
Experimentation of a MANET Routing Algorithm on the GENI

ORBIT Testbed

Kang Chen, Ke Xu, Steven Winburn, Haiying Shen and Kuang-Ching Wang
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {kangc, kxu, sawinbu, shenh, kwang}@clemson.edu

Abstract—This paper proposes a systematic procedure for
experimentation of Mobile ad hoc networks (MANETs) on
the ORBIT testbed. MANETs have attracted significant re-
search interests in recent years. Most of routing or file sharing
algorithms in MANETs were only evaluated by theoretical
analysis or simulations because of the requirement of large
scale networks. However, due to the distinctive properties of
MANETs, such as mobility and decentralized structure, it has
been non-trivial to deploy a real testbed for the verification. The
Global Environment for Network Innovations (GENI) project
sponsored by the National Science Foundation (NSF) provides an
exploratory environment for academic real-world experiments,
such as the ORBIT testbed. A stable and repeatable procedure
for experimentation on real testbeds is necessary and important
to assure the validity of results. In this paper, a MANET routing
algorithm, namely LORD, was tested on the ORBIT testbed,
using the proposed procedure. Specifically, we first configure the
wireless interface on each node to enable the communication
between each pair of nodes. Then a set of methods are adopted
to construct the MANETs scenario for test. The network status is
monitored throughout the entire duration of experiments. Finally,
the experiment results of LORD on the GENI ORBIT testbed
are demonstrated.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) have become pop-
ular research topics in the past decades. Various issues in
MANETs, such as hardware design, communication protocol
and routing, have been widely studied by researchers. Among
all topics, routing is an important issue since it is the key
factor for the development of MANETs applications (i.e., file
sharing, data collection, etc.). In MANETs, there is usually no
centralized infrastructure, which means nodes communicate in
a peer to peer mode when within each other’s communication
range. Also, network topology keeps changing due to node
mobility. Such properties make traditional routing algorithms
no longer adapt to the MANET scenario. Fortunately, many
effective algorithms [1]–[5] have been proposed recently.

However, the deployment of large scale MANET testbed
is non-trivial for the evaluation of MANET routing algo-
rithms due to the previously mentioned natures of MANETs
(i.e., nodes keep moving and decentralized structure). Also,
large scale deployment requires high budget investment. Con-
sequently, most routing algorithms are only evaluated by
theoretical analysis or through simulators such as the ONE
simulator [6], NS-2 [7], MobiREAL [8], and GloMoSim [9].
Though simulators try to emulate the MANET scenario in a
realistic way, researchers still wish to evaluate the proposed

algorithms in real testbeds with large scale to make the
algorithms suitable for real deployment. Moreover, a real
testbed can further help detect any practical problems for
various MANETs applications.

To realize this goal, we propose a way to use the GENI [10]
ORBIT testbed [11], which is a laboratory based network
testbed, as a MANET testbed. The ORBIT testbed consists
of 400 indoor nodes, each of which is equipped with 802.11
wireless card. Though the ORBIT testbed satisfies the require-
ment for large scale, it has no mobility and communication
range limit, which are two important features of MANETs.
A simple but effective way is then used to enable the two
features in ORBIT. To enable stable and reliable testing
environment, some monitoring scripts are developed. Finally,
a set of procedures are proposed to evaluate MANETs routing
methods in ORBIT.

Specifically, we first configured the 802.11 interface on
each node in the same sub-net. Then nodes can communicate
with any other node by knowing its IP address. After this,
we added one layer in the LORD algorithm to simulate the
mobility and communication range limit. In detail, each node
is configured with a virtual position, which is dynamically
changed according to the mobility model. Also, we let each
node drop packets from nodes whose distance to the node is
larger than the communication range. After this, we can regard
the ORBIT as a MANET environment. We then evaluated
the performance of a MANET routing algorithm, namely
LORD [3], in ORBIT. The LORD algorithm is generally a geo-
graphical routing algorithm but requires no GPS information.
During our experiment, some shortcomings of ORBIT were
identified. For example, some nodes failed to remain stable.
The wireless interfaces on them can easily stop working.
We developed some scripts to solve node instability issue
and to pick stable nodes in ORBIT to reduce the adverse
effect brought about by the ORBIT testbed. In summary, our
contributions are twofold:
(1) We proposed a set of procedures and scripts to test

MANET routing algorithms on the GENI ORBIT testbed,
which contains three steps: a) Test scenarios design, b)
Initial wireless configuration and network status monitor-
ing, and c) Experiment start and data collection.

