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Abstract—Wireless Sensor and Actuator Networks (WSANs)
are composed of sensors and actuators to perform distributed
sensing and actuating tasks. Most WSAN applications (e.g., fire
detection) demand that actuators rapidly respond to events under
observation. Therefore, real-time and fault-tolerant transmission
is a critical requirement in WSANs to enable sensed data to reach
actuators reliably and quickly. Due to limited power resources,
energy-efficiency is another crucial requirement. Such require-
ments become formidably challenging in large-scale WSANs.
However, existing WSANs fall short in meeting these require-
ments. To this end, we first theoretically study the Kautz graph
for its applicability in WSANs to meet these requirements.
We then propose a Kautz-based REal-time, Fault-tolerant and
EneRgy-efficient WSAN (REFER). REFER has a protocol that
embeds Kautz graphs into the physical topology of a WSAN
for real-time communication and connects the graphs using
Distributed Hash Table (DHT) for high scalability. We also
theoretically study routing paths in the Kautz graph, based on
which we develop an efficient fault-tolerant routing protocol.
It enables a relay node to quickly and efficiently identify the
next shortest path from itself to the destination only based on
node IDs upon routing failure. REFER is advantageous over
previous Kautz graph based works in that it does not need
an energy-consuming protocol to find the next shortest path
and it can maintain the consistency between the overlay and
physical topology. Experimental results demonstrate the superior
performance of REFER in comparison with existing systems
in terms of real-time communication, energy-efficiency, fault-
tolerance and scalability.

I. INTRODUCTION

Wireless sensor networks (WSNs) is a collection of low-
cost, low-power, and multi-functionality wireless sensing de-
vices that can be densely deployed for surveillance purpose.
Traditionally, it is a data gathering network where are respon-
sible only for sampling their surroundings and reporting to
predefined data sinks. As hardware technology advances, it
is now evolving toward service-oriented wireless sensor and
actor networks [1]. Wireless Sensor and Actuator Networks
(WSANs) consist of sensor nodes capable of measuring stimuli
in the environment and actuator nodes capable of affecting
their local environment. Similar to sensor networks, WSAN
sensors usually are low-cost and low-power devices with a
short transmission range that are used for the sensing of
a physical phenomena. WSAN actuators are resource-rich
devices characterized by higher processing and transmission
capabilities along with a longer battery life [1]. When sensors
detect events, they process and transmit the event data to their
nearby actuators, which take action on the events. WSANs

can potentially be used in applications such as real-time target
tracking and surveillance, homeland security, chemical attack
detection [2] and environment monitoring in battlefields, fac-
tories, buildings and cities [3]. For example, smoke detectors
(i.e., sensors) are widely and densely deployed in a building
to report a fire event to the sprinklers (i.e., actuators) [4].
Similarly, in a battlefield, sensors are widely and densely
deployed in fields to report the detection of malicious objects
to nearby actuators, which immediately takes action to catch
the objects [1]. Since sensors are usually deployed with high
density to ensure the coverage and topology connectivity [5],
the scenario we considered in this paper is a highly dense
and mobile WSAN which consists of densely populated and
possibly mobile sensors.

The primary function of WSANs is to enable the actuators
to quickly and reliably respond to nearby sensed events. Delay
in the actuators’ response can lead to disastrous consequences
such as a large loss of life. Therefore, real-time communication
is of great importance in guaranteeing the timely actions.
Because of node mobility and resultant routing failures, fault-
tolerance is crucial to ensure reliable node communication.
In addition, energy-efficiency is also a critical requirement for
WSANs due to limited resources of sensors. Such require-
ments become formidably challenging in large-scale WSANs
(e.g., battlefield monitoring applications) where the number of
sensors is in the order of hundreds or thousands [6].

Most of the routing protocols for mobile ad hoc networks
(MANETs) and wireless sensor networks (WSNs) treat every
node equally and fail to leverage the capabilities of resource-
rich devices to reduce the communication burden on low-
resource sensors. These protocols are suboptimal for WSANs,
if not entirely applicable. Recently, mesh-based [7, 8] and
tree-based [2, 9] systems have been proposed for data trans-
mission in WSANs. In the mesh-based methods, physically
close sensors form a cluster and the selected cluster head
reports events sensed by the cluster sensors to the closest
actuator through a multi-hop path. In the tree-based methods,
physically close sensors form a tree for data transmission. In
both methods, a source node retransmits a message upon a
routing failure. Also, both methods employ either geographical
routing [10] or topological routing [12, 13]. These routing
algorithms consume large amounts of energy because the
former relies on position information generated by GPS or a
virtual coordination method [11, 14, 15], and the latter relies



on flooding to discover and update routing paths. Therefore,
mesh-based and tree-based systems cannot achieve real-time,
energy-efficient, fault-tolerant transmissions at the same time
in a highly dense and mobile WSAN.

To meet the requirements of WSAN applications, we pro-
pose a Kautz-based REal-time, Fault-tolerant and EneRgy-
efficient WSAN (REFER). The contributions of this work are:

(1) A theoretical study of the Kautz graph for its applicability
in WSANs to meet the energy-efficiency and real-time
communication requirements in overlay maintenance and
routing.

(2) A Kautz graph embedding protocol that embeds Kautz
graphs to the physical topology of a WSAN and connects
the graphs using Distributed Hash Table (DHT) [16] for
high scalability and real-time communication.

(3) A theoretical study of routing paths in the Kautz graph and
an efficient fault-tolerant routing protocol to support fault-
tolerant, real-time and energy-efficient data transmission.
The algorithm enables a relay node to quickly and efficiently
identify the next shortest path from itself to the destination
upon routing failure.

(4) Extensive experiments to demonstrate the superior perfor-
mance of REFER in comparison with a tree-based, a mesh-
based, and another Kautz-based WSAN.
REFER is advantageous over other Kautz-based works in

two aspects. First, REFER is the first work that embeds a
Kautz graph into the physical topology of a MANET to keep
topology consistency. Previous works on Kautz graphs directly
build a Kautz graph overlay on the application layer in peer-
to-peer (P2P) networks [17–19] or MANETs [20]. Thus, the
overlay is not consistent with the underlying physical topology
and multi-hop routing must be used for the communication
between two neighboring Kautz nodes in MANETs. This
cannot provide fault-tolerance, energy-efficiency and real-time
performance. Second, REFER can quickly and efficiently
identify the alternative paths and their lengths simply based
on node IDs upon a routing failure. In comparison, previous
method [21] depends on an energy-consuming routing gener-
ation algorithm to find the alternative paths and their lengths.

