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Abstract—A peer-to-peer (P2P) file sharing system provides
a platform that enables users to share their files. Retrieving
files efficiently and trustworthily in such a large and jumbled
system is critically important. However, the issues of efficient
searching and trustworthy searching have only been studied
separately. Simply combining two separate strategies dealing with
each issue doubles system overhead. In this paper, we first study
trace data from Facebook and BitTorrent. Guided by the study
observations, we propose a P2P system based on social networks
for simultaneous efficient and trustworthy file sharing, namely
Social-P2P. Social-P2P groups common-multi-interest nodes into
a cluster and further connects socially close nodes within a
cluster. The comparably stable nodes in each cluster form a DHT
for inter-cluster file searching. A file query is forwarded to the
cluster of the file by the DHT routing and then is forwarded
along constructed connections within a cluster, which achieves
high hit rate and reliable routing. Sharing files among socially
close friends discourages nodes from providing faulty files since
people are unlikely to risk their reputation in the real world.
Experimental results show that by leveraging a social network,
Social-P2P achieves highly efficient and trustworthy file sharing.

I. INTRODUCTION

Peer-to-peer (P2P) file sharing is a very popular application

that are widely used in our daily life (e.g. BitTorrent [1]). Cur-

rently, more than 50% of the files downloaded and 80% of the

files uploaded on the Internet are through P2P networks [2].

P2P file sharing systems attract millions of users [2]. Due to

the large-scale of the P2P systems, how to efficiently locate a

desired file has been an open problem for many years. Also,

considering that ubiquitous users without preexisting trust

relationships share files in the P2P open platform, how to pro-

vide trustworthy file (i.e., authentic file without virus) sharing

has become another important issue. Indeed, many users find

themselves downloading the wrong files due to misleading file

names and descriptions [3]. Peers with malicious intent upload

faulty files, such as tampered files or files with malicious code

(e.g., Trojan horses and viruses), as legitimate files. A study in

2010 reported that among the surveyed people who acquired

music from a P2P network, 41% downloaded spyware, 39%

downloaded a virus or trojan and 32% downloaded unwanted

explicit content [4]. These problems may scare many users

away from the P2P file sharing application.
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However, the research on the issues of efficient and trust-

worthy P2P file searching has been conducted separately.

Also, though many methods have been proposed to enhance

the efficiency or trustworthiness, the individual methods are

not efficient by themselves. In order to improve the search

efficiency, some works cluster the nodes with the same interest

to increase file hit rate [5]–[17]. Since the methods cluster

nodes based on a single interest, a node with multiple interests

needs to maintain multiple clusters, which generates a high

overhead for cluster maintenance and inter-cluster searching.

Also, most previous approaches depend on the contents in

users’ local storage to infer their file interests. They are not

only costly but also unable to retrieve the complete interests of

a user with insufficient stored contents, such as new users or

users that have deleted the shared files. A widely-used solution

for trustworthy file sharing is to employ a trust management

system [18]–[21], in which each node rates the service quality

of service providers. However, accumulating sufficient ratings

for calculating an accurate trust may need a long time. Also,

periodical trust updates produce a high overhead. Currently,

the only approach to achieve both efficient and trustworthy

P2P file searching is to directly combine a system for high

search efficiency and a trust management system. In this way,

all nodes need to maintain structures for two systems, which

doubles system cost, making the high overhead problem even

more severe. Therefore, a system that can simultaneously

provide both efficient and trustworthy file sharing with low

overhead is greatly needed.

Recently, online social networks such as Facebook have

gained significant popularity. Users can publish their personal

profiles, which include information such as personal interests,

career and education. Users can also contact others with close

social relationships such as kinship and friendship. In this

paper, we propose a peer to peer file sharing system that

based on online social network, namely Social-P2P, to simul-

taneously achieve efficient and trustworthy P2P file sharing

by leveraging social interests and relationships. Three facts

lay the foundation for this work. First, it is reported that

Americans spend almost a quarter of their time online on social

networking sites [22]. Therefore, a large number of active

and stable nodes will be available in the system to provide

resources to each other. Second, people usually share files that

they are interested in [14]. Interests indicated by a user himself

in his profile can more accurately reflect the complete interests



of the user. Third, users are unlikely to provide faulty files to

their socially close friends because it will impair their social

relationships with others and degrade their reputation in their

social communities in the real world. Thus, by mapping the

P2P cyber network to the human social network and restricting

cyber services (e.g., file sharing and message routing) between

socially close nodes, misbehaviors (i.e., providing faulty files

and rejecting forwarding messages) can be discouraged.

In the paper, we first study trace data from Facebook

and BitTorrent. We are trying to find the possible gains

of deploying P2P file sharing applications in online social

networks. We gain a number of interesting observations (O):

O1: Some interests are highly correlated. That is, given a pair

of correlated interests A and B, if a person has interest A, he

is very likely to also have interest B.

O2: A user in the online social network has different contact

frequency with different persons.

O3: Friends in the online social network usually have certain

social relationship(s) in their real life.

O4: A P2P file sharing system possesses a certain percent of

comparably stable nodes.

O5: Most file queries are for popular file categories.

