node checks for holes and makes movements to heal holes.
As shown in Fig. 1, each node first conducts Delaunay
triangulation that divides the target field into triangles that
have no other nodes inside. Then, based on the sufficient
and necessary condition, each node calculates the its safe
area where the node can be located while still keeping full
coverage of its triangles. Based on the calculated safe areas
of each node, DECM can detect coverage holes and find
the shortest paths for node movement to heal the holes.
DECM utilizes the r-map coordinate system [20] to enable
nodes to know the relative locations of nearby nodes for
hole detection and healing.

DECM is similar to a Voronoi diagram based method
(VOR) [7] since both construct a diagram for hole healing.
VOR forms a WSN into Voronoi cells, each of which has
one sensor called a generating node residing in it. All points
within a Voronoi cell are closer to their generating node in
the cell than to those in other cells. Thus, if a generating
node finds some points in a Voronoi cell that are not covered
by itself, it moves directly to the farthest point to heal the
hole. However, VOR may generate numerous iterations of
node movements because (1) node movement to cover one
point rather than the cell area may generate holes in other
points in the cell, and (2) only one node is in charge of the
coverage of a cell. Unlike in VOR, a node in DECM moves
to a point in order to cover the entire area of a Delaunay
cell. Also, three nodes are in charge of the coverage of a
cell. Thus, DECM achieves full coverage more quickly and



energy-efficiently.
This paper is organized as follows. Section II presents

a concise review of related works on movement-assisted
schemes for full WSN coverage deployment. Section III
introduces mathematical models for analyzing WSN cover-
age problems and presents the DECM movement-assisted
scheme for detecting and healing coverage holes based
on this model. Then, Section IV presents a performance
evaluation of DECM in comparison with several previous
schemes. The final section concludes with a summary of
contributions and a discussion on further research work.

II. RELATED WORKS

Node movement strategies for full area coverage have
gained considerable attention during recent years. In virtual
force methods [6], [8]–[10], sensors are likened to electro-
magnetic particles and have repulsive and attractive forces
between them. When the distance between two sensors is too
great, the attractive force makes them pull each other closer;
when the distance is too small, the repulsive force makes
them push each other further away. Consequently, sensor
nodes are exploded from dense regions to sparse regions
or holes. However, these methods require sensors to move
over a series of iterations to balance “virtual forces” between
themselves, which may take a long time to converge and is
not practical for real applications due to the high energy cost
of node movement.

Wang et al. [7] used the Voronoi diagram for healing
coverage holes. As explained in the previous section, in these
methods, a node’s movement cannot completely heal the
coverage holes in its Voronoi cell because one hole healing
may produce other holes in its Voronoi cell, subsequently
generating many iterative node movements.

Many grid quorum-based movement schemes [1]–[5] view
the movement-assisted network re-deployment problem as a
load balancing problem under the virtual grid model [21].
These schemes partition an entire target region into small
grid cells, and consider the number of nodes in each cell as
the cell’s load. The schemes schedule sensor movement in
order to achieve a balanced load distribution among the grid
cells. A node within a grid cell can directly communicate
with other nodes in its four adjacent cells and makes
movement decisions according to information from adjacent
cells. Some of these schemes also try to minimize the sensor
movement distances. For example, SMART [5] arranges
communication between cell heads to identify overloaded
and underloaded cells and direct nodes from overloaded cells
to move to underloaded cells. Knowing the loads of other
cells, each cell tries to avoid any unnecessary movement;
thus, both the total moving distance and the total number of
moves can be minimized. However, since the target a node
moves to is a cell rather than a specific point, the schemes
still cannot find the shortest moving paths.

There are other movement-assisted methods using differ-
ent strategies. Luo et al. [15] assumed that the entire target
region is fully covered initially, and each node dominates a
number of interest points which are randomly and uniformly
distributed throughout the entire region. When some nodes

lose their interest points, their neighbors move to inherit
them. Heo and Varshney [13] proposed an intelligent energy-
efficient deployment algorithm for cluster-based WAN by
synergistic combination of cluster structuring and a peer-to-
peer deployment scheme. Zhang and Arora [12] proposed
the GS3 algorithm for multi-hop wireless networks. The
algorithm enables nodes in a 2D plane to configure them-
selves into a cellular hexagonal structure such that cells have
tightly bounded geographic radii and low overlap between
neighboring cells. Butler and Rus [11] proposed an approach
for positioning and organizing mobile sensors in response to
events in their environment.

Admittedly, the above movement-assisted schemes have
their own merits. However, all of these schemes require
nodes to have accurate location information. Though Be-
jerano et al. [20] proposed a locality-free scheme, it is
for hole detection rather than for hole healing. Also, none
of these schemes aim to find the shortest movement paths
only using local location information. DECM can find the
locally shortest moving paths for healing coverage holes in
a distributed manner without accurate location information.

III. THE DESIGN OF DECM
We consider a WSN comprised of numerous mobile nodes

that are uniformly distributed over a large target field and
are designed to detect specified events. Each node, denoted
s, can sense specified events in its sensing range, denoted
by Rs.