II. RELATED WORK

WSNs can be regarded as a subcategory of MANETs with
the additional constraints of security and energy-efficiency.
WSANs are a subcategory of WSNs with higher requirements
on real-time, energy-efficient and fault-tolerant transmission.
MANETs use either topological routing [12, 13] or geographic
routing [10]. In topological routing, a source node broadcasts
a query to find a path to the destination. Unfortunately, the
limited battery power of the sensors makes such routing
unsuitable for WSANs. Geographical routing always chooses
the node closest to the destination by relying on the posi-
tion information generated by GPS or a virtual coordination
method [11, 14, 15], both consume a considerable amount of
energy, which are also not suitable for WSANs.

To improve the real-time communication in WSNs. Hu et
al. [22] proposed SPEED that uses a combination of feed-

back control and non-deterministic quality-of-service (QoS)-
aware geographic routing to support real-time communication.
Felemban et al. [23] proposed a multi-path and multi-speed
routing protocol for a probabilistic QoS guarantee. Lu et
al. [24] proposed a real-time communication architecture and
a velocity monotonic packet scheduling policy to deal with the
delay and distance constraints in transmission. Ye et al. [25]
proposed a Two-Tier Data Dissemination approach (TTDD)
for sensor data transmission. TTDD uses a grid structure so
that only sensors located at grid points need to acquire the
forwarding information. All other sensors only need to contact
the sensor at grid points for the data transmission.

Also, a number of routing protocols have been proposed
specifically for WSANs. Melodia et al. [2] proposed DaTree in
which one actuator (tree root) and its physically close sensors
form a tree. Each sensor forwards its detected events to its
tree root. DaTree employs geographical routing. Hu et al. [9]
proposed to build an anytree with leaves as actuators. Each
source node builds an anycast tree and sends its detected
data along the tree to the actuators. Anytree uses topological
routing. The tree structure is not fault-resilient to node mobility
since a parent failure will prevent its children from sending
or receiving data in time. Ngai et al. [7] and Shah et al. [8]
proposed a distributed protocol to form sensors into clusters.
The cluster heads form a backbone mesh network to provide
routes toward actuators. These methods need to retransmit a
message from the source to the destination upon a routing
failure, generating a certain delay. Also, they consume a
considerable amount of energy due to their flooding-based
topological or geographical routing components. REFER is
superior to the previous WSAN routing protocols because
it can simultaneously meet the requirements of real-time
communication, fault-tolerance and energy-efficiency.

Most previous research on Kautz graphs focus on exploiting
the Kautz graph in the application layer of P2P networks [17–
19]. Zuo et al. [20] proposed to build a Kautz graph overlay
on the application layer of a MANET in order to enhance
the routing performance. However, due to the topology in-
consistency, the method uses MANET multi-hop routing for
the communication between two neighboring Kautz nodes.
Panchapakesan et al. [26] and Li et al. [19] studied the shortest
and longest path routing. In BAKE [18] and DFTR [21], a
node uses the next shortest path when it fails to forward the
message along the shortest path. However, a node needs to
use a routing generation algorithm (equivalent to the process
of building a tree) to find different routes to a destination
node and calculate their lengths, which generate high energy
consumption. Imase et al. [27] identified the bounds of the
three possible path lengths in the worst case, but they did
not indicate all disjoint paths, the precise path length and the
corresponding conditions, which are identified in REFER.

III. REFER: A KAUTZ-BASED REAL-TIME AND
ENERGY-EFFICIENT WSAN

Building an overlay on a WSAN for data transmission
can avoid data flooding and hence enhance system scal-



ability and transmission efficiency in terms of speed and
energy consumption [28]. A well-designed overlay is energy-
efficient in topology maintenance, resilient to node mobility,
and enables efficient and reliable routing. Below, we present
the applicability of the Kautz graph topology to the WSAN
overlay (Section III-A), the Kautz graph embedding protocol
(Section III-B) and the efficient fault-tolerant routing protocol
(Section III-C) with the objective of achieving the properties
of a WASN overlay.
A. Is Kautz Graph an Reasonable Topology for WSAN Over-
lays?

When designing a WSAN overlay structure, we need to
consider the tradeoff between network degree and diameter.
The degree is the number of neighbors a node maintains and
the diameter is the maximum distance between any two nodes.
While a smaller degree generates lower maintenance overhead
(energy consumption), it leads to a larger diameter and a longer
transmission delay. Below, we study whether the Kautz graph
is an reasonable overlay topology that achieves an tradeoff
between degree and diameter for WSANs.

Definition 1 [29]. In a Kautz graph K(d, k) with degree
d and diameter k, nodes are labeled as (u1...uk), where ui
belongs to an alphabet of d + 1 letters (A = (0, 1, . . . , d)),
and ui 6=ui+1 (1 ≤ i ≤ k). The arc set of the Kautz digraph
are {(u1u2 · · ·uk, u2u3 · · ·ukuk+1)| ui ∈ A;ui 6=ui+1}.

The left part of Figure 1 shows an example of K(2,3). For
a graph G, N(G) and E(G) denote the number of nodes and
edges of the graph, respectively. Graph G’s connectivity is
the minimum number of nodes whose removal results in a
disconnected graph. A d-connected graph is a graph whose
vertex connectivity is d or greater [30].

Definition 2 [30]. A graph connection optimization problem
is to find a d-connected n-vertex graph with the smallest
connectivity d given the number of vertices n and diameter
k (k < n).

Lemma 3.1: A Kautz graph K(d, k) is a d-connected k-
diameter n-vertex graph with minimum connectivity d.

Proof: Euler’s Degree-Sum Theorem [30] shows that for
a graph, |E(G)| ≥ N(G)δmin(G) where δmin(G) is the
minimum degree d. If G is a d-connected graph with the
minimum degree, it must satisfy

|E(G)| = N(G)δmin(G).

The Kautz graph meets this condition since its E(G)= (d +
1)dk and N(G) = n = (d+ 1)dk−1 [29].