Guided by these observations, we develop the following

three components for Social-P2P:

(1) Interest/trust-based structure construction. It groups

common-multi-interest nodes into an interest cluster (O1),

and forms comparably stable nodes into a Distributed Hash

Table (DHT) to connect clusters for efficient inter-cluster

data sharing (O4). Within each interest cluster, nodes are

connected with socially close nodes as P2P overlay neigh-

bors (O3). The component aims to increase the file sharing

efficiency.

(2) Interest/trust-based file searching. The trustworthiness

between nodes is weighed and a node tends to forward

a file query to higher trustworthy neighbors (O2). Since

higher popularity files have more file copies being shared

in the system, random walk is employed for high hit rate

in intra-cluster file searching (O5). The component aims to

increase the file sharing efficiency and trustworthiness at

the same time.

(3) Trust relationship adjustment. Each node in a routing

path decreases its trust on the next hop when a faulty

file is retrieved in order to avoid routing queries towards

misbehaving nodes later on (O2). Furthermore, Social-P2P

uses anonymous routing to prevent malicious nodes from

selectively attacking socially distant nodes and protects

the privacy of the nodes. The component aims to further

enhance the file sharing trustworthiness.

As far as we know, this is the first work that simultaneously

considers both efficient and trustworthy file querying with low

overhead of P2P file sharing in online social networks.

II. TRACE DATA ANALYSIS

In this section, we analyze Facebook trace data crawled

by us to study people’s social and interests information and

BitTorrent trace data from the Graffiti Network Project [23] to

study people’s P2P file sharing behaviors. The Facebook trace

data covers the interests of 32,344 users in the South Carolina

Region in June, 2010. To crawl the data, we selected two

users with no direct social relationship as seed nodes and built

a friend graph using breadth first search through each node’s

friend list. We skipped the users whose personal information

cannot be accessed. Finally, we drew a social network graph.

The average number of friends per node is 32.51 and the

average path length of the graph is 3.78. The BitTorrent user

traffic was collected during a three week period (Oct 28,

2008-Nov 21, 2008) involving 3,570,588 nodes.

a) Interest clustering: We parsed the interest informa-

tion from the users’ profiles in Facebook. We removed the in-

terests irrelevant to file sharing (e.g., “sleep” and “shopping”)

and classified the remaining interests (e.g., “action movie”,

“classic music” and “sports”) into 18 categories. We plotted a

graph G(V,E) to show the relationship among the 18 interests.

The vertices V are the interests. A link E between V1 and V2

indicates the co-existences of both V1 and V2 in all profiles of

T persons, where T is the threshold of the number of persons.

(a) T = 100 (b) T = 500

Fig. 1. The clustering feature of interests.

Figure 1 plots the graphs with threshold T=100 and T =
500, respectively. When T = 100, the interests are densely

connected. When T = 500, several interests are still clustered,

while two interests are isolated. Also, the number of interestes

in one interest cluster varies.

Observation(O)1: Some interests are highly correlated. That

is, given a pair of correlated interests A and B, if a person

has interest A, (s)he is very likely to also have interest B.

Inference(I)1: Instead of clustering the nodes based on each

individual interest, which leads to high overhead for cluster

maintenance, clustering common-multi-interest nodes can im-

prove file retrieval efficiency and reduce cluster maintenance

overhead. For example, suppose a user A has m interests.

For single interest based clustering, user A need maintain m
interest clusters. Suppose in each interest cluster, the user A

need maintain d neighbors. Then, user A need maintain m ∗d
links. If the average churn rate of a user is r, then the overhead

for a user to maintain m interest cluster is m∗d∗r. In contrast,

for multi-interest based clustering, user A only need maintain

d links with cluster maintenance overhead as d ∗ r.

b) Closeness between online users: We analyzed the

reply rate of the posts on user comment walls and pictures in

Facebook. The reply rate of user A to user B is defined as the
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Fig. 2. Distribution of closeness.
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Fig. 3. Distribution of postings.

percent of B’s posted comments on A that are replied by A.

Figure 2 shows the distribution of the average reply rates of

all users to their friends. It shows that a user has a reply rate

of less than 0.7 to almost 90% of its friends on average. That

is, for only 10% of friends, a person replies more than 70% of

their comments. The results indicate that users treat different

persons in an online social network differently. In order to find

whether the behavior of replying comments is driven by social

closeness of nodes or the content of the comments (e.g. inter-

esting comments), we further investigate the comments posting

behaviors between people. For a posting from user A to user

B, we call it posting for a familiar person if B has posted

comments on A’s wall/picture and A replied B’s comment

before. Otherwise, we call it posting for an unfamiliar person.

We calculated the percent of postings for (un)familiar persons

for each user, and plotted the average values in Figure 3. We

see that 83% of a person’s postings are for familiar persons.

From the results in both figures, we observe:

O2: A user in the online social network has different contact

frequency with different persons.

Current research [24] shows that the users’ contact fre-

quency indicates the trust between them. Thus we can infer:

I2: The trust relationship between nodes should be weighed.

Retrieving files from trustable nodes can increase the trust-

worthiness of the retrieved files.