(2) We identified the stability issue of wireless interfaces in
supporting large scale MANET scenario on the ORBIT
testbed.



The remaining of the paper is arranged as below. Related
work is presented in Section II. Section III introduces the
background on the GENI ORBIT testbed and the LORD
algorithm. After this, we describe the design of our experiment
in ORBIT in Section IV. Then, the experiment results are
presented in Section V. Section VI concludes the paper with
remark on future work.

II. RELATED WORK

There are some MANET simulators developed by re-
searchers [6]–[9]. The ONE [6] simulator is designed for
the simulation of delay tolerant networks (DTN) and focuses
on application layer message forwarding and storing. It can
drive node mobility from real-world traces. The NS-2 [7]
is a discrete event simulator for networking research. It can
simulate almost all wired and wireless network scenarios. For
MANETs, it can also import node mobility data from outside
traces. Unlike the ONE simulator, it also supports the simu-
lation of all lower layers (i.e., link layer and physical layer),
thereby can provide more insight on wireless communications
in the network. MobiREAL [8] is a realistic network simulator
for MANET with support on realistic mobility of humans
and automobiles. GloMoSim is a parallel discrete-event based
simulator for wireless communication. Similar to NS-2, it also
supports the simulation on all layers.

Kropff et al. [12] surveyed a list of real world and em-
ulation testbeds for MANETs. It introduces and compares
these testbeds in three key aspects: mobility modeling, wireless
medium modeling, and testbed architecture. Since our focus
is not to investigate testbeds, we introduce some of them
in the three aspects. The ORBIT [11] platform has 400
physical nodes with IEEE 802.11 connection. It can realize
real mobility through antenna switching. EWANT [13] is
similar to ORBIT but has only 4 physical nodes. Hiyama [14]
realized a real MANET testbed on stairs environment with
6 laptops, which cannot support large scale experiments too.
MobiNeT [15] and NET [16] have 200 and 64 physical
nodes, respectively. However, their wireless connections are
simulated through wired connections. In summary, current
testbeds except ORBIT are either in a small scale or fail to
provide real wireless connectivity. This validates our selection
of ORBIT for the evaluation of MANET routing algorithms.
Liu implemented declarative policy-based adaptive MANET
routing protocols on the ORBIT testbed [17]. This work
focuses on the design of protocols and used 33 nodes on the
testbed.

III. BACKGROUND

In this section, we introduce the background on the GENI
ORBIT testbed and the MANET routing algorithm (LORD)
that we are going to evaluate.

A. GENI ORBIT testbed

The GENI ORBIT testbed is a network testbed operated
by the WINLAB at Rutgers University. It has a large two-
dimensional (20x20) grid of nodes equipped with 802.11

wireless cards. Each node is basically a Linux PC. It is
available for remote access for all registered users. However,
the grid is allocated by time slots, and each user can only
use the resource during its allocated time slots. The main
components of the ORBIT experiment service are the node
handler on the Console and the Node Agent located on each
node. The node handler is the controller of experiments. It
sends commands to selected nodes at pre-defined time and
tracks the execution. The node agent listens and executes the
commands from the node handler. The ORBIT system also
supports the function of disk image saving and loading in order
to improve the experiment efficiency. When a user is granted
the access, he/she can log on the console and consequently
can log on all nodes.

To run an experiment, the standard way is to write a Ruby
script and transfer it to the node handler, which uses it to
start and control the experiment. The script should describe
following items
(1) Required resources.
(2) Their initializations and optional associations.
(3) Their operation throughout the experiment duration.
However, we adopted a simple way to develop and run a shell
script on the console node, which logs on each test node and
launches our programs. We will elaborate this step in detail in
Section IV.