It has been proved that the Kautz graph has a smaller diam-
eter than the de-Bruijn and hypercube topologies [31], which
have been widely studied as promising overlay topologies [19].
Based on this finding, Definition 2 and Lemma 3.1, we can
get Proposition 3.1 below.

Proposition 3.1: A Kautz graph K(d, k) optimizes the
graph connection and it achieves an tradeoff between degree
and diameter with its minimum degree and relatively shorter
diameter.

Therefore, Kautz graph is an reasonable topology for
WSAN overlays to meet the energy-efficiency and real-time

requirements. The second issue that needs to be considered in
designing a WSAN overlay structure involves the consistency
between the overlay topology and the underlying physical
topology, which is critical to real-time communication and
energy-efficiency. However, the limited transmission range of
sensors poses a challenge to achieving the topology consis-
tency since two neighbor nodes in an overlay may be out of
the transmission range of each other, and cannot be neighbors
in the physical topology. Next, we study the precondition for
the Kautz graph embedding to achieve the consistency.

Two neighbor nodes in the embedded graph overlay must
be within the transmission range of each other. Otherwise,
the nodes cannot be neighbors in the underlying physical
network. A Kautz graph has a Hamiltonian cycle [30], in
which a path traverses through every vertex in the graph
exactly once before returning to the starting vertex. In order
to achieve the consistency in the Kautz graph embedding, the
underlying physical topology must also have a Hamiltonian
cycle. Proposition 3.2 shows the requirement of a physical
network for forming wireless nodes into a Hamiltonian cycle.

Proposition 3.2: Assume that the nodes are uniformly dis-
tributed in a square area with space length b in a WSAN, in
order to guarantee that the selected nodes for graph embedding
can form a Hamiltonian cycle, the transmission range r of the
selected nodes should satisfy r ≥ 0.8 ∗ b.

Proof: Dirac [30] shows d ≥ n
2 and n ≥ 3 are sufficient

condition to guarantee that the nodes in a graph can constitute
a Hamiltonian cycle, where d is the connectivity of a node,
and n is the total number of nodes in the graph. With the i.i.d
assumption, when a node moves to the corner of the square,
it has the least coverage area (πr

2

4 ) in the square. Then, the
number of nodes in the coverage area (i.e., the degree d of the
node) is πr2

4b2 n. Thus
πr2

4b2
n ≥ n

2
=⇒ b ≤

√
2π

2
r =⇒ r ≥ 0.8 ∗ b (1).

The proposition indicates that for a collection of sensors
that can form a Kautz graph, the coverage area of the sensors
is upper bounded by (2 ∗ r + b)2 = ( 134 r)

2. As the transmis-
sion range of sensors r is limited, the coverage area of the
collection of sensors is limited. Therefore, we need a number
of Kautz graph cells with small diameter and degree to cover
a large area. Meanwhile, From the proposition we can see that
the density of the sensors in a Kautz cell is high. Therefore,
a sensor awake/sleep scheme is needed, which can save the
energy of the sensors as well as ensure the connectivity of
Kautz cells. The awake/sleep scheme will be further discussed
in Section III-B4.

B. Kautz Graph Embedding Protocol
Proposition 3.2 indicates that the physically closed sensors

need to be grouped into cells. Each of cell is composed by
actuators and sensors. REFER embeds a Kautz graph into
each WSAN cell. It has been proved [17] that as the diameter
k decreases, the number of nodes in Kautz graph K(d, k)
approaches the Moore bound [32]. That is, node density in
K(d, k) increases as k decreases. Therefore, a Kautz graph
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Fig. 1: The architecture of the REFER system.

with a smaller diameter k should be an good choice for an
overlay to seamlessly cover a sensed region. The value of k
should be set to the maximum of all minimum hop distance
between any two nodes in the network. Based on the number
of nodes n = (d + 1)dk−1 in a WSAN and k, the value d
can be determined. Here, we choose the Kautz graph K(d, 3)
as an example to explain the REFER overlay. We assume
the WSAN meets the requirement of Proposition 3.2 and the
sensors are densely deployed (e.g., habitat monitoring [2],
battlefield monitoring [1]. )

Although the communication between two nodes in a
WSAN is bi-directional, we represent a WSAN as a directed
graph G(d, k) in order to clearly present the routing. Commu-
nication in the other direction can be conducted by simply
reversing the direction. To facilitate the information trans-
mission between cells, all actuators further constitute a DHT
structure [16] for the action coordinations between actuators.
DHTs are well-known for their scalability and dynamism-
resilience. Figure 1 illustrates the architecture of REFER with
an example of a Kautz graph in a cell. Actuators and several
selected active sensors in each cell form a Kautz graph and the
actuators further constitute a DHT structure. We use resource-
rich actuators for the corner vertices of a Kautz graph because
they can directly communicate with each other even though
they are physically far apart.

Each WSAN cell has a cell ID (CID) (e.g, 1-15 in Fig-
ure 1). Each node in a cell with CID has ID=(CID, KID),
where KID={u1 . . . ui . . . uk | ui∈[0, d], ui 6=ui+1} (e.g, 201)
is the Kautz ID in the Kautz graph. For a pair of nodes
U = u1u2...uk and V = v1v2...vk, we use l = L(U, V ) to
denote the length of the longest suffix of node U that appears
as a prefix of node V. The distance between two cells is
measured by the Euclidean distance between their CIDs, while
the distance between Kautz nodes U and V in one cell equals
k−L(U, V ). For example, the distance between 120 and 201
is k − L(120, 201) = 3− 2 = 1. An actuator stays in several
adjacent cells and hence has different CIDs for different cells.
In order to reduce the system complexity, we let each actuator
have the same KID used for all Kautz graphs it resides in.

To achieve the consistency between overlay and physical
topology, we rely on node communication to determine node
ID since the real node communication distance reflects node
physical distances. The process of embedding Kautz graph to a
cell is actually the process of Kautz ID assignment. It involves
two steps: actuator ID assignment and sensor ID assignment.