Figure 4 further shows the social relationship between the

users. We observe that:

O3: Friends in an online social network usually have certain

social relationship(s) in their real life.

I3: Requesting services (e.g., providing files and query rout-

ing) from socially close nodes can enhance the trustworthiness

of received services, since people do not want to ruin their

reputation in real life.

Classmate

ColleagueOthersSame church

Kinship

Fig. 4. Social relationship.
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Fig. 5. Churn rate of the nodes.
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Fig. 7. An overview of the Social-P2P system structure.

c) Node stability: We now analyze the distribution of

node stability in BitTorrent. Figure 5 shows the cumulative

distribution function (CDF) of the online time duration of

nodes in the system. It shows that 20% of the nodes leave

the system within 1s after they finish file downloading, while

1.5% of the nodes stay in the system for more than 105s.

O4: A P2P file sharing system possesses a certain percent of

comparably stable nodes (1.5%) and a large percent of highly

dynamic nodes (20%).

I4: Building a DHT using all nodes in the system is not

suitable for P2P file sharing due to high churn. Forming the

comparatively stable nodes into a DHT to assist other nodes

in file retrieval can enhance file sharing efficiency.

d) File interest popularity: The number of torrents

of a file category (i.e., interest) represents its popularity.
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Fig. 6. File popularity distribution.

We ranked 505 interests based

on the number of torrents.

The interest with rank 1 has

the largest number of torrents.

Figure 6 shows the number of

torrents of an interest versus

its rank in the log-log scale.

It also includes a line for the

Zipf distribution. We see that

the popularity distribution of interests can be modeled as a

Zipf distribution.

O5: According to the Zipf distribution, most of the file

queries (80%) are for a small percent (20%) of file categories

(interests), which are the popular categories.

In the random walk algorithm, a node randomly selects one

or several neighbor nodes (except the nodes which already

received the message) as the next message forwarding hops.

I5: In the case that higher popularity files have more file

copies being held by different users in the system, the random

walk file searching algorithm can achieve high hit rate in

retrieving popular files as it is likely to meet a user that hold

the popular file nearby.

III. SOCIAL-P2P: SOCIAL NETWORK-BASED P2P SYSTEM

Based on the above observations and inferences, we propose

Social-P2P, which leverages the social closeness and interest
information in the social network to enable nodes with close

social relationship and common multiple interests share files



between each other. Figure 7 shows the system structure of

Social-P2P. Based on I1, we group common-multi-interest

nodes together into an interest cluster. Based on I2 and I3,

within each interest cluster, nodes are connected based on

their social network links. The trustworthiness between nodes

is weighed and a node tends to forward a file query to higher

trustworthy neighbors in file searching. Based on I4, we select

a comparably stable node as an ambassador for its own cluster,

and form all ambassadors to a DHT for efficient inter-cluster

file sharing [5]–[7]. Like BitTorrent, Social-P2P enables nodes

to share their downloaded files with others. Thus, based on I5,

a node uses random walk in intra-cluster searching. Social-P2P

can build a social network connecting the users. Social-P2P

can also be used as a plugin in current on-line social online

networks, such as Facebook, MySpace to provide anonymous

file sharing services.

A. Interest/Trust-based Structure Construction

Social-P2P numerically represents interests of a node based

on the Vector Space Model (VSM) [25]. It provides an interest

dictionary vector, which consists of all interests of the nodes

in the system. Each node compares its own interests with the

interest dictionary vector as shown in Figure 8. If it has an

interest in the vector, the corresponding position of the vector

is set to 1. Otherwise, the position is set to 0. Finally, each

node i has an interest vector vi, which is a binary vector with

m dimensions and m is the number of all interests.

… …Interest
Item

Piano Violin Sci-Fi Action Horror Football Soccer

Peer ID
4123 1 1 0 1 0 0 1… …

Fig. 8. An example of an interest vector.

We use the Hilbert curve [26] to converts a multi-

dimensional interest vector to an one-dimensional Hilbert

value. The closeness of the Hilbert values indicates the

closeness of the interest vectors, i.e., the similarity between

nodes’ interests. Then we use hash table to cluster the nodes

based on their Hilbert values. The nodes with similar Hilbert

values are located in the same cluster or adjacent cluster. By

adjusting the number of clusters, we can change the resolution

of the clustering. Specifically, we use Hmax to represent

the theoretically largest Hilbert value, which depends on

the vector dimension. Assume we build n clusters with

ID∈[0, n − 1], then [0, Hmax − 1] is uniformly divided to n

intervals. A node with Hilbert value ∈[ (a−1)·Hmax

n , a·Hmax

n )
(1 ≤ a ≤ n) is assigned into cluster (a−1). Thus, a node can

identify its cluster according to its generated Hilbert value.

Comparing to some commonly used clustering method such as

K-Means [27], which is computationally intensive, the Hilbert

curve based clustering need much less computation costs.

Next, we study the distribution of the number of nodes in a

cluster. Using the Hilbert clustering mechanism, we clustered

the persons in the Facebook trace data based on their interests.