We first find the condition for full coverage of a triangle
formed by three sensors with no other nodes inside the
triangle’s circumcircle (Section III-A). Since a Delaunay
triangle has no other nodes inside the triangle’s circumcircle,
nodes conduct Delaunay triangulation [22] to divide the field
into Delaunay triangles (Section III-B). Then, each node
uses our observed full coverage condition to find a safe area
where it can be located while still keeping full coverage of
its triangles (Section III-C). Finally, each node can detect
holes and discover the shortest path for its movement to
heal holes (Section III-D).

A. Condition for A Triangle’s Full Coverage
Consider three nodes in a plane that construct a triangle.

The sufficient and necessary condition for the triangle’s full
coverage is described in Theorem 3.1.

Theorem 3.1: Consider a triangle formed by three nodes
si, sj and sk with no other nodes placed inside the triangle’s
circumcircle. Using dij to denote the distance between si
and sj , and with the same convention for the other distances,
we derive:

1) when the triangle is an acute triangle, the triangle is
fully covered iff the following condition is satisfied:

Rs ≥
dijdjkdik√(

d2ij + d2ik + d2jk

)2
− 2

(
d4ij + d4ik + d4jk

) (1)

2) when the triangle is an obtuse triangle, the triangle is
fully covered iff the following condition is satisfied:

Rs ≥ max{
d2ijdjk

d2ij + d2jk − d
2
ik

,
d2ikdjk

d2ik + d2jk − d
2
ij

} (2)



(a) Acute triangle (b) Obtuse triangle

Figure 2. The condition of a triangle’s full coverage.

Figure 3. Illegal edge and edge flip.

Proof: Fig. 2 (a) shows an acute triangle formed by
three sensor nodes. Point O is the circumcenter of 4sisjsk
and r is the radius of the triangle (r = Osi = Osj = Osk).
Obviously, if Rs < r, where

r =
dijdjkdik√(

d2ij + d2ik + d2jk

)2
− 2

(
d4ij + d4ik + d4jk

) ,
point O cannot be covered by any sensor node; otherwise,
every point within 4sisjsk can be covered by at least one
of the three nodes.

Fig. 2 (b) shows an obtuse triangle formed by three sensor
nodes. Because the circumcenter of the obtuse triangle is
outside of the triangle, Rs ≥ r is not the necessary condition
for triangle’s full coverage. In the figure, DH , FI , and EO
are the perpendicular bisectors of sisj , sisk and sjsk. If
Rs > Hsi = Hsj , then 4DHsi and 4DHsj are fully
covered. Similarly, if Rs > Isi = Isk, then 4IFsi and
4IFsk are fully covered. In 4HIsi, either H or I must
be the farthest point from si. Therefore, 4DHsi, 4DHsj ,
4IFsi, 4IFsk and 4HIsi are fully covered iff

Rs ≥ max{Hsi, Isi}

= max{
d2ijdjk

d2ij + d2jk − d2ik
,

d2ikdjk
d2ik + d2jk − d2ij

}.

B. Coordinate-free Delaunay Triangulation
The Delaunay triangulation [22] is used in mathematics

and computational geometry.

Definition 1 (Delaunay triangulation [22]) A triangulation
for a set S of points in a plane is a Delaunay triangulation
if no point in S is inside the circumcircle of any triangle.

Based on Theorem 3.1, we first conduct Delaunay trian-
gulation so that there are no other nodes placed inside each
triangle’s circumcircle. Before we present how to conduct
Delaunay triangulation on a WSN, we first introduce some
definitions and theorems [22].

Definition 2 (edge flip) [22]: As Fig. 3 shows, consider an
edge e = sisj of a triangulation. If e is not an edge of the

Figure 4. Definition of NTN.

unbounded face, it is and incident to two triangles sisjsk
and sisjsl. If the two triangles form a convex quadrilateral,
we can obtain a new triangulation T ′ by removing sisj and
inserting sksl in triangulation T . We call this operation an
edge flip.

Definition 3 (illegal edge) [22]: As Fig. 3 shows, after an
edge flip, the only difference between T and T ′ is that the
six angles α1, ..., α6 are replaced by α′1, ..., α

′
6. We call the

edge e = sisj an illegal edge if

min(αi) < min(α′i) (1 ≤ i ≤ 6) (3)

Definition 4 (legal triangulation/triangle) [22]: A triangu-
lation/triangle that does not contain any illegal edge.

Theorem 3.2: A triangulation for a set S of points in
a plane is a legal triangulation iff the triangulation is a
Delaunay triangulation [22].

The Delaunay triangulation and hole healing require each
node to obtain the distances and directions of nearby nodes.
For this purpose, DECM uses the r-map system [20], in
which each node measures the locations of its neighbors
using its own arbitrary polar-axis.

Definition 5 (r-map [20]): The r-map of node si is a variant
of polar coordinates that specifies the relative location of
its r-vicinity, denoted Nsi(r). The location of any node
sj ∈ Nsi(r) is presented as (dij , θij), where dij is the radial
coordinate that indicates the Euclidian distance between
nodes si and sj , and θij is the angular coordinate of node
sj that denotes the direction of sj relative to an arbitrary
polar-axis of si.