B. The LORD Algorithm

The LORD algorithm is a locality-based distributed data
sharing system for MANETs. It has two major components:
DHT-based data index and retrieval protocol and 2) locality-
aware regional-based data routing protocol. It represents each
data item by a metadata which records the keywords of the
data and the actual location of the node holding the data. To
facilitate the data storage and retrieval, LORD divides the
entire MANETs area into a number of geographic regions.
Each metadata is then mapped to a region through the locality
sensitive distributed hash function and is copied to all nodes
in the region. When nodes move, they update the metadata
information held by them accordingly. Then, when a query is
generated, it is first transferred to the mapped region, which
is obtained through the same mapping process of storing the
metadata (i.e., using the same hash function). When the query
arrives at the region, it tries to find the metadata which has
higher similarity with the query than a predefined similarity
threshold. If one metadata is found, the query goes directly
to the node holding the actual file based on the location
information in the metadata. In the query forward and response
process, a region-based geographic routing algorithm is pro-
posed, which is the key of the LORD algorithm. Therefore,
we introduce the routing algorithm with more detail below.

Recall that the LORD divides the whole area into several
small regions and each region is labeled with a landmark.
During the routing, each node uses such information to select
next-hop for the query/data forwarding. Specifically, each
region has left-side and right-side angle range with respect to
another region. The left-side angle range is the angle between

2



13

2
3

4
5 6

7

8

9

10

11

12

α
β τ

θ

π

1

14

Source node
Geographic routing

Landmark
Regional AODV routing

Fig. 2. Region-based geographic routing in LORD

the requester may move out of its region or even travel a
number of regions before the response arrives at the source
region. LORD has a back-tracking algorithm to keep track
of the movement of the requester. In the algorithm, if a
requester moves out of its current region during the time after
sending out a query message and before receiving response,
it sends a back-tracking message to the source region. The
message indicates the node’s current region. This message is
piggybacked in the “Hello” message between neighbor nodes.
Thus, each node in the source region keeps a back-tracking
message of the requester. Using this message, the response can
be forwarded to the requester after it moves out of the source
region.

Proposition 3.3: In LORD, a response can always reach the
data requester with O(

√
n) amount of overhead.

Proof: Suppose the area of a MANET is a plane with
k regions, and the n nodes are independent and identically-
distributed (i.i.d) in the plane. Therefore, the average number
of nodes in a region is n/k. The overhead of regional flooding
is O(n/k). The overhead for the routing of metadata query
is O(

√
n) and the query response to the source region is

O(
√
n). If requester i doesn’t move out of the source region,

the total overhead for a metadata query is O(2
√
n)+O(n/k) =

O(
√
N) assuming k = O(

√
n). If node i moves out of the

source region, the query overhead is O(4
√
n) = O(

√
n). It

includes the overhead for flooding a back-tracking message
O(
√
n), for query flooding in the new region O(

√
n) and for

query and response transmission O(2
√
n).

Theorem 3.4: The probability of the query node moving out
of the current region to a neighbor region before receiving the
metadata reply packet is

λdt
vt

(vt)! · e−λdt

π
(D · arccos D

vt
−
√

(vt)2 −D2 + vt),

where t is the time period between sending out a query
message and receiving a reply message, v is the average
moving speed of a nodes, D is the distance between the node
and its region boundary, and λ−1d is the average distance from
its position during time t to its original position.