We also used the mechanism to cluster nodes with randomly

distributed interests for comparison in order to further justify
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our clustering method. To generate the random distribution,

we assigned each node a random number of interests randomly

selected from the 18 interests, and clustered the nodes based

on their Hilbert values. We ranked the clusters by the number

of nodes in each cluster. The cluster with the largest number of

nodes has the highest rank. Figure 9 shows the distribution of

the number of nodes in each cluster versus the cluster rank. It

shows that the number of nodes in each cluster in the Facebook

trace conforms to a power law distribution, while the number

of nodes in random interest distribution exhibits a small vari-

ance. The highly skewed distribution in the Facebook trace in-

dicates that the interests of people are not randomly distributed

but has certain correlation, which is consistent with O1.

Figure 10 shows the average, maximum and minimum

number of social friends of each person (i.e., degree) in its

interest cluster. The average degree, maximum degree and

minimum degree range from [2.1,18.2], [6,223] and [0,1]

respectively. Therefore, a node has a large number of friends

in its own common-multi-interest cluster. Recall that the

average number of friends of each node in our data set is

32.51. Therefore, most of nodes should have friends in other

clusters. Thus, we observe:

O6: A node has a large number of friends in its own common-

multi-interest cluster, and also has friends in other clusters.

I6: Each node is able to establish links with its friends in its

own interest cluster, and it can ask a friend in another interest

cluster to forward a query to that cluster.

Each cluster of common-multi-interest nodes has an ambas-

sador, which is a comparably stable node that is responsible

for the inter-cluster searching between its responsible cluster

and other clusters. Like current online social networks, Social-

P2P has a server managing node registration and ambassadors.

The principle of stable node selection is that the longer

time a node is online daily in a P2P network, the higher

probability it will stay in the network [28]. Initially, the server

is the ambassador in each cluster. When a node’s online

time exceeds a pre-defined threshold (i.e., 10% of the most

stable nodes in each cluster), it reports to the server for the

promotion to an ambassador. The server assigns it as the

ambassador in its cluster if the server is the ambassador of that

cluster. Otherwise, the node becomes a backup ambassador,

which becomes the ambassador of the cluster after the current

ambassador leaves.

Each user is required to submit his interest information and

social information in registration. Interest information, such as

preference of file resources, is used for common-multi-interest



node clustering. Social information, such as residence, educa-

tion and employment, is used to build social links between the

nodes within a cluster. After a node registers, it calculates its

Hilbert value, and then gets the ambassador(s) of its interest

clusters from the server. Based on the social information of

the node, servers recommend friends to the node such as class-

mates in the same college, colleagues in the same company

and etc. The friend recommendation can accelerate the process

of building a social network. The node selects familiar friends

from the recommendation and adds them into its social friend
list. It builds overlay links to the friends belonging to the same

interest clusters as itself. If the number of friend nodes is

less than a threshold Thd, the node requests its friends to

recommend their trustable friends in the same interest clusters

as itself. The node connects to the recommended nodes as

overlay neighbors in the P2P layer based on the Friend of

Friend (FoF) relationship. For example, in Figure 7, node A

connects to node C recommended by its friend B as P2P over-

lay neighbor. As a result, a node’s overlay neighbors in Social-

P2P include its 1-hop friends and 2-hop FoFs. Querying files

from these neighbors ensures trustworthy file sharing, since

users possessing a social network primarily interact with 2 to

3 hop partners in real life [29]. If a node has already registered

in the system before, when it logs in, it directly connects to its

previous overlay neighbors. When a node leaves the system,

it needs to notify its neighbors and the server. After being

registered, users can add or delete interests in their profiles

later on. Then, their interest clusters are updated accordingly.

B. Interest/Trust-based File Searching

1) Intra-cluster routing protocol: Using this protocol, a

node forwards a query to a trustworthy node in the intra-cluster

routing. Recall a node has overlay links with its friends and

FoFs in a cluster. We define the social distance between two

nodes as the number of hops in the shortest path between them

in the social network. We use an exponential model to reflect

the relationship between trust and social distance. Specifically,

the trust weight of node i on node j denoted by w(i, j) is

calculated by:

w(i, j) = e(−l(i,j)−1), (1)

where l(i,j) is the social distance between node i and node

j. This relationship has been confirmed by other studies [29],

[30]. Binzel et al. [30] discovered that a reduction in social

distance between two persons significantly increases the trust

between them. Swamynathan et al. [29] found that people

normally conduct e-commerce business with people within 2-3

hops in their social network.

Each node employs random walk search, in which a query

message is forwarded to several randomly chosen P2P network

neighbors at each hop until the desired file is found. A node’s

P2P network neighbors are trustable since they are friends

and FoFs of the nodes in their social networks. We hope that

friends have higher probability than FoFs to be chosen as

forwarders because they are relatively more trustable. Thus,

the probability of a neighbor j being selected from the P2P

neighbor set Ni of i as the message forwarding node is

p(i, j) = w(i, j)/
∑

j∈Ni

w(i, j). (2)

Specifically, a node sequentially maps its neighbors to interval

[0,1], and a neighbor with p(i, j) owns a segment with

length=p(i, j). The node randomly generates a value within

[0,1], and the neighbor who is the owner of the segment

covering the value is selected as the next hop. The message

is randomly forwarded within the cluster with a time to live

(TTL) time stamp. For every forwarding hop, the TTL is

reduced by 1. The query process is terminated when TTL=0

or the desired file is found. A file request indicates the file

name or keywords. Upon receiving a file request, a node

checks whether it has the requested file using the Bloom filter

method [31].