Neighboring nodes periodically exchange their measured
r-maps with their neighbors and receive r-maps. When si
receives sj’s r-map containing the location of sk measured
by sj , si can transform sk’s location to the location mea-
sured by si’s polar-axis using the methods in [20], [23].

Definition 6 (shared nodes): Shared nodes of si and sj are
nodes that exist in both si’s r-map and sj’s r-map.

Definition 7 (potential edge): A potential edge is an edge
that has at least one side with no constructed triangle and
with at least one shared node.

In the Delaunay triangulation algorithm, DECM first se-
lects one node as a seed node. The seed node finds its nearest
neighbor and builds an edge to it. The two nodes connected
by this edge (edged nodes) choose a nearby node to form
a triangle so that the triangle’s circumcircle is minimized.
We call this node the nearest triangle neighbor (NTN) of
the edged nodes or the edge.



To find the NTN on one side of edge eij , two edged
nodes, si and sj , communicate with each other to deter-
mine their shared nodes, denoted Nsj(r) ∩Nsi(r). Suppose
sk1 , sk2 , ..., skm ∈ Nsj(r) ∩Nsi(r). As shown in Fig. 4, for
one side of eij , all nodes sk1 , sk2 , ..., skm are connected
with si (or sj), thus generating edges ek1i, ek2i, ..., ekmi (or
ek1j , ek2j , ..., ekmj). These edges’ perpendicular bisectors
intersect with the perpendicular bisector of eij at point
Ok1,ij , Ok2,ij , ..., Okm,ij , respectively. We use variable hk,ij
to denote the distance between Ok,ij and eij , i.e., |hk,ij | =
MijOk,ij , where Mij is the middle point of eij . If Ok,ij and
sk are located at the same side of eij , then hk,ij > 0; and if
Ok,ij and sk are located at different sides, then hk,ij < 0.
Suppose hkn,ij has the smallest value among hk,ij ; then skn
is the NTN of eij .

As shown in Fig. 3, an edge eij = sisj can be used for
building one triangle on each of its two sides. Suppose the
formed triangle is 4sisjsk. When two nodes are connected
by a new edge (e.g., sisk and sjsk), if the new edge is a
potential edge, the edged nodes conduct the same operation
by choosing their NTN to construct a new triangle with the
minimum circumcircle.

Each node stores the triangles it belongs to in its Delaunay
triangulation table (DT-table). This process continues until
a newly added edge intersects with an existing edge, which
means the triangulation is completed. However, it is difficult
to globally notify all nodes of completion. Also, a node
isolated from the others may keep looking for nodes to
build triangle edges. Thus, DECM sets an appropriate time
period for each node to conduct the triangulation process.
After the time period, each node checks to see if an illegal
edge exists in the triangles in its DT-Table, and conducts an
edge flip if an illegal edge exists. This step is to ensure that
Delaunay triangulation is formed according to Theorem 3.2.
There should not be many illegal edges because:

Theorem 3.3: When two edged nodes connect to their
NTN to construct a triangle, there are no other nodes inside
the triangle’s circumcircle on the same side as the NTN.

Proof: As Fig. 5 (a) and (b) show, sk is the NTN
of eij , and si, sj , and sk construct a triangle (either
acute or obtuse), in which Ok,ij is the circumcenter of
the triangle. Suppose there is one sensor node sk′ located
inside the triangle on the same side of eij as sk (i.e.,
sk′Ok,ij < sjOk′,ij). The perpendicular bisector of sisk′
definitely intersects siOk,ij and MijOk,ij at point Ok′,ij .
Therefore, hk′,ij = hk,ij −Ok,ijOk′,ij , which indicates that
hk,ij ≤ hk′,ij . This contradicts the definition of the NTN.

Note that two edged nodes are not necessarily neighbors.
Nodes can communicate with each other by multi-hop
routing [24]. Though two edged nodes calculate their NTN
individually, they will find the same NTN result when their
r-maps include their nearby nodes. Also, because only one
NTN exists on one side of a potential edge of two edged
nodes, it is impossible that a new edge will intersect with
an existing edge of the two nodes.

The Delaunay triangulation can take O
(
n2
)

(n is the
number of nodes in the network) edge flips even if all node

(a) Acute triangle (b) Obtuse triangle

Figure 5. Proof of Theorem 3.3.

locations are globally known [22]. A local edge flip might
generate new illegal triangles, and then the computation
might be endless, though the probability of such an event
is low according to Theorem 3.3. To avoid endless edge
flipping, we set a Time To Live (TTL) for each sensor
node. Once the TTL expires, a node stops flipping edges
even though it finds illegal triangles. The TTL strategy
does not prevent DECM from achieving full coverage but
might generate unnecessary node movements. The strategy
might reduce the accuracy of Delaunay triangulation since
there could exist some illegal triangles. That is, some other
node besides the triangle’s three nodes could cover the
circumcircle’s center. Then, the coverage holes that the
three sensor nodes have detected might be covered by some
other nodes, leading to unnecessary node movements. In
this paper, we assume that the node density is high enough
for Delaunay triangulation and that the number of node
movement iterations for hole healing is limited.