Proof: We assume the basic region of LORD is a grid for
computation convenience. Since the movement of each node
in the system is i.i.d., the distance from the position of the

node at time t to its original position conforms to a Poison
distribution, then:

P (X = vt) =
λdt

(vt)

(vt)!
· e−λdt

Meanwhile, the probability that the nodes will stay out of the
region at time t is P (Y = Sd) =

arccos d
vt

π where Sd denote the
event the node stay out of the region. Therefore, the probability
that the node moves out of the region from shaded region is

P (Y = Sd|X = vt)P (X = vt)

=

∫ d

0

arccos x
vt

π
· λdt

vt

(vt)!
· e−λdtd(x)

=

λdt
vt

(vt)! · e−λdt

π
(d · arccos d

vt
−

√
(vt)2 − d2 + vt)

Theorem 3.4 indicates that the probability that a node moves
out of its region increases with t. Suppose the transmission
delay is 1s, the average moving speed of the nodes is 10m/s,
the diameter of the region is 200m, then the probability that
the node moves out of the source region before receiving the
reply message is 5%.

IV. PERFORMANCE EVALUATION

The NS-2 simulator is limited to a system size of hundreds
of nodes. In order to simulate a high density network, we
conducted simulation on an event-driven simulator ONE [38].
We evaluated the performance of LORD in comparison with
GHT [13] and GLS [12], which are the representative locality-
based data sharing protocols. We also tested the performance
of LORD with AODV [8] topological routing rather than RGR.
We use AODV to denote this data sharing system. In GLS, the
entire geographic area is recursively divided into a hierarchy
of increasingly smaller squares. A node’s files and location
are mapped to several home nodes in a number of squares
based on their virtual IDs. A message is routed based on the
virtual node IDs, and geographic routing is employed in each
routing step. GLS has an updating distance. If the distance that
a node moves reaches the updating distance, it notifies its home
node for information update. As in [12], we set the updating
distance of GLS to 50m. As in [13], in the experiment, we set
the updating interval of GHT to 2s.

In the experiments, all nodes in the simulation move within
a 2200m*2200m grid. The packet transmission speed of nodes
was set to 250kbit/s. All the nodes move with their certain
pattern in the system [39] with 0 pause time, in which three
categories of movement speeds are selected uniformly at ran-
dom within [0.5-2.5]m/s, [1-5]m/s and [20-30]m/s respectively
to represent of movement of walkers, bikers and cars in real
life. The ratio of the number of nodes in the three groups of
nodes was initially set to 4:3:3. The number of nodes was
set to 1000. 400 files were randomly assigned to the nodes
initially. We set the transmission range of each mobile node
to 150m, and set the size of a message to 2kb. The simulation

Fig. 1. Demonstration of the routing process in LORD.

…… …… ………
…

…
…

…
…

1 6 7 1314 20
1

6
7

13
14

20

Z‐1 Z‐2 Z‐3

Z‐4 Z‐5 Z‐6

Z‐7 Z‐8 Z‐9

600 m

600 m

Fig. 2. Test area of ORBIT.

the most left vertex of the region to the leftmost and rightmost
vertices of another region. Similarly, the right-side angle range
is that of the most right vertex. For example, in Figure 1,
region 10 and region 3 have left-side angle range [α, β] and
right-side angle range [θ, τ ]. The two angle ranges serve as
the direction for query/data forwarding. If the node currently
holding the query is on the left side of the landmark, it
selects the furthermost node in the left-side angle range as
the next-hop. Similarity, if the node is on the right side of
the landmark, it selects the furthermost node in the right-side
angle range as the next-hop. With such a design, the query/data
is forwarded to the destination region gradually. When the
query/data arrives at the destination region, it uses broadcasts
if it is in the metadata storage stage or uses AODV if it is in
the data transmission process to find the destination node.

IV. EXPERIMENT DESIGN ON THE ORBIT TESTBED

We introduce how we test the LORD algorithm on the
ORBIT testbed in this section. Specifically, we describe how
we create the test scenario from the fixed ORBIT grid, how we
configure the wireless interfaces on ORBIT nodes, and how
we launch the experiment and collect experiment results.

A. Test Scenario Design

The ORBIT grid contains 400 (20x20) nodes in total. It has
neither area size nor node position information. Therefore,
we have to design that to fit our test requirement. Recall
that LORD is suitable for relatively dense MANETs. Then,
considering the total number of nodes is limited to 400 in
ORBIT and not all nodes are available during the test (we
will explain this later), we defined a mid-sized square area

with side length equals to 600m, as shown in Figure 2. Also,
similar to the design in LORD that the whole area is split
into several areas, we divided the whole area into 9 equal size
zones, which are labeled as Z-1 to Z-9 in Figure 2.