2) Inter-cluster routing protocol: Inter-cluster querying is

needed when users need to query files not within their interests

or the query in the current cluster cannot be satisfied. In this

case, using the same way as described in Section III-A, the

requester generates a query vector as generating its interest

vector, calculates its Hilbert value, and identifies the ID of

the cluster mapped to the Hilbert value. Since the cluster

ID represents the common-multi-interests of the nodes in the

cluster, the mapped cluster is the destination cluster that holds

the requested file. According to I6, we know a node has

some friends in other clusters. Thus the requester first asks its

friends in its friend list whether they belong to the destination

cluster. If yes, the query is sent to the cluster through the

friend. Otherwise, the requester relies on the ambassador in

its current cluster to forward the query. Using DHT routing,

the ambassador forwards the query to the ambassador in the

destination cluster, and then the query is forwarded by the

intra-cluster routing protocol.

Two similar vectors may be divided into two neighboring

clusters. Therefore, if a query cannot be satisfied within the

destination cluster, it is forwarded to the neighboring clusters

in both clockwise and counter-clockwise direction with a

Cluster TTL (CTTL). Similar to inter-cluster routing, a node

tries to send the query via its friends in the social network

rather than ambassadors in the DHT. The nodes holding the

query with TTL= 0 and CTTL�= 0 further forward the request

to their neighboring clusters. If the CTTL expires, the query

message is sent to server to locate the file holder. Each node

in the system reports the files that are seldom queried by other

nodes to the server in order to guarantee the file availability.

C. Trust Relationship Adjustment

Based on I3, Social-P2P confines the query traffic to the

socially close nodes in order to make sure that the query can

be successfully forwarded, and the retrieved file is trustworthy.

The trust relationship adjustment protocol enables nodes to

avoid forwarding messages to malicious nodes in order to

reinforce the trustworthiness of the services in the system.

When a node receives a faulty file from a malicious node, the

node propagates a misbehaving node notification back along



the previous query path. Each node i in the routing path

decreases the weight of its link to the previous hop on the

path, so that it has lower probability of forwarding a message

to the misbehaving node. Since a node located closer to a

misbehaving node is more likely to forward a query to it, it

needs to reduce more link weight. Specifically, node i adjusts

its link to the previous hop j by:

w(i, j) = w(i, j)− α(
b

h
)
h
θ , (3)

where b is the number of hops from the requester to node

i, h is the number of hops between the requester and the

misbehaving node in the path, θ is a scaling parameter and α
is a weight parameter. Thus, the nodes that are distant from

the misbehaving nodes (small b) reduce less link weights,

and vice versa. If w(i, j) is less than a threshold Thw, node

i puts node j into the blacklist and removes the P2P overlay

link to j. Social-P2P periodically forgives the occasional

misbehavior of nodes every Tu time interval by increasing

every node’s weight periodically:

w(i, j) = Minimum{(w(i, j) + β), 1}, (4)

where β > 0 is the weight increase value at every Tu.

Anonymity. A big concern of P2P file sharing users is privacy.

Some users do not wish to be identified as a file provider

or file receiver by their friends. Also, to counter Social-

P2P’s strategy for trustworthy file sharing based on I3, a

malicious node may selectively provide faulty files to socially

distant nodes or falsely accuse a normally behaving node of

misbehaviors. Anonymity routing can protect node privacy

and prevent such misbehaviors by preventing a node from

finding out the initiator and receiver of a query. As most of the

files are shared among socially close node, a malicious node

dares not to arbitrary attack the initiator or receiver of a query.

Therefore, Social-P2P uses a lightweight anonymous routing

protocol. In the protocol, the source of a query is removed

from the query message. After a file is discovered, the file is

sent back along the previous query path. Thus, the forwarding

nodes in the routing path do not know who provided the

file. As a node in the path only knows its predecessor and

successor which are its socially close friends, and the two

end points could be anywhere among the network’s hundreds

of thousands of nodes, the file sharing achieves anonymity.

Authentication and encryption techniques can be further used

to encrypt b and h to hide them from users [32].

IV. PERFORMANCE EVALUATIONS

We have conducted trace-driven experiments using the trace

data from Facebook and BitTorrent on PlanetSim [33]. We

evaluated the efficiency and trustworthiness of the Social-P2P

system in comparison with Partial Indexed Search (PIS) [17]

and PROSA [34]. PIS is a hybrid system that clusters the

nodes based on their major interests, and also forms the nodes

into a DHT to index the non-major interests and globally

unpopular files for file retrieval. PROSA is an unstructured

P2P system in which the nodes share the same interests are

virtually clustered together if they have interactions before.

The nodes use random walk to locate interest clusters and to

search for files.