1) Actuator ID Assignment: The actuator ID assignment
process detects triangles among the neighboring actuators and
sequentially assign IDs to the actuators. Each actuator A has
a value H(A) which is the consistent hash value [33] of its
IP address. Neighboring actuators exchange the information
of their neighbors along with their H(A), and finally each
actuator learns the global topology of actuators. The actuator
with the minimum H(A) functions as a starting server to
assign CIDs to others. It locally partitions the global topology
to a series of triangles and assigns a distinct CID to each
triangle (cell). Closer cells have closer CIDs. The starting
server also calculates the KIDs for the actuators in each cell.
Neighboring actuators cannot have the same KID since they
are in the same cell. For this purpose, we employ the sequential
vertex-coloring algorithm [30], in which a node is assigned
with the smallest color number not used by its neighbors. As
only three actuators are in Kautz graph K(d, 3), three colors
(i.e., KID 012, 120, 201) are needed. Finally, each actuator is
assigned with an ID=(CID,KID), e.g., (5, 201). The starting
server then notifies other actuators about their IDs using the
depth-first search algorithm based on the topology of actuators.

2) Sensor ID Assignment: After the actuators in each cell
receive their IDs, they select active sensors in the cell to be
Kautz nodes to form a complete K(d, 3) graph. First, the
Kautz nodes connecting actuators are identified. Then, the
Kautz nodes connecting the Kautz sensors are identified. For
KID=kid, we use kidl to denote the result of left rotating kid
once. The successor actuator of actuator kid is the actuator that
has KID=kidl in the same Kautz graph. First, each actuator
selects sensors to connect to its successor actuator. Actuator
kid broadcasts a path query message towards actuators with
KID=kidl in the same cell with TTL=2, which ensures the
diameter k = 3 for K(d, 3). Each forwarding sensor includes
the information of itself and its energy level into the routing
message. Finally, the successor actuator receives a number of
messages, and each message includes its path and the energy
of path sensors. It selects a path with the highest accumulated
energy, and assigns CIDs and KIDs to the sensors in the
path. Each sensor’s CID equals to the actuator’s CID. If its
previous node’s KID in the path is (u1u2u3), its KID is then
(u2u3uk) where uk is the letter that makes u2u3uk close to
the successor actuator’s KID. For example, actuator (5, 012)
assigns IDs (5, 010) and (5, 101) to the two nodes in the
path from actuator (5, 201) to itself. Similarly, the other two
paths are built: (5, 120)→ (5, 202)→ (5, 020)→ (5, 201) and
(5, 012) → (5, 121) → (5, 212)→ (5, 120).

To select the rest of the Kautz nodes connecting Kautz
sensors, we rely on sensor communication. In order to ensure
that the message traverses the longest path between a pair of
Kautz sensors, we choose the successor of the actuator with
the smallest KID= u1u2u3 (i.e., Si=u2u3u2=121), and the
predecessor of the actuator with the largest KID= u3u1u2
(i.e., Sj=u1u3u1=020). Si broadcasts a path query message
with TTL=2 towards Sj . Sj selects the path with the highest
accumulated energy and assigns KID=u3u2u1 (i.e., 210) and
KID=u2u1u3 (i.e., 102) to the sensors in the path. Next, the



common neighbor of the two newly selected nodes with the
highest battery power is assigned with KID=u1u3u2=021 as
the last Kautz node in the cell.

3) DHT-based Upper Tier Structure: CAN [16] is a mesh-
based structured P2P network, in which nodes in a virtual
multi-dimensional coordinate space are dynamically parti-
tioned and every node owns a distinct zone. Each node main-
tains a neighbor set including those nodes that hold coordinate
zones adjoining its own zone. Using its neighbor set, a node
routes a message by simply forwarding it to the neighbor
with coordinates closest to the destination coordinates. REFER
builds actuators into a CAN by directly using CID as CAN ID.
Basically, each actuator exchanges its CID with its neighbors
and establishes its neighbor set. When an actuator receives
a message destined to a cell, it forwards the message to its
neighboring actuator with the CID closest to the cell’s CID.

4) Topology Maintenance: Considering the high density of
the WSAN and the fact that not all sensors are Kautz nodes, we
use node replacement strategy for Kautz topology maintenance
and use an awake/sleep scheme [6] to further save energy.
Specifically, REFER sets three functional states for sensors:
active, wait and sleep. Nodes in the active state form a Kautz
graph. Each node in the sleep state periodically wakes up and
probes its Kautz node neighbors to see if it can be a candidate
for them. The candidate of Kautz node S must be able to
build connections with the neighboring Kautz nodes of S. The
candidate nodes stay in the wait state. When a Kautz node
notices that its links to its current neighbors are about to break
up according to sensed signal strength or its own battery power
is below a threshold, it selects one of its current candidate
nodes to replace itself by sending notification messages.
C. Efficient Fault-Tolerant Routing Protocol

Communication between sensors consumes high energy [6].
A tradeoff exists between fault-tolerance/real-time and energy
consumption in routing. A Kautz graph can help to achieve an
reasonable tradeoff. A Kautz graph with degree d has d disjoint
paths between any two nodes [31]. For example, Figure 2(a)
illustrates the 4 paths between node 0123 and node 2301 in
Kautz graph K(4, 4). This topology feature of Kautz graphs
supports fault-tolerant routing protocols [18, 21], in which if
a node fails to forward a message along the shortest path, it
chooses the successor in the second-shortest path, then third-
shortest path, and so on. For example, in Figure 2(a), after
node 0123 initiates or receives a message destined to node
2301, if node 1230 in the shortest path (dotted links) fails to
forward the message, 0123 chooses the successor in the next
shortest path, say node 1232. In Figure 1, node 102 locally
chooses an alternative path from itself to node 201 with 021
as the next hop (links with solid arrows) when node 020 fails.
However, in the previous Kautz-based routing protocols, a
node needs to use a routing generation protocol to find the
d disjoint paths to a destination node and their lengths [21],
which consumes enormous amount of computing resources. To
overcome this shortcoming, REFER aims to develop a routing
protocol that can find successors quickly based only on node
IDs with low energy consumption.
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Fig. 2: Examples of routing paths in a Kautz graph.

1) Analysis of Kautz Graph Properties for Routing: In the
U-V path, the next hop’s label is generated by left shifting
U one digit and appends a new digit vi at the right side
of U. Thus, in the routing along the shortest path, node
U0 greedily forwards data to the next hop U1 whose suffix
shares the maximum identical digits with the destination V,
i.e., max(L(U1, V )). We call this routing protocol greedy
shortest protocol. An example of the shortest routing path is:
12345 → 23450 → 34501. For any pair of nodes U-V, there
exists only a single shortest path, and its length is k − l.