Specifically, in conducting Delaunay triangulation on a
WSN, each node si executes Algorithm 1.

Algorithm 1 The algorithm for Delaunay triangulation
executed by si.

Step 1: If it is selected as the seed node, go to Step 2;
otherwise, go to Step 3.
Step 2: Find the nearest node in its r-map, say sj , and build
an edge to sj . Store edge eij into its DT-table and also ask sj
to store eij into its DT-table.
Step 3: Check if its DT-table contains potential edges. If yes,
find the NTN of each potential edge and build an edge to the
NTN; otherwise, go to Step 4.
Step 4: Check whether the time is expired. If no, go to step
3; otherwise go to Step 5.
Step 5: In TTL, flip edge for each existing illegal edge.

C. Safe Area Detection
Definition 8 (safe area): Consider a triangle formed by
three nodes si, sj , and sk, where si and sj are not moving.
The safe area of sk for 4sisjsk is defined as the area
where sk can be located without breaking the full coverage
of 4sisjsk.

In the following, we calculate sk’s safe area. We assume
that si’s r-map contains sj and sk and use si’s r-map for
the calculation. Using the r-maps of sj or sk can retrieve the
same results. First, we assume that θik ∈ [θij , θij + π). We
will discuss the situation when θik ∈ [0, θij)∪ [θij+π, 2π)
later on. There are three different kinds of triangle shapes
for 4sisjsk:
Case I: an acute triangle (Fig. 6 (a));



(a) case I (b) case II (dij ≥ 2Rs)

(c) case II (dij <
2Rs)

(d) case III

Figure 6. Node sk’s safe area.

Case II: an obtuse triangle with dij > max{dik, djk}
(Fig. 6 (b) and (c));
Case III: an obtuse triangle with dij < max{dik, djk}
(Fig. 6 (d)).

Case I When 4sisjsk is an acute triangle: As Fig. 6
(a) shows, dij , djk, and dik must satisfy d2ij + d2ik > d2jk,
d2ij +d

2
jk > d2ik, and d2ik+d

2
jk > d2ij , which can be induced

to:
dij − dik cos (θik − θij) > 0 and θij < θik < θij +

π

2
(4)

To guarantee the full coverage of the triangle, Eq. (1) in
Theorem 3.1 must be satisfied, which can be simplified to:(

dik cos θ′ik
(
dij − dik cos θ′ik

)
dik sin θ′ik

− dik sin θ
′
ik

)2

+ d
2
ij ≤ 4R

2
s (5)

where θ′ik = θik − θij . From Eq. (5), we can derive dij <
2Rs and

(
dik cos θ

′
ik −

dij

2

)2

+

dik sin θ
′
ik +

√
4R2

s − d2ij
2


2

≥ R2
s (6)

(
dik cos θ

′
ik −

dij

2

)2

+

dik sin θ
′
ik −

√
4R2

s − d2ij
2


2

≤ R2
s (7)

where θ′ik = θik − θij . Therefore,
Lemma 3.1: dij < 2Rs is a necessary condition for the

full coverage of an acute triangle (Case I). The area formed
by Eq. (4), Eq. (6), and Eq. (7) is the safe area of sk, which
is the gray area in Fig. 6 (a).

Case II When 4sisjsk is an obtuse triangle with dij >
max{dik, djk}: As Fig. 6 (b) shows, dij , djk, and dik must
satisfy d2ij ≥ d2jk + d2ik, which can be simplified to:

dik ≤ dij cos (θik − θij) (8)

To guarantee full coverage of the triangle, Eq. (2) in Theorem
3.1 must be satisfied. We discuss the problem in two cases:

Case II.1 When dik ≥ djk, Eq. (2) can be induced to:

dik
cos (θik − θij)

≤ 2Rs. (9)

The area formed by Eqs. (8) and (9) is the safe area of sk,
which is the gray area in Fig. 6 (b).

We notice that when dij < 2Rs, if Eq. (8) is satisfied,
Eq. (9) is automatically satisfied, indicating that the triangle
is fully covered. This is because:

dik

cos (θik − θij)
≤ dij < 2Rs →

dik

cos (θik − θij)
≤ 2Rs (10)

Case II.2 When dik < djk, Eq. (2) can be reduced to:

d2ik − 2dikdij cos (θik − θij) + d2ij

dij − dik cos (θik − θij)
≤ 2Rs (11)

Similarly, we notice that when dij < 2Rs, if Eq. (8) is
satisfied, Eq. (11) is automatically satisfied, indicating that
the triangle is fully covered. This is because Eq. (8) can be
reduced to

d2ik − 2dik cos θ
′
ikdij + d2ij ≤ d2ij − dik cos θ′ikdij , (12)

where θ′ik=θik−θij . Because dij − dik cos (θik − θij) > 0
in Eq. (8), Eq. (12) can be reduced to

d2ik − 2dik cos (θik − θij)dij + d2ij
dij − dik cos (θik − θij)

< dij < 2Rs (13)

Thus, Eq. (11) is satisfied. Accordingly,
Lemma 3.2: For an obtuse triangle with dij >

max{dik, djk} (Case II), when dij < 2Rs, Eq. (8) is a
sufficient condition for the full coverage of the triangle, and
the area formed by Eq. (8) is the safe area of sk, which
is the gray area in Fig. 6 (c); when dij ≥ 2Rs, the area
formed by Eq. (8), Eq. (9), and Eq. (11) is the safe area of
sk, which is the gray area in Fig. 6 (b).