We also compare the searching trustworthiness of Social-

P2P with Pure-P2P and EigenTrust [35]. Pure-P2P does not

have any mechanisms to guarantee file trustworthiness. Eigen-

Trust is a trust management system, in which every peer has

a trust manager to calculate its trust value based on others’

feedbacks. A node’s trust manager is the DHT owner of the

node’s ID. Each file requester sends the rating of the file

supplier to the supplier’s trust manager.

TABLE I
PARAMETER TABLE

Network topology Facebook trace

Number of interests 18

Number of clusters 30

Churn rate Figure 5

CTTL and TTL 3 and 100

Link weight threshold Thw 0.1

P2P node degree threshold Thd 3

Link weight update interval Tu 1000s

α, β ,θ, Tu 0.05, 0.1, 3, 100s

Table I lists parameters used in the experiments. The reason

why we set α, β ,θ, Tu as the values shown in the table is

because these parameters can ensure SocialP2P to achieve a

reasonable performances based on the trace data. We generated

300,000 synthetic files according to the popularity distribution

shown in Figure 6. The files are randomly distributed to the

nodes whose interests match the file contents. Figure 11 shows

the average querying rate of the nodes in the BitTorrent trace

data along with a line for power-law distribution. We rank the

nodes in terms of the number of queries issued by the nodes.

The node generating most queries is ranked first. We see that

the querying rate of nodes follows the power-law distribution.

Thus, we used a power-law distribution generator with scaling

exponent parameter k=-1.2 to generate querying rate within

the range of [0.01,100] message/s, and randomly assigned the

rate to each node in the system. Since a node is more likely

to query files in its interests [14], for each node, 90% of its

initiated queries are for files in its own interests and 10%
are not. The churn rate distribution of nodes follows that of

Figure 5. After a node leaves the system, it waits for tw and

joins in the system again and tw is randomly selected from

[1-10]s.
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We use the following metrics: (1) Percent of traffic: the

percent of query messages forwarded by different kinds of

nodes (friends, ambassadors and server) in a searching stage.

(2) Average query delay: the average delay of all file queries.

(3) Query overhead: the total number of hops in file searching

of all file queries.

(4) Maintenance overhead: the number of messages in

maintaining the system structure in churn.

(5) Overall overhead: the total number of messages issued

for file searching, system maintenance and trust management.

(6) Victimized probability: the percentage of nodes receiving

faulty files.

A. Performance Evaluation on PlanetSim

We set the number of nodes to 32344, which is the number

of nodes in the Facebook trace. The duration of each ex-

periment was 50,000 simulation seconds. In each simulation

second, every node has one chance to send query message. All

experiments were conducted 10 times, and the average values

of the results are reported. In the figures of the experimental

results below, “Social-P2P” denotes Social-P2P in which a

node sends 1 message for a query, and “Social-P2P-c” denotes

Social-P2P in which a node sends c messages for a file query.

1) Evaluation of File Sharing Efficiency:
a) Traffic distribution: Figure 12 shows traffic distri-

bution of the queries in Social-P2P versus network size. In

the figure, “Intra” denotes the percent of traffic in intra-

clustering searching. “Inter-1-hop” and “Inter-2-hop” denote

the percents of traffic in inter-cluster searching when the

destination cluster is 1 and 2 cluster hops away from the

source cluster, respectively. The number of cluster hops means

the distance between two clusters measured by the number of

clusters. A cluster is 1 cluster hop away from its neighboring

cluster. The inter-cluster searching traffic when the destination

is > 2 cluster hops away and the traffic through the server

are included in “Other”. The figure shows that about 70%
of the queries can be satisfied by the nodes within the same

cluster. This implies that common-multi-interests clustering

can accurately cluster nodes with similar multi-interests. We

also see that 99% of the queries can be satisfied within 2

cluster hops. This is because the nodes in neighboring clusters

also have similar multi-interests. Therefore, these nodes are

very likely to satisfy the queries. This is the reason that there

is more traffic within clusters 1 hop away than clusters 2

hops away. The experimental results also show that only 0.1%
of the traffic is through the server, which demonstrates the

effectiveness of interest/trust-based random walk and P2P file

sharing in Social-P2P.

Figure 13 illustrates the distribution of the inter-cluster traf-

fic through friends, ambassadors and the server, respectively. It

shows that approximately 80% of the inter-cluster queries are

sent to the destination cluster through friends, about 18% of

the queries are forwarded through ambassadors, and only 1%
are through the server. This result is consistent with O6 that

a node has friends in other clusters, which can help the node

to forward its query to the other clusters. Because a requester

sometimes cannot find a friend in the destination cluster, it then

resorts to the ambassador for file searching. Due to the TTL,

sometimes an unpopular file cannot be discovered. This is the

reason that the server contributes a slight querying traffic.

b) Query delay: Figure 14 shows the query delay versus

network size for queried files with three different popularities.

Popularity of a file is reflected by the percentage of the nodes

in the system holding the file. From the figures, we see that

as the popularity of the queried files decreases, the delay in

all tested systems increases. Higher popularity files have more

copies in the system, hence the probability that the files can

be retrieved from its neighbors is higher, which results in a

lower query delay. The figure also indicates that query delay

in PIS does not increase significantly when file popularity

changes. This is because for querying unpopular files, PIS

relies on the DHT, where the IDs of all nodes holding a file

are stored together in one node. Thus, an unpopular file can

always be located within a limited number of hops. However,

the additional DHT structure generates high overhead for

structure maintenance. In contrast, for both Social-P2P and

PROSA which use random walk for file retrieval, as file

popularity decreases, the probability that a file is located near

the querying node decreases, thus the query delay increases.