In the d U-V disjoint paths, U’s successors are the next
hops of U in the paths denoted by u2u3u4 . . . ukαi (uk 6=αi).
Similarly, V’s predecessors are the previous hops of V in the
paths denoted by βiv1v2...vk−1 (v1 6=βi). In this paper, we
use αi≺[0, d] to mean that αi are all different values in the
range of [0, d], and use αi∈[0, d] to mean that αi is one value
in [0, d].

Definition 3. For a U-V pair (Figure 3), the last digit of
the successor of U in a path is called the out-digit of the path
(αi∈[0, d]), and the first digit of the predecessor in a path of
V is called the in-digit of the path (βi∈[0, d]).

In a U-V routing, if U’s successor fails to forward data,
simply choosing another successor may lead to an intersection
between this U-V path and another U-V path, leading to traffic
congestion in the intersection node. To avoid the congestion, a
key question is how to proactively find the intersection nodes
and avoid these nodes in routing. Seeking the answer is also
the process of exploring the d-disjoint U-V paths. We show
the process of our exploration in below. We finally reach
Theorem 3.8, which allows a node to directly discover d-
disjoint paths and their lengths by simply comparing its own
KID and the destination KID.

Proposition 3.3: In a U-V path, if U’s successor
u2u3u4 . . . ukαi (αi∈[0, d] & αi 6=uk) uses the greedy
shortest protocol, the generated in-digit are:

β =


uk−l if αi = vl+1 (shortest path){

uk if αi = v1

αi if αi 6=v1
if αi 6=vl+1 (non-shortest path)

Proof: For a U-V path with u2u3u4 . . . ukαi (αi∈[0, d]
& αi 6=uk) as U’s successors, if αi = vl+1, the U-V path is
the shortest path and uk−l+1 = v1. Thus, the in-digit of this
path is uk−l. In the non-shortest U-V paths, if αi = v1, the
in-digit is uk. If αi 6=v1, the in-digit of the path equals αi,
since the next hop is u3u4 . . . ukαiv1

Example for Proposition 3.3: In Figure 2(a), because U



and V share digits 23, l = L(U, V ) = 2. For the shortest path
traversing successor 1230, the in-digit of the path is uk−l = 1.
For the successor with αi = v1, i.e., 1232, the in-digit is
uk = 3. For other successors, 1231’s in-digit is αi = 1 and
1234’s in-digit is αi = 4.

Proposition 3.4: For a U-V pair, paths traversing nodes
having the same in-digit β will intersect at βv1v2 . . . vk−1

using the greedy shortest protocol.
Proof: For a U-V pair, data in a node with in-digit β will

be forwarded to the predecessor of V βv1v2 . . . vk−1 using the
greedy shortest protocol.

Example for Proposition 3.4: Considering the U-V pair
in Figure 2(a), we can see that the successor 1230 of the
shortest path shares the same in-digit (i.e., 1) as successor
1231 if both of these successors forward data with the greedy
shortest protocol. The two paths will intersect at 1230 as
shown by the dotted line.

Proposition 3.5: The non-shortest paths with different out-
digits will not intersect with each other.

Proof: Suppose two non-shortest paths with different
out-digits have an intersection. Using the greedy shortest
protocol, the paths will have the same in-digit. It conflicts
with Proposition 3.3, which shows that the non-shortest paths
with different out-digits have different in-digits.

Proposition 3.6: For a U-V pair, when U’s successors
use the greedy shortest protocol, only when uk−l 6=vl+1, the
shortest path intersects with the non-shortest path which has
αi = uk−l.

Proof: According to Proposition 3.3, we know that the
out-digit and in-digit of the shortest path are αi = vl+1 and
βi = uk−l, respectively. The in-digits of other non-shortest
paths are βi = (αi≺[0, d] & αi 6=vl+1). If uk−l = vl+1, then
αi 6=uk−l. Then, none of the in-digits of non-shortest paths
equal to the in-digit of the shortest path. Therefore, the in-
digits of all d disjoint U-V paths (shortest and non-shortest
paths) are different, i.e., βi≺[0, d]. If uk−l 6=vl+1, one non-
shortest path’s in-digit is uk−l, which is also the in-digit of
the shortest path. Thus, the in-digit of two of d disjoint paths
is uk−l. Based on Proposition 3.4 and Proposition 3.5, the
proof is completed.

Example for Proposition 3.6: In Figure 2(a), the U-V pair
satisfies uk−l(u2=1)6= vl+1(v3=0). There are four successors
for the total d = 4 disjoint paths of the U-V pair: node 1230,
1231, 1232 and 1234. Node 1230 is in the shortest path (when
α = 0) and its in-digit is uk−l = 1. The in-digits of the
remaining paths (when α 6=0) are 1, 3, and 4. Thus, the in-
digit of two of the d disjoint paths is uk−l = 1. 1230 and
1231 have the same in-digit 1, the paths traversing them using
the greedy shortest protocol intersect at 1230. In Figure 2(b),
the U-V1 pair does not satisfy uk−l(u2 = 1)6=vl+1(v3 = 1).
It has four successors for U in the total d = 4 disjoint paths:
node 1230, 1231, 1232 and 1234. Since 1231 is in the shortest
path, its in-digit is uk−l = 1. The in-digits of the non-shortest
paths are 0, 3 and 4, i.e., βi=(αi≺[0, 4] & αi 6=vl+1 = 1).
Thus, the in-digits of total d disjoint paths are different, i.e.,

U V
kkl vvvv 11 ...... 

...
klklk uuuu ...... 11 

112 ...... klklk uuuu  121 ...... kl vvv
...S

Fig. 3: An example of a path between a pair of nodes.

βi≺[0, 4]. As shown in the figure, the paths do not intersect.

Definition 4. For a U-V pair with uk−l 6=vl+1, the U’s
successor u2u3 . . . ukuk−l with αi = uk−l is called a conflict
node that leads to an intersection with the shortest path.

Proposition 3.7: For a U-V pair, the conflict
node u2u3 . . . ukuk−l should forward data to node
u3u4 . . . ukuk−lvl+1 in order to avoid intersection with
the shortest path.