Case III When 4sisjsk is an obtuse triangle with
dij < max{dik, djk}: This case is further discussed in
the following two cases:

Case III.1 When dik > max{dij , djk}: As Fig. 6 (d)
shows, dij , djk, and dik must satisfy d2ik > d2ij+d

2
jk, which

can be reduced to:

dik cos (θik − θij) > dij (14)

where cos (θik − θij) > 0 because dik > djk. To guarantee
full coverage of the triangle, Eq. (2) in Theorem 3.1 should
be satisfied. We discuss the problem in two cases:

Case III.1.1 When dik > dij ≥ djk: From Equ. (2), the
safe area of sk can be calculated as:

dij

2 cos (θik − θij)
≤ Rs and

dik

2 cos (θik − θij)
< dij (15)

From Eqs. (14) and (15), we can infer that:
dij

2Rs
≤ cos (θik − θij) < 1→ dij < 2Rs (16)

Case III.1.2 When dik > djk > dij : From Eq. (2), the
safe area of sk can be calculated as:

d2ik − 2dikdij cos (θik − θij) + d2ij

2(dik − dij cos (θik − θij))
≤ Rs (17)

dik

2 cos (θik − θij)
> dij (18)



Recall that dij < 2Rs when dij > djk. Similarly, we can
derive that djk < 2Rs when djk > dij . Then,

dij < djk < 2Rs → dij < 2Rs (19)

From Eqs. (16) and (19), we know that
Lemma 3.3: dij < 2Rs is a necessary condition for

the full coverage of an obtuse triangle with dik >
max{dij , djk} (Case III). The area formed by Eq. (14), Eq.
(15), and Eq. (17) is the safe area of sk, which is the gray
area in Fig. 6 (c).

Case III.2 When djk ≥ max{dij , dik): If we use sj’s
r-map to calculate sk’s safe area in the obtuse triangle,
because this is symmetrical to Case III.1, the calculated
sk’s safe area is similar to that of case III.1 shown in
the slashed area of Fig. 6 (d). In other cases, using sj’s
r-map to calculate sk’s safe area leads to exactly the
same result. When θik ∈ [0, θij) ∪ [θij + π, 2π), it only
results in a safe area that is symmetrical to the area when
θik ∈ [θij , θij + π) as shown in the dotted and gray areas
in Fig. 6 (a)-(d).

From Lemmas 3.1, 3.2, and 3.3, we know that when si
looks for the safe area of sk for full coverage of 4sisjsk,
given dij , if dij ≥ 2Rs, sk’s safe area is only Fig. 6(b) in
Case II, which is re-drawn in Fig. 7 (b). If dij < 2Rs, sk’s
safe area can be Fig. 6 (a), (c), and (d) in Case I, II, and
III, the combination of which is shown in Fig. 7 (b).

Theorem 3.4: When si checks the full coverage of
4sisjsk, given dij when dij ≥ 2Rs, the gray area in
Fig. 7(b) is the safe area of sk; otherwise, the gray area
in Fig. 7(a) is the safe area of sk.

If every node only has the relative location information
of other nodes, it would be difficult for the system to detect
holes on the edge of the target region [20]. There are several
ways to solve this problem, such as configuring nodes before
placing them. In our system, we deploy a small number of
static nodes on the edge of the region as anchor nodes to
help detect holes.

D. Shortest-path Movement

Recall that after the Delaunay triangulation, each node
stores the nodes that are in the same triangle as itself
in its DT-Table. We call these nodes triangle neighbors
of the node. Each node calculates the safe areas of its
triangle neighbors, checks to see if they are in their own
safe areas using its r-map based on Theorem 3.4, and then
notifies those which are not in their own safe areas. After
a node receives an out-of-safe-area notification, it calculates
the target point that leads to the shortest path in order to
cover the hole. A node may receive multiple out-of-safe-
area notifications, similar to VOR [7]; the node then moves
to the farthest target point in order to fix the largest hole, so
that the sizes of all holes in the WSN are quickly reduced.
Differently from VOR, in which a node movement may lead
to numerous iterations to cover a hole, DECM enables a
node to move to its destination directly to cover a hole
and meanwhile keep the full coverage of its triangle. In the
following, we present the algorithm to calculate the shortest
path for node movement.

(a) when dij < 2Rs (b) when dij ≥ 2Rs

Figure 7. Shortest path in node movement for hole healing.

Assume that sk receives the notification from si along
with dij and sk’s safe area. sk then calculates its shortest
path and the target point to move into its safe area. Similar
to hole detection, sk needs to consider two cases according
to dij .