The figure also shows that the query delay in PIS and

PROSA increase significantly with network size while the

query delay in Social-P2P increases marginally. In PIS, the

nodes inferred their interests from files in their current folders

and only major interests are used. For new types of files and

non-major interest files, it uses the DHT for file retrieval.

Since the average transmission hops in the DHT increases

as network size increases, and query delay also increases.

In PROSA, the clusters are formed based on the interactions

between the nodes. In a larger network, it takes longer time

before the nodes can be clustered. Also, nodes with the same

interests may be grouped to different clusters because of

the limited interaction range of nodes. Thus, the inaccurate

clustering in PROSA leads to longer query delay.

Figure 14 (a) shows that for highly popular queried files,

the query delay exhibits PIS>PROSA>Social-P2P. PIS only

clusters the nodes based on their major interests. However,

popular files do not necessarily match the major interests of

the nodes. Therefore, PIS needs to refer to the DHT for the

file query. The O(log n) DHT querying hops lead to high

query delay. Two factors contribute to the higher delay of

PROSA than Social-P2P. First, the clustering in Social-P2P

is much more accurate than PROSA. In Social-P2P, the

nodes are globally clustered based on their multi-interest

information in their personal profiles. The query can always

be satisfied within the cluster with high probability without

searching other clusters. In PROSA, the clustering is based

on the interaction history between the nodes. Nodes with

the same interests may form several clusters because of

the limited interaction range between them. The inaccurate

clustering leads to long query delay. Second, Social-P2P has

shorter inter-cluster query delay since it uses a stable DHT to
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locate a destination cluster. The cluster localization in PROSA

is based on random walk, which needs more query time.

In Figure 14 (b), we see that for queried files with median

popularity, the query delay of PROSA increases rapidly and

exceeds DIS when the network size is 30,000. The reason

is that the lower popularity of the file leads to a longer

time for node clustering and intra-cluster search in PROSA,

and large size of the network exacerbates the delay due to

random walk. Social-P2P can accurately cluster the nodes with

similar interests. Therefore, its overall delay is lower than PIS.

However, as shown in Figure 14 (c), when file popularity is

very low, the file search delay of random walk in Social-P2P

is long. PIS has a short delay in a small-size network due

to the small size of DHT. At a result, Social-P2P generates

higher delay than PIS. PROSA leads to higher delay than

others because low popularity of the queried file leads to a

longer time for node clustering and intra-cluster search.

Figure 14 shows that Social-P2P-3 and Social-P2P-5 have

the smallest transmission delay with different popularities of

the queried files. This is because sending out more copies of

the query messages can increase the hit rate in Social-P2P.

Therefore, for unpopular files in the system, Social-P2P can

reduce the query delay by sending more query copies.

c) Query overhead: Figure 15 shows the query overhead

versus network size for querying files with three popularities.

The figures show that as the network size increases, the

amount of system overhead increases, which is the outcome

of the increased average query hops in the network.

Figure 15 (a) shows that the query overhead of PIS is larger

than all other systems for querying files with high popularity.

Due to the high popularity of the queried files, other systems

can find the files in the neighbor nodes with high probability.

However, DHT routing in PIS leads to high routing overhead.

In PROSA, since the nodes are not well clustered initially,

it takes more hops to find a file than Social-P2P that is

well clustered. Social-P2P-3 and Social-P2P-5 produce higher

query overhead than Social-P2P because of more messages.

Because every copy of the query message can be satisfied

within a small number of hops, the overall overheads of

Social-P2P-3 and Social-P2P-5 are less than PIS. As shown in

Figure 15 (b) and (c), for the files with lower popularity, the

average query overhead in Social-P2P and PROSA increases

sharply, because the random walk algorithm takes more hops

to meet lower popularity files. For Social-P2P-c, as there are

c individual copies sent out for file retrieval, the overhead

increases extremely fast. The query overhead in PIS does not

change quickly with popularity because it largely depends on

the DHT. The routing overhead in DHT increases over the

file popularity due to the same reason as in Figure 14. The

experimental results in Figure 15 verify the low overhead of

Social-P2P in file querying.

d) Maintenance overhead: Figure 16 shows the system

maintenance overhead versus the network size. It shows

that PIS has the highest system maintenance overhead and

it increases sharply as network size increases. Its overhead

is mainly caused by the DHT structure maintenance, which

leads to a high overhead especially in churn. Although

Social-P2P constructs ambassadors into a DHT for inter-

cluster communication, since the size of the DHT is small,

the ambassadors are relatively stable, and the other nodes

only need to maintain their connection with their friends,

it only produces a slight maintenance overhead. Although

PROSA is also an unstructured P2P network, since each node

must maintain several interest clusters, it generates higher

maintenance overhead than Social-P2P and its maintenance

overhead increases rapidly as the network size grows.

e) Overall system overhead: Figure 17 shows the overall

system overhead in a network with 32,344 nodes. The figure

shows that PIS has the highest overall system overhead. Al-

though the query overhead of PIS for unpopular files is small,
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the DHT maintenance overhead in PIS is very large, which

leads to an extremely high overhead. Since Social-P2P has

a lower query and system maintenance overhead, its overall

overhead is the lowest. PROSA consumes a high overhead for

cluster formation and multi-cluster maintenance. Therefore,

PROSA has the second highest overall system overhead.