Proof: In addition to the conflict node u2u3 . . . ukuk−l,
other successors of U are u2u3uk−lukαi (αi≺[0, d] &
αi 6=vl+1) and their in-digits are βi = (αi≺[0, d] & αi 6=vl+1).
Thus, having vl+1 as the in-digit of the path for the conflict
node results in different in-digits for different d paths, i.e.,
βi≺[0, d]. That is, no paths exist with the same in-digit. Based
on Proposition 3.5, the proof is completed.

Example for Proposition 3.7: In Figure 2(a), the in-
digits of non-shortest paths are 1, 3, 4, i.e., βi=(αi≺[0, 4]
& αi 6=vl+1 = 0), respectively. The conflict node is 1231
(uk−l = u2 = 1). To avoid intersection with the shortest path,
node 1231 uses vl+1 = 0 as its in-digit by forwarding data to
2310. Thusly, the d-disjoint paths with βi≺[0, 4] for the U-V
pair are built.

Theorem 3.8: When node U=u1u2...uk forwards data to
node V=v1v2...vk, the successor, path length and correspond-
ing condition of the d disjoint U-V paths are:

(1) u2 . . . ukuk−l; k + 2, when uk−l 6=vl+1;
(2) u2 . . . uk−l . . . ukvl+1; k − l, the shortest path;
(3) u2 . . . ukv1; k, when uk 6=v1;
(4) u2 . . . ukαi; k + 1, otherwise,

where αi 6=(v1, vl+1, uk−l).
Proof: (1) According to Proposition 3.6, when

uk−l 6=vl+1, there is one non-shortest path that intersects with
the shortest path. According to Proposition 3.7, this path
enters a path with in-digit vl+1. The shortest length of this
path to V is k. Therefore, the entire path length is k + 2; (2)
For a U-V pair, the maximum length of the shortest path is
k − l; (3) When uk 6=v1, there exists a successor of U with
an out-digit of v1. The path length of the path starting from
this successor is k− 1. Therefore, the path length of the U-V
pair through this successor is k; (4) For all other cases, each
successor starts with out-digit v1. The path length from the
successor to the destination is k. Then, the lengths of the
U-V paths are k + 1.

2) REFER Routing Protocol: The REFER routing protocol
consists of intra-cell communication and inter-cell communi-
cation. The intra-cell communication is developed based on
Theorem 3.8. The theorem incorporating Proposition 3.7 en-
ables a node to quickly and efficiently determine the different
successors of the d-disjoint paths from itself to the destination
node and corresponding path lengths simply based on node
IDs without relying on an energy-consuming method (e.g.,



tree [21]). Thus, in the intra-cell communication, when node
U initiates or receives a message destined to node V, it initially
chooses its successor in the shortest path to V (the greedy
shortest protocol). If the successor is congested/failed or the
link to the successor is broken down, based on Theorem 3.8,
without the need to notify the source node, U locally chooses
the second shortest path, third shortest path, and so on until a
successor capable of forwarding data is identified. If a number
of paths with the same path length exist, U randomly chooses
a successor among these paths. To forward the message to the
successor, the node chooses a path with the lowest delay [12],
which could be either a multi-hop path or direct path. After
a node receives U’s message, it repeats the same process in
choosing its successor for message routing. For example, in
Figure 2(a), node 0123 wants to send a message to 2301. It
first uses the greedy shortest protocol to forward the message
to node 1230. If node 1230 is congested/failed or the link
between 0123 and 1230 has broken, node 0123 chooses the
successor in the second shortest path. It compares its own KID
with 2301’s KID based on Theorem 3.8. Since uk 6=v1 and
uk−2 6=v3, the successors and path lengths of the remaining 3
disjoint paths are (node 1231, k+2=6), (node 1232, k=4), and
(node 1234, k+1=5). Then, node 0123 chooses the successor
1232 in the second shortest path (i.e., 4). If node 1232 has
failed to forward the message, the successor 1234 in the third
shortest path (i.e., 5) is chosen. After node 2342 receives the
message, it repeats the same process by executing the routing
protocol. Note that the routing is based on the Kautz node
indices on the Kautz graph, a routing hole in which a node
does not have a neighbor to forward a message will not occur
as long as the Kautz graph topology is maintained.

In REFER, when a node sends out a data with destination
(cid,kid), it forwards the data to its actuator by intra-cell
transmission. The data is then forwarded to its destination cell
identified by cid via inter-cell transmission, and subsequently
forwarded to the destination node identified by kid via intra-
cell transmission. In the inter-cell transmission, data is routed
based on the CAN DHT routing protocol, in which a node
forwards the data to its neighbor closest to the destination.
For example, in Figure 1, the actuator with CID=14 wants to
send a message to node (5, 201), the actuator forwards the
message to its neighbor actuator with CID=7, which is the
closest to 5 in its neighbor set. Then, the message receiver
forwards the message to its neighbor actuator with CID=4,
which further forwards the data to its neighbor actuator in cell
5. Lastly, intra-cell transmission is used to forward the data
to node (5, 201). Because the REFER overlay preserves the
consistency between overlay topology and underlying physical
topology, nodes with virtually close IDs are also physically
close. Thus, the data is transmitted between physically close
nodes, enhancing the real-time performance.

IV. PERFORMANCE EVALUATION

We used ns-2 [34] to evaluate the performance of REFER
in comparison with the DaTree [2] tree-based system, the
D-DEAR [8] mesh-based system, and the Kautz-based over-

lay [20] (denoted by Kautz-overlay) for WSANs. To make the
systems comparable, we use the topological routing in [35] for
node communication. In DaTree, one actuator (tree root) and
its physically close sensors form a tree. Each sensor belongs
to only one tree and forwards its detected events to its tree
root. If a sensor’s link to its parent breaks in routing, the
sensor needs to broadcast a message to the root in order to
update its parent. In D-DEAR, physically close sensors are
clustered together and a sensor with more energy is selected as
the cluster head, which maintains a multi-hop path to a close
actuator. Messages are sent from sensors to their cluster head,
and then further forwarded to the close actuator. The cluster
heads also use broadcast to update the paths to the actuator
upon a routing failure. We used REFER’s routing protocol
in Kautz-overlay to have a fair comparison. In Kautz-overlay,
when a node fails to forward a message to another node, it
uses broadcasting to re-establish a path to the node.