Though there is no node position information, each node
has a coordinator expressed as (x, y) with x = 1, 2, · · · , 20
and y = 1, 2, · · · , 20. We used such information to infer the
zone a node belongs to and its virtual initial position. The
zone id of a node is calculated as

Z = by/7c ∗ 3 + bx/7c+ 1 (1)

and the virtual initial position of each node (xp, yp) is scaled
from its coordinator: {

xp = x ∗M
yp = y ∗M (2)

where M is the scaling factor and was set to 30 in our test.
The position information of each node is piggybacked in the
beacon message of each node. When a node, say i, with
position (xpi, ypj), receives a message from another node,
say j, with position (xpj , ypj), node i calculates the distance
between them as

d(i, j) =

√
(xpi − xpj)2 + (ypi − ypj)2 (3)

Based on the distance, we can realize the feature of communi-
cation range. If the distance between two nodes is larger than
the defined range, the received messages on either node from
the other node are dropped directly. Otherwise, messages are
accepted for further processing.

We further defined node mobility based above designs. We
used the random way point mobility model [18] that each
nodes move randomly in its zone area. Specifically, each node
first randomly picks a destination position in its zone area, then
moves to that position with a certain speed. When it arrives at
the destination position, it randomly selects another position
as the new destination. Such a process repeats throughout the
experiment.

B. Wireless Configuration

Before running the LORD algorithm to do experiments and
collect data, the most important preliminary is to configure
the ORBIT radio nodes and the network interfaces to satisfy
the experimental requirements in the assumed scenarios. Ac-
tually, the effectiveness and stability of configuration is an
important factor in deciding the consistency of experimental
results, based on the experience of the authors and the ORBIT
community in the past. In order to smoothly run the LORD
algorithm and make data trustworthy, a standardized process of
testbed configuration was developed and proven in this project,
which also provides reference for other experimenters in the
future. All the scripts and information can be found in our
website [19].

The entire testbed configuration falls into three parts: (1)
Operating System (OS) image loading, (2) wireless interface
configuring, and (3) network status monitoring. The first
two parts are completed before starting experiments, which

3



provide the required system and network environments. The
third part is carried out during the whole experiment session,
which actually guarantees that the experiments can be done
effectively and stably without apparent influence from the
performance fluctuation of the testbed, thereby ensuring the
trustworthiness of collected data. The details of these three
parts for testbed configuration are introduced below.

1) Operation System Image Loading: Each ORBIT node
is a PC with a 1 GHz VIA C3 processor, 512 MB of
RAM, 20 GB of local disk, two 100BaseT Ethernet ports,
and two 802.11 a/b/g cards. Ubuntu is chosen as the OS
used for running LORD due to its ease to deal with and
popularity in the Linux family. Ubuntu 9.10 and Linux 2.6.31-
19-generic kernel is used in this project. We simply use the
loading command to load the saved image with the above OS
configuration and necessary scripts developed by us. The OS
image loading is a time-consuming process, especially when
involving a large number of nodes in the grid.

2) Wireless Interface Configuring: The ORBIT testbed
provides two modes for wireless configuration: ad hoc mode
and infrastructure mode. In the former, nodes communicate
with each other directly, while in the latter mode the messages
exchanged between two nodes are actually relayed through a
central access point (AP). Intuitively, the ad hoc mode is more
close to the MANET scenario. However, after many trials and
several rounds of discussions with the ORBIT community,
we found the performance of ad hoc mode for a large scale
network is unstable: lots of nodes lost connection after several
minutes, and such issues involving driver implementations are
difficult to debug and fix. Therefore, the infrastructure mode,
which proves to be more stable for experiments after testing,
was considered instead of ad hoc mode. In the infrastructure
mode, one node is selected as an Access Point (AP) and it
functions as a forwarding node in the network. All nodes use
ath5k as the wireless driver for Atheros based wireless chipset
in the Linux Kernel [20].