2) Evaluation of File Sharing Trustworthiness: In this

section, we evaluated the querying trustworthiness of Social-

P2P in comparison with Pure-P2P and EigenTrust. Social-P2P

is evaluated with two mechanisms: (1) Malicious nodes do

not send faulty files to their socially close nodes, but they

send faulty files to the requesters 3 hops away in the social

network. This mechanism is denoted by “Social-P2P-NA”. (2)

Malicious nodes reply to every query with a faulty file. This

mechanism is denoted by “Social-P2P”. In order to make

the methods comparable, all systems use the common-multi-

interest clustering protocol for file sharing. In the experiments,

500 nodes out of the 32,344 nodes were randomly selected to

act as malicious nodes. A node that has received a faulty file

will not forward the file to other nodes.

a) Performance under malicious nodes: Figure 18 shows

the victimized probability over the simulation time. It shows

that in Pure-P2P, without any protection, a large percentage of

nodes constantly receive faulty files. In EigenTrust, initially

the victimized probability is very large and then gradually

decreases to 0. This is because the nodes in EigenTrust

do not have any reputation initially, which leads to a high

victimized probability. As EigenTrust decreases the reputation

of the malicious nodes, other nodes no longer query files

from malicious nodes. Therefore, the victimized probability

of EigenTrust decreases. In Social-P2P-NA, the probability of

the nodes receiving faulty files is the lowest initially, because

very small number of queries from socially distant nodes can

be received by the malicious nodes. Since trust relationship

adjustment can further reduce the probability of forwarding

query messages to the malicious nodes, its victimized

probability decreases. In Social-P2P, because malicious nodes

send faulty files to all requesters, the victimized probability is

initially high. Since the neighbors of the malicious nodes can

quickly stop forwarding messages to the malicious nodes, the

victimized probability decreases sharply. The results imply that

if the malicious nodes do not send faulty files to their friends

in order to avoid degrading their reputations in the real life,

Social-P2P can provide higher file sharing trustworthiness than

EigenTrust. Even if all malicious nodes are unconstrained and

send faulty files to all nodes in the system, the performance

of Social-P2P is still comparable to EigenTrust.

b) Overall overhead: Figure 19 compares the overall

overhead of the four systems. The figure shows that the

overheads of all systems increase as the network size

increases since they need to maintain more nodes and queries

are routed in a larger scale. Pure-P2P has the lowest overhead

because it has no reputation management. EigenTrust incurs

more overhead than Social-P2P and Social-NA because it has

doubled overhead due to file sharing and trust management.

The DHT maintenance and reputation management system

lead to a high overhead. The nodes in Social-P2P and

Social-NA only need to locally adjust their link trust

weights to their neighbor nodes when receiving misbehavior

notification messages. Therefore, the overhead in Social-P2P

is extremely small and is close to Pure-P2P. Since Social-P2P

and Social-P2P-NA have the same trust management and

routing mechanisms, their overall overheads are the same.

The experimental results verify the advantages of dealing

with efficient and trustworthy file sharing simultaneously, and

the low overhead of link trust weight adjustment.

V. RELATED WORKS

Efficient file sharing. The most related works to Social-P2P

that enhance file sharing efficiency are social network based

searching methods in P2P systems [13]–[15], [17], [34]. These

methods can be classified into two categories: unstructured

networks and DHTs. In the unstructured network based search,

Carchiolo et al. [34] and Lei et al. [13] proposed to gradually

cluster nodes into the same group if they query or reply for the

same resources. Fast et al. [14] proposed to extract user prefer-

ences from their music libraries and cluster the users based on

user interests. Although these methods can improve searching

efficiency, as the nodes with the same interests can be grouped

only after they have interactions, the clustering process may

take a long time. In the category of DHTs, Cyber [15] builds

a DHT-based index on the keywords of items. When a node

queries for an item, the items that match the interests of the

community the requester belongs to will be returned. Zhang et
al. [17] proposed to improve search in unstructured P2P over-

lay networks by building a partial index of globally unpopular

data and non-major interest data based on a DHT. The index

can assist peers in finding other peers with similar interests

and provide search hints for data difficult to be located. The

current DHT-based social network enables fast node clustering

but suffers from high system maintenance overhead in churn.

Meanwhile, a node maintain multiple single interest-based



node clustering requires each node to maintain several clusters,

which leads to high cluster maintenance overhead.

Trust management. Reputation systems [18]–[21] enable

peers to rate their service providers after receiving the service

and use the accumulated rating of a provider to represent

its trustworthiness. However, accumulating sufficient ratings

to calculate an accurate reputation value takes a long time.

Also, managing the ratings between nodes and calculating

the reputation value for each node generate high overhead