Unless otherwise specified, 5 actuators were uniformly
distributed in a 500m × 500m area and 200 sensors were i.i.d
distributed around the actuators, which form 4 Kautz cells with
Kautz graph as K(2,3). Such simulation scenario is similar to
that in [36]. The transmission ranges of sensors and actuators
were set to 100m and 250m, respectively. Every 10 seconds,
we randomly chose 5 source nodes, which transmit data to
their nearby actuators at the rate of 1Mbps.

Sensors communicate with each other using the IEEE
802.11 protocol. In the simulation, each sensor randomly
selects a destination point and moves to that point with a
speed randomly selected from [0,3]m/s. The warmup time and
simulation time were set to 100s and 1000s, respectively. Since
most packets can arrive at the destinations within 1s, we only
counted those arriving at the destination within 0.6s into the
throughput in order to show the real-time transmission per-
formance. We call these packages QoS-guaranteed data. The
amounts of energy consumed in the transmission and receiving
modes were set to 2 and 0.75 Joules/packet [37], respectively.
All experimental results report 95% confidence intervals. We
use the following metrics for the performance evaluation: (1)
Throughput. The size of received data by all actuators per
second. We scale the measured throughput in 0.6s to 1s. A high
throughput implies higher fault-tolerance and real-time perfor-
mance. (2) Delay. The average latency for the transmission
of QoS-guaranteed data. Shorter delay indicates higher real-
time performance. (3) Energy consumed in topology construc-
tion/communication. The total consumed energy of all sensors
in topology construction and in node communication for data
forwarding and topology maintenance, respectively. Less con-
sumed energy indicates higher energy-efficiency of a system.

A. Mobility Resilience
In this experiment, a node’s speed was randomly selected

from [0, 5]. Figure 4 shows the throughput of each system
versus the average node mobility speed x/2. It demonstrates
that higher node mobility leads to a slight throughput decrease
in REFER, moderate throughput decrease in DaTree and D-
DEAR, and a sharp throughput decrease in Kautz-overlay.
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Fig. 7: Throughput vs. faulty nodes.

REFER directly embeds Kautz graphs into the physical topol-
ogy in order to keep the topology consistency. Therefore,
messages are quickly forwarded along physically close nodes.
Higher mobility leads to more message forwarding failures.
With REFER’s routing protocol, a node can quickly use an
alternative path from itself to the destination upon a forwarding
failure. Thus, REFER can forward more messages in a limited
time, leading to a high throughput. REFER’s slight decrease
in throughput is caused by the slightly longer lengths of
the alternative paths. In D-DEAR, only cluster heads need
to maintain long multi-hop paths to actuators, and all other
sensors can directly reach their cluster heads. When a multi-
hop path breaks, a cluster head uses broadcasting to find a
new path to an actuator. The delay for the multi-hop path
recovery and message retransmission results in the decrease in
throughput. In DaTree, if a sensor fails to forward a message
to its parent, it uses broadcasting destined to the root for a link
reestablishment with a new parent, leading to a long delay and
low throughput. Since DaTree has more nodes being affected
by the mobility, its overall throughput is much smaller than
D-DEAR in a highly mobile environment.

Figure 5 shows the energy consumed in communication for
each system versus node mobility. The figure illustrates that
the consumed energy of all systems increases as node mobil-
ity increases. This is because higher mobility triggers more
path updates. The figure also shows that REFER consumes
significantly less energy than others, and Kautz-overlay and
DaTree consume much more energy than D-DEAR. Without
the message retransmission and topology consistency, REFER
consumes low energy in message transmission. In REFER’s
topology maintenance, nodes only need to periodically probe
their nearby neighbors and replace them if they cannot con-
tinue to be the Kautz nodes. Therefore, REFER’s consumed
energy exhibits a slight increase when node mobility increases.
In D-DEAR, upon a forwarding failure, a cluster head needs
to use broadcasting to rebuild the routing path to its actuator,
so its consumed energy increases rapidly as the node mobility
increases. In DaTree, upon a forwarding failure, a node needs
to use broadcasting to find a new parent and retransmit
the message. Since DaTree needs all nodes to update links
rather than partial nodes as in D-DEAR, DaTree consumes
more energy than D-DEAR, especially in a highly mobile
environment. In Kautz-overlay, the multi-hop paths between
the neighboring overlay nodes are more likely to break up
with high mobility, consuming more energy in path updates.
Because Kautz-overlay need maintain multiple consecutive
multi-hop paths, Kautz-overlay consumes much more energy
than DaTree in a highly mobile environment. It is interesting to

see that when mobility is 0.5m/s, Kautz-overlay consumes less
energy than DaTree. As much less path updates and message
retransmission occur in a low mobile environment, Kautz-
overlay consumes less energy than DaTree.

B. Fault-Tolerant Routing

We define faulty nodes as broken-down nodes that cannot
function normally. We randomly chose a set of faulty nodes in
the system every 10s and recovered the previous set of faulty
nodes. The number of faulty nodes was set to 2x, where x
is randomly chosen from [1, 5]. Figure 6 plots the average
transmission delay versus the number of faulty nodes. We
notice that as the number of faulty nodes increases, the delays
of DaTree and D-DEAR grow faster than REFER and Kautz-
overlay. This is because of the fault-tolerant routing in REFER
and Kautz-overlay which enable a node to use an alternative
path upon a forwarding failure. Their slight delay growth is
caused by the lengthened routing path of an alternative path.
However, Kautz-overlay’s multi-hop transmission between two
neighboring Kautz nodes leads to long transmission delay. In
contrast, REFER keeps the topology consistency and enables
neighboring Kautz nodes in a Kautz routing path to directly
communicate with each other, resulting in the least delay.

In DaTree, every node needs to use broadcasting to send
a message to its actuator to rebuild a link to a new parent
upon a forwarding failure. More faulty nodes generate more
link re-establishments, leading to higher transmission delay.
In D-DEAR, as only cluster heads rather than all nodes need
to update the transmission paths to the actuators, it generates
less transmission delay than DaTree. It is intriguing to see that
DaTree has lower delay than Kautz-overlay when the number
of faulty nodes is less than 6, but it has higher delay thereafter.
DaTree usually has one multi-hop path while Kautz-overlay
has a number of consecutive multi-hop paths in one routing.
When there are only a few faulty nodes, most messages can
be transmitted successfully. Consequently, DaTree generates
lower delay due to its shorter path length. More faulty nodes
trigger more forwarding failures, for which DaTree needs mes-
sage retransmission while Kautz-overlay does not. Therefore,
DaTree produces higher delay than Kautz-overlay.