Case I When dij < 2Rs: As Fig. 7 (a) shows, the safe
area for sk is composed of two parts: area I and area II.
From Eq. (7) we can get the polar coordinates of C1’s
center O1 and C2’s center O2: (Rs, arccos

(
sij
2Rs

)
+ θij)

and (Rs, 2π − arccos
(
sij
2Rs

)
− θij). sk has two choices:

(1) constructing an acute triangle (moving towards area I),
and (2) constructing an obtuse triangle (moving towards area
II). We only let nodes contruct acute triangles because this
makes the node positions more similar to the vertices of the
static hexagon based permutation, which is considered the
best for node distribution [25]. To find the shortest path and
target point to move to region I, using itself as the circle
center, sk draws a circle C ′, which generates a point of
tangent between C ′ and region I, denoted T ; then skT is the
shortest path. T is on the line of skO1 if θik ∈ [θij , θij + π)
and is on the line of skO2 if θik ∈ [0, θij)∪ [θij + π, 2π).
Thus, to cover the hole, sk moves towards point O1 or O2,
whichever is nearer, and stops once it enters its safe area.
As a result, it moves along the shortest path, the length of
which is:

skT =

√√√√√√(xik − dij

2

)2

+

yik −
√

4R2
s − d2ij
2


2

−Rs (20)

where xik =dik cos (θik − θij), yik= dik sin (θik − θij).
Node sk can independently calculate the coordinates of

O1 and O2 in its own r-map. We notice that the polar
coordinates of point O1 and O2 must be positioned at si and
sj’s perpendicular bisector and that O1si = O2si = Rs. Ac-
cordingly, the coordinates of O1 in sk’s r-map, (dkO1

, θkO1
),

can be calculated by:

dkO1
=

√
(A+B)

2
+ (C +D)

2 (21)

θkO1
=

arctan
(

C+D
A+B

)
if C +D ≥ 0

arctan
(

C+D
A+B

)
+ π if C +D < 0

(22)

The coordinates of O2 in sk’s r-map, (dkO2
, θkO2

), can be
calculated by:

dkO2 =

√
(A−B)

2
+ (C −D)

2 (23)



θkO1
=

arctan
(

C−D
A−B

)
if C −D ≥ 0

arctan
(

C−D
A−B

)
+ π if C −D < 0

(24)

where

A =
dki cos θki + dkj cos θkj

2
, C =

dki sin θki + dkj sin θkj
2

B =

√
R2
s −

(
d
2

)2
(dkj sin θkj − dki sin θki)

d

D =

√
R2
s −

(
d
2

)2
(dki cos θki − dkj cos θkj)

d

and d =
√
d2ki − 2 cos (θki − θkj)dkidkj + d2kj

Based on the coordinates of O1 and O2, sk chooses the
one closer to itself as the target point, which leads to the
shortest moving path.

Case II When dij ≥ 2Rs: As Fig. 7 (b) shows, the polar
coordinate of O1 and O2 in sk’s r-map are (Rs, θij) and
(dij − Rs, θij), respectively. sk also has two choices: (1)
moving towards region I, and (2) moving towards region II.
Node sk chooses the option that leads to the shorter moving
path. Specifically, sk produces the circle C ′1, which has sk
as its center and has a tangent with region I at point T1. sk
also produces the circle C ′2, which has sk as its center and
has a tangent with region II at point T2.

If T1sk < T2sk, the direction of sk’s movement is towards
O1 and the length of the shortest path T1sk is:

T1sk =

√
d2ik − dikdij cos l (θik − θij) +

d2ij

4
−Rs (25)

If T1sk ≥ T2sk, the direction of sk’s movement is towards
O2 and the length of the shortest path T2sk is:

T2sk =

√
d2ik − 2dik cos θ′ik

(
Rs −

dij

2

)
+

(
Rs −

dij

2

)2

−Rs

(26)
where θ′ik = θik − θij . Similar to Case I, in Case II sk can
figure out the coordinates of O1 and O2 through its own r-
map’s information. Both O1 and O2 are located at sisj , and
O1si = O2sj = Rs. The coordinates of O1 in sk’s r-map,
(dkO1

, θkO1
), can be calculated by:

dkO1
=
√
A2 +B2 (27)

θkO1
=

arctan
(

B
A

)
if B ≥ 0

arctan
(

B
A

)
+ π if B < 0

(28)

The coordinate of O2 in si’s r-map, (dkO2
, θkO2

), can be
calculated by:

dkO2 =
√
C2 +D2 (29)

θkO2
=

arctan
(

D
C

)
if D ≥ 0

arctan
(

D
C

)
+ π if D < 0

(30)

(a) Total moving distance (b) Total number of moves
Figure 8. Energy-efficiency of different schemes with different number of
nodes (simulation).
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(a) Total moving distance
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(b) Total number of moves
Figure 9. Energy-efficiency of different schemes with different number of
nodes (Orbit Testbed).

where

A= dki cos θki +
Rs (dkj cos θkj − dki cos θki)

d
(31)

B= dki sin θki +
Rs (dkj sin θkj − dki sin θki)

d
(32)

C= dkj cos θkj −
Rs (dkj cos θkj − dkj cos θkj)

d
(33)

D= dkj sin θkj −
Rs (dkj sin θkj − dki sin θki)

d
(34)

and d =
√
d2ki − 2 cos (θki − θkj)dkidkj + d2kj .