In order to make the AP work properly, hostapd, which
is a user space daemon for AP, was installed. The hostapd
implements IEEE 802.11 AP management, which is a daemon
program that runs in the background and acts as the backend
component controlling authentication [21].

The steps for configuring the AP and other nodes are the
same, which are given by Table I. The last step is to create
mapping entries of all the nodes in address resolution protocol
(ARP) cache on each node, in order to reduce the number of
broadcast packets in the network. Please notice that although
the same steps are used for the configuration of AP and other
nodes, the order is to first finish the configuration of the AP
and start the hostapd in the background, and then configure
all other normal nodes to make them successfully associate
with the AP. In this experiment, all the nodes are in the same
subnet and on the same channel. Eventually, the IP addresses
of nodes successfully configured are saved in a log file called
“success.txt”.

3) Network Status Monitoring: Once all the above steps
are done, the testbed is ready for use. Although the testbed

TABLE I
NETWORK CONFIGURATION COMMANDS.

Steps Command
Add wireless driver modprobe ath5k

Add IP address and subnet ifconfig
mask to the interface interface ip addr/prelixlen

Set the hardware address ifconfig
of the interface interface hw ether hw addr

Set the channel in the device iwconfig channel #
Set the ESSID iwconfig essid name

Create an ARP address
mapping entry for IP address arp -s ip addr hw addr

with hardware address

is well-configured for running the LORD algorithms, during
an experiment session, network status monitoring is still
necessary in order to avoid unpredictable influences on the
testbed, thereby guaranteeing the validity of each experiment.
The monitoring scripts run in the background, and check the
wireless connection between nodes periodically. We define a
node that can be connected through the wireless interface as a
good node and a node that is not connectable as a bad node.
The success of TCP connections (SSH are used in the scripts)
between pairs of nodes are examined to determine whether
the nodes are good or bad. The log file (i.e., good num.txt) is
created and updated, in which the information of good nodes in
the network is saved. Once bad nodes which lose connection
are found after analyzing the results in “good num.txt” by
monitoring scripts, the configuring script will be executed
automatically to reconfigure those nodes. Based on our ob-
servation, the wireless links of more than 98% of the nodes
(70 nodes are tested totally) still perform normally in a test
lasting for more than one hour.

The major problems of testbed configuration and solutions
are summarized as below.

• The MadWifi driver is not stable based on several tests.
Instead, ath5k is chosen as Linux kernel driver for
WLAN, which is a new and emerging driver replacing
MadWifi in the long run.

• Ad hoc mode blocks some wireless interfaces after sev-
eral minutes, even if no experiments running on the
testbed. Infrastructure mode is proven to be relatively
stable.

• Broadcasting packets in the network after initial config-
uration block some wireless interfaces. Creating ARP
entries on each node when configuring the wireless
interfaces can solve this problem.

• Pinging or sending UDP packets are not suitable for
monitoring the network status because of packet losses.
TCP connection is proven to be a way to monitor the
status of wireless links between pairs of nodes.

C. Experiment Initiation and Result Collection

The ORBIT tutorial introduces a systematical way to start
experiments and collect results. It uses Ruby to write a
script to let the node handler in the console control the

4



experiment execution by indicating which nodes are to be
used, and when to start and stop the programs. During the
test, experiment measurements and traces are collected and
stored in a database.

However, considering that our experiment requires almost
no control once it is started and the test results are all stored in
the traces, we adopted a simple way to start our experiment and
collect test results. Specifically, after completing all previously
described settings and configurations, we first use a shell script
to transfer our program to each selected node, and then run
another shell script to start all the LORD program on selected
test nodes. When all queries are done, we run the stop script
to terminate all LORD programs and transfer the trace files
back to the console. We then analyze the collected trace files
to evaluate the measured metrics.