Figure 7 shows the throughput of systems versus the number
of faulty nodes. The figure shows that the throughput of
all systems decreases as faulty nodes grow. This is because
more faulty nodes trigger more message drops and delayed
transmission. We can also see that the throughput of REFER
and Kautz-overlay decreases slower than DaTree and D-DEAR
due to their fault-tolerant routing as explained in Figure 6. In
DaTree and D-DEAR, upon a routing failure due to faulty
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nodes, the delay from the path re-establishment reduces the
throughput during the simulation time. The faulty nodes only
affect the paths between the cluster heads and actuators in D-
DEAR, but affect the paths between all sensors and actuators
in DaTree. Therefore, D-DEAR generates higher throughput
than DaTree. Because Kautz-overlay produces a much longer
transmission path length for one message transmission than
all other systems, it produces the least throughput during the
limited simulation time.

C. Real-Time Transmission

Figure 8 shows the delay of each system when the network
size was varied from 100 to 400. As the number of nodes in the
system increases, the delay remains nearly constant in REFER,
moderately increases in D-DEAR, while sharply increases in
DaTree and Kautz-overlay. Also, DaTree and Kautz-overlay
generate much higher delay than D-DEAR and REFER when
the number of nodes is larger than 100. In REFER, messages
are always forwarded between the physically close nodes.
Also, since the number of nodes in a basic cell is fixed,
the distances of message transmission do not change as the
network size increases. Further, REFER’s routing protocol
can reliably forward messages without retransmission. Con-
sequently, its transmission delay remains almost constant. In
D-DEAR, only the transmission path lengths between cluster
heads and actuators increase as network size grows, thus its
overall transmission delay slightly increases. The reason for
the sharp increase in DaTree and Kautz-overlay is because the
path lengths between all sensors and their actuators increase as
network size increases, since all sensors in the system function
as relay nodes for message forwarding. It is intriguing to see
that when the number of nodes is 100 in the system, DaTree
generates approximately the same delay as REFER, which is
less than that of D-DEAR. This is because when the network
scale is small, many nodes are close to the actuators. In
DaTree, many sensors can directly send messages to actuators.
In D-DEAR, even if a sensor is close to an actuator, it still
needs to send its messages to its cluster head, which further
forwards the message to the actuator, resulting in longer delay.

D. Scalability and Energy-efficiency

Figure 9 demonstrates the energy consumed in commu-
nication for each system versus network size. Here, as the
networks increase in size, the consumed energy of REFER
shows a marginal increase while that of DaTree, Kautz-overlay
and D-DEAR exhibits a rapid increase. The result verifies the
high energy-efficiency and scalability of REFER. Recall that

REFER chooses a multi-hop path rather than a direct path for
routing between neighboring Kautz nodes if the multi-hop path
leads to lower delay. Therefore, as the network size increases,
REFER has higher probability of having a slightly longer
multi-hop with lower delay, resulting in a slight increase in
the consumed energy. In D-DEAR, DaTree and Kautz-overlay,
the path length increases as the network size increases. Also,
longer path length increases the probability of path breakups,
which triggers more path updates. Thus, the consumed energy
of these systems increases quickly. We also observe DaTree
consumes more energy than D-DEAR and Kautz-overlay. The
consumed energy in communication is for message transmis-
sion and topology updates. The routing paths between all
sensors and actuators increase in DaTree, while only those
between the cluster heads and actuators increase in D-DEAR.
Thus, DaTree needs more energy than D-DEAR. In a moderate
mobile environment, message transmission dominates the in-
fluence on the energy consumed due to less topology updates.
Kautz-overlay does not need message retransmission upon
routing failure due to its fault-tolerant routing protocol, while
DaTree needs message retransmission. Consequently, DaTree
consumes more energy than Kautz-overlay, which is consistent
with the result in a low mobile environment in Figure 5.

Figure 10 shows the energy consumed in topology con-
struction for each system versus the network size. We can see
that Kautz-overlay consumes the most energy for the overlay
construction. The reason is that every node in Kautz-overlay
needs to use broadcasting to build a multi-hop path to each
of its overlay neighbor. As the overlay in both D-DEAR and
REFER are formed by physically close nodes, they consume
less energy. In D-DEAR, since every node locally contacts
neighbors within 2 hops to select its cluster head, its energy
consumption is much less than Kautz-overlay. In REFER, actu-
ators need to exchange information and broadcast messages to
all nodes in the cells for actuator ID assignment. Also, several
communications between actuators and sensors are needed for
selecting Kautz nodes and KID assignment. Therefore, it con-
sumes more energy in topology construction than D-DEAR. In
DaTree, each actuator broadcasts one message to the sensors
in the system. After receiving the message, a sensor sets the
message forwarder as its parent. Therefore, it consumes the
least energy in overlay construction. Figure 11 combines the
energy consumed for communication and topology construc-
tion. We notice that topology construction consumes negligible
energy compared to that of communication (0.1%). Thus, the
result confirms that REFER is energy-efficient in terms of total
energy consumption.



V. CONCLUSION

Real-time, energy-efficiency and fault-tolerance are critical
requirements for WSAN applications. Current routing proto-
cols proposed for WSANs fall short in meeting these require-
ments. In this paper, we theoretically studied the properties
of the Kautz graph, which shows that the Kautz graph is an
optimal topology for WSANs to meet the requirements. Thus,
we propose REFER, which incorporates a Kautz graph embed-
ding protocol and an efficient fault-tolerant routing protocol.
REFER’s embedded Kautz topology is consistent with the
physical topology, facilitating real-time communication. Fur-
ther, REFER leverages DHT for the communication between
Kautz-based cells for high scalability. Our theoretical analysis
on the Kautz paths serve as the cornerstone for REFER’s
routing protocol. It is advantageous over previous Kautz-based
routing algorithms by enabling a node to directly determine
different routing paths and path lengths simply based on
node IDs without relying on an energy-consuming method.
Extensive experimental results show the high performance of
REFER compared with other WSAN systems and previous
Kautz-based overlay. In the future, we will evaluate REFER
in the GENI real-world testbed using trace data. We will also
investigate the performance of REFER in a sparse WSAN and
the Kautz graph K(d, k) with various d and k values.
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