Based on the coordinates of O1 and O2, sk moves towards
the point closest to it, which leads to the shortest moving
path.

IV. PERFORMANCE EVALUATION

In this section, we present the experimental results
from the simulation and the experiments on GENI Orbit
testbed [26], [27]. The testbed uses a large two-dimensional
grid of 400 802.11 radio nodes, which can be dynami-
cally interconnected into specified topologies. We compared
DECM with other three movement schemes for WSN full
coverage: VORonoi-based algorithm (VOR) [7], Scan-based
Movement-Assisted Sensor Deployment (SMART) [5] and
Sea Surface Coverage (SSC) [15]. In SSC, nearby nodes can
only move in four directions to inherit others’ lost “interest
points”. Since the target region is not fully covered at the
beginning in our simulation environment, we assume that
every “interest point” in SSC is assigned to its nearest node.
We also compared DECM with DECM-R, in which each
node randomly selects one target point from multiple notifi-
cations, and with DECM-S, in which each node selects the
nearest target point from multiple notifications. The nodes
in Orbit do not move. We simulated the node movement
by letting nodes exchange the information of their virtual
locations.

The target field is a 1200m × 1200m area. The number
of sensors was varied from 290 to 340. The radius of the
sensing range was varied from 55.2m to 59.2m and the



(a) Total moving distance (b) Total number of moves
Figure 10. Energy-efficiency of different schemes with different radii
(simulation).
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(b) Total number of moves
Figure 11. Energy-efficiency of different schemes with different radii
(Orbit Testbed).

transmission range was set to 120m. Initially, we randomly
distributed all sensors in the target field. Then we used a
scheme to heal the holes until the coverage reaches 99.9%.
We measured the following metrics.
(1) Total moving distance. This is the sum of the moving
distances of all nodes for hole healing. It reflects the delay
and energy cost of node movement in hole healing. As in the
work in [15], we do not consider the energy consumption
for node communication and computing, because it is much
lower than that of physical movement.
(2) Total number of moves. This is the sum of the number
of moves of all nodes for hole healing. Since node moving
startup usually consumes more energy than moving, this
metric also reflects the energy consumption.
(3) Coverage. We distribute 10,000 points uniformly
throughout the entire field. The coverage equals the percent
points covered. This metric represents the effectiveness of
full coverage schemes.

A. Energy Cost of Healing Holes
Fig. 8 and Fig. 9 show the total moving distance and total

number of moves versus the number of nodes in different
schemes in simulation and Orbit testbed, respectively. From
these figures, we find that DECM has the best performance
in total moving distance. The total moving distance follows
SMART� SSC > VOR > DECM, and the total number of
moves follows SSC> VOR > DECM � SMART in both
simulation and Orbit.

Both SSC and VOR have higher costs in both metrics
than DECM because they cannot find the shortest paths
for node movement to heal the holes. Long moving paths
may produce new holes because a node may not be able
to cover its original area after moving, thus resulting in
more movements. In DECM, each triangle is managed by
three nodes. A node’s movement aims to fully cover its
triangle. Even when a node selects its farthest target point
when receiving multiple notifications, a potential new hole
in the triangle can be healed by the other two sensor nodes.
In VOR, each Voronoi cell is managed by only one node.
A node’s movement aims to cover one point in its cell,
which makes it very likely to generate new holes within its

(a) The number of nodes is 300 (b) The number of nodes is 330
Figure 12. Efficiency of healing holes in different schemes (simulation).
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(a) The number of nodes is 300
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(b) The number of nodes is 330
Figure 13. Efficiency of healing holes in different schemes (Orbit Testbed).

Voronoi cell that cannot be managed by any other nodes. As
a result, this node may move back, or other nodes may need
to move to cover the hole, resulting in more iterations of
node movement. Thus, VOR produces a longer total moving
distance and a greater total number of moves than DECM.

It is very intriguing to see that SMART generates a
significantly higher total moving distance than the others
while producing the lowest total number of moves. Recall
that the main task of SMART is to balance the distribution
of sensor nodes throughout the entire target region in order
to achieve full coverage. Even when the region has no
hole, nodes need to make movements to achieve balance.
Since the decision of node movement is made by cluster
heads, each of which holds all the information of nodes
in its cluster, there is only one iteration and every node
only needs one movement to reach its final target point.
Consequently, SMART generates a long total moving path
but a low number of moves.

Fig. 10 and Fig. 11 show the total moving distance and
total number of moves versus the node sensing radius in
different schemes in simulation and Orbit testbed, respec-
tively. We see that the total moving distance follows SMART
� VOR ≈ SSC > DECM, and the total number of moves
follows VOR ≈ SSC>DECM�SMART in both simulation
and Orbit. This is for the same reasons as in Fig. 8. We
also observe that for DECM, VOR, and SSC, the two metric
results decrease as the radius of sensing range increases. This
is because a larger sensing range can reduce the number and
size of coverage holes. SMART is not affected significantly
by the change of sensing radius because it aims to balance
the sensor distribution.