V. EXPERIMENTS

With aforementioned design and network configuration, we
conducted experiments on the GENI ORBIT testbed. We
observed both the stability of the ORBIT testbed and the
efficiency of LORD with different number of nodes.

A. Settings

In the wireless configuration step, we selected node (4,7) as
the AP node and set the IP of a node as “10.13.x.y”, where
x and y represent the coordinator of the node. For the query
generation, we let each node generate one query every second
for totally 10 seconds. The destination area of each query was
randomly selected from the nine zones shown in Figure 2. The
communication range was set to 250m.

Though there are 400 nodes in the ORBIT testbed, we
found the number of nodes that can be accessed stably through
the wireless connection is less than 100, as shown in next
sub-section. As a result, we conducted experiments with [30,
60] nodes. We tested the performance of LORD in scenarios
with and without node mobility. In each test, we measured
following two metrics:
(1) Success rate: the percentage of queries that arrive at the

destination zone successfully.
(2) Average path length: the average number of hops that a

successful delivered query has traversed.

B. Results on ORBIT Stability

Recall that we monitor the number of nodes in “good” status
(i.e., connectable) after the wireless interface configuration
step in the “good num.txt”. We ran tests for the LORD
algorithms several times during the period in TABLE II, and
each run took up to 3 minutes approximately. The logged
information in one of our experiment is shown in Table II.

We find in Table II that the number of good nodes roughly
lies in the range of [40,100]. By monitoring the network status,
the number of good nodes before and after each run can be
observed to determine the validity of results. We also find
that with our experiment running, the number of good nodes
decreases. Recall we mentioned in Section IV that the number

TABLE II
THE NUMBER OF GOOD NODES.

Time Amount
Fri Feb 3 18:04:23 UTC 2012 85
Fri Feb 3 18:22:30 UTC 2012 104
Fri Feb 3 18:40:31 UTC 2012 80
Fri Feb 3 18:58:40 UTC 2012 61
Fri Feb 3 19:16:56 UTC 2012 48
Fri Feb 3 19:34:58 UTC 2012 48

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

30 40 50 60

Su
cc
es
s 
ra
te
 

Number of nodes

Fig. 3. Success rate without mobility.

of good nodes remains stable after configuration. But during
that test, the LORD program was not launched on each node,
which may be the reason for the decrease of good nodes.
However, we are not clear what causes these phenomenon. Is
it caused by the capacity of the AP node, the LORD program,
or the inferences among all nodes? We will find the answer
for this question in our future work.

C. Results on LORD

1) Without Node Mobility: Figure 3 and Figure 4 show
the success rate and average path length of LORD when
the number of nodes increases in the scenario without node
mobility, respectively. We see that when the number of nodes
increases, the success rate decreases while the average path
length maintains almost in the same level. For the success
rate, intuitively, when the number of nodes increases, more
nodes would generate more query forwarding opportunities,
which should increase the query success rate. However, we
observe a decrease trend of the success rate in the figure.
This is because 1) we let all nodes generate queries at the
same moment, when there are more nodes in the system, the
number of queries generated in a unit time also increases,

1.0

1.1

1.2

1.3

1.4

1.5

30 40 50 60

Av
er
ag
e 
pa

th
 le
ng
th

Number of nodes

Fig. 4. Average path length without mobility.

5



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

30 40 50 60

Su
cc
es
s 
ra
te
 

Number of nodes

Fig. 5. Success rate with mobility.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

30 40 50 60

Av
er
ag
e 
pa

th
 le
ng
th

Number of nodes

Fig. 6. Average path length with mobility.

making the LORD program on some nodes fail to respond or
even crash; and 2) the communication range is large (250m).
Such results reveal that the load in the network also affects the
routing performance in a small network. For the average path
length, since we set a relatively large communication range,
most nodes can be reached within 2 hops, the average path
length of successful queries remains stable when the number
of nodes increases.

2) With Node Mobility: Figure 5 and Figure 6 show the
success rate and average path length of LORD when the
number of nodes increases in the scenario with node mobility,
respectively. We find that the trends on the success rate and
average path match those in the test without node mobility,
shown in Figure 3 and Figure 4. The reasons are the same.
However, comparing these results, we see that the overall
success rate is lower and the overall average path length
is higher in the test with node mobility. This is because
node mobility may cause some forwarding opportunities to
disappear during the test and some queries were dropped.
Combining above results, we see that LORD is an effective
routing algorithm for MANETs.

VI. CONCLUSION

In this paper, we introduced our procedure to test a
MANET routing algorithm, namely LORD, in the GENI
ORBIT testbed. The ORBIT testbed originally has a fixed grid
consisting of 400 nodes equipped with 802.11 wireless cards.
We designed node mobility and communication range over the
ORBIT to simulate MANETs scenario. We developed a series
of scripts to enhance the simplicity and effectiveness of our
procedures. Experiments on the ORBIT testbed demonstrate
the feasibility of our methods to simulate node mobility and

the high efficiency of the LORD. In the future, we plan to
design a method to control the distribution of nodes in the
ORBIT grid and enhance the stability of wireless communi-
cations in ORBIT.

ACKNOWLEDGEMENTS

This research was supported by U.S. NSF grants CNS-
0944089.

REFERENCES

[1] “AODV IETF draft v1.3.” http://www.ietf.org/internet-drafts/draft-ietf-
manet-aodv-13.txt.

[2] “DSR IETF draft v1.0.” http://www.ietf.org/internet-drafts/draft-ietf-
manet-dsr-10.txt.

[3] Z. Li and H. Shen, “A mobility and congestion resilient data management
system for mobile distributed networks,” in Proc. of MASS, 2009.

[4] S. M. Das, H. Pucha, and Y. C. Hu, “Performance comparison of scalable
location services for geographic ad hoc routing,” in Proc. of INFOCOM,
2005.

[5] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, and L. Yin, “Data-
centric storage in sensornets with ght, a geographic hash table,” Mobile
Networks and Applications, 2003.

[6] “The One Simulator,” http://www.netlab.tkk.fi/tutkimus/dtn/theone/.
[7] “NS-2,” http://www.isi.edu/nsnam/ns/.
[8] “MobiREAL,” http://www.mobireal.net/.
[9] “GloMoSim,” http://pcl.cs.ucla.edu/projects/glomosim/.

[10] “GENI project,” http://www.geni.net/.
[11] “Orbit,” http://www.orbit-lab.org/.
[12] M. Kropff, T. Krop, M. Hollick, P. S. Mogre, and R. Steinmetz, “A

survey on realworld and emulation testbeds for mobile ad hoc networks,”
in Proc. of TRIDENTCOM, 2006.

[13] L. Li and H. Zhang, “Research on designing and implementing an
experimental manet testbed,” in Proc. of ICCSN, 2009.

[14] M. Hiyama, M. Ikeda, L. Barolli, E. Kulla, F. Xhafa, and A. Durresi,
“Experimental evaluation of a manet testbed in indoor stairs scenarios,”
in Proc. of BWCCA, 2010.

[15] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat, “Mobinet: a
scalable emulation infrastructure for ad hoc and wireless networks.”
Mobile Computing and Communications Review, vol. 10, no. 2, pp. 26–
37, 2006.

[16] D. Herrscher, S. Maier, and K. Rothermel, “Distributed emulation of
shared media networks,” in Proc. of SPECTS, 2003.

[17] C. Liu, R. Correa, X. Li, P. Basu, B. T. Loo, and Y. Mao, “Declarative
policy-based adaptive manet routing.” in Proc. of ICNP, 2009.

[18] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. G. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols.” in Proc. of MOBICOM, 1998.

[19] “Wireless configuration scripts,” http://people.clemson.edu/
kxu/publications/ORBIT conf.tar.

[20] “Wireless driver,” http://linuxwireless.org/en/users/Drivers/ath5k. [Ac-
cessd in Feb. 2012].

[21] “Hostpad,” http://w1.fi/hostapd/. [Accessd in Feb. 2012].

6