B. Effectiveness of Healing Holes
Fig. 11 and Fig. 12 show that the coverage versus the

total moving distance in different schemes in simulation
and Orbit testbed, respectively. Fig. 11 (a) and Fig. 12
(a) show that to achieve 99.9% coverage, the total moving
distance is 5600m in DECM, but is over 8000m in other
schemes. Fig. 11 (b) and Fig. 12 (b) show that to achieve
99.9% coverage, the total moving distance is 4000m in



(a) Total moving distance (b) Total number of moves
Figure 14. Energy-efficiency of different schemes in handling dead nodes
(simulation).
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Figure 15. Energy-efficiency of different schemes in handling dead nodes
(Orbit Testbed).

DECM, is 5600m in VOR, and is over 8000m in SSC and
SMART. DECM always finds the shortest paths for healing
holes. A shorter movement distance has a lower probability
of generating new holes. Also, three nodes managing a
triangle area rather than one node makes it easier to heal
newly generated holes caused by a node’s movement. More
importantly, a node’s movement covers the entire triangle
rather than a point. Thus, DECM avoids excessive iterations
of node movement and achieves full coverage more rapidly
than other schemes. The figures show that SMART achieves
full coverage very slowly. This is because the objective of
SMART is to balance the distribution of nodes and thus hole
sizes are not decreased rapidly. Comparing (a) and (b) in
Fig. 12 and Fig. 12, we see that more sensors help achieve
full coverage faster in all schemes because a higher node
density reduces the number and size of holes.

C. Healing Holes Due to Dead Nodes
In this experiment, 50 nodes died immediately after all

holes were healed from the initial deployment. Fig. 14 (a)
and (b), and Fig. 15 (a) and (b) show the total moving
distance and number of moves of the schemes in healing
the holes caused by the dead nodes in simulation and Orbit
testbed, respectively. We see that the total moving distance
follows SMART�SSC>VOR>DECM, and that the total
number of moves follows SSC>VOR>DECM>SMART in
both simulation and Orbit. This is for the same reasons as in
Fig. 8. The results show that DECM still exhibits superior
performance over others even with dead nodes.

D. Different Target Point Selections
Fig. 16 and Fig. 17 show the total moving distance and

total number of moves of DECM, DECM-R and DECM-
S in different schemes in simulation and Orbit testbed,
respectively. We see that DECM generates significantly
lower results in both metrics than DECM-R and DECM-S.
The results verify the effectiveness of DECM in choosing
the farthest target point. It can quickly reduce the sizes of

(a) Total moving distance (b) Total number of moves

Figure 16. Energy-efficiency of DECM with different target point
selections (simulation).
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Figure 17. Energy-efficiency of DECM with different target point
selections (Orbit Testbed).

large holes, and hence reduce the number of moves. Also,
moving towards large holes can balance the distribution of
nodes over the entire target region more quickly. From our
observations, when nodes move to heal small-size holes, new
holes may arise in the original position. Then, the node will
move back to heal the newly generated small holes, leading
to more iterations.

Fig. 18 and Fig. 19 show the coverage versus the total
moving distance in DECM, DECM-R, and DECM-S when
the number of sensors is set to 300 and 330, in simulation
and Orbit testbed, respectively. In both figures, DECM
achieves full coverage more rapidly than DECM-R and
DECM-S. In Fig. 18 (a) and Fig. 19 (a), when the total
moving distance reaches 5600m, DECM achieves 99.9%
coverage, while DECM-R and DECM-S achieve 98.12% and
96.01% coverage, respectively. In Fig. 18 (b) and Fig. 19
(b), when the total moving distance reaches 4800m, DECM
achieves 99.9% coverage, while DECM-R and DECM-S
only achieve 98.27% and 96.89% coverage, respectively.
Because DECM always fixes the largest hole first since it
selects the farthest target point, it reduces the size of holes
more and achieves the full coverage faster than DECM-R
and DECM-S.

From the experimental results, we find that there is no
big difference between the simulation results and Orbit real-
world testbed results. It is because in the Orbit testbed,
we used virtual location exchanges between static nodes
to simulate node movement and there is no packet loss
during the testing process. The experimental results verify
that selecting the farthest target point when finding several
uncovered triangles is the optimal method in healing holes.
In summary, the simulation and real testbed results show:

1) DECM is more energy-efficient for full coverage than
other schemes, even when some sensor nodes die.

2) DECM can heal coverage holes more quickly than other
schemes.

3) Selecting the farthest target point when finding several



(a) The number of nodes is 300 (b) The number of nodes is 330
Figure 18. Effectiveness of healing holes in DECM with different target
point selections (simulation).
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(b) The number of nodes is 330

Figure 19. Effectiveness of healing holes in DECM with different target
point selections (Orbit Testbed).

triangles that are not fully covered is an optimal method in
DECM.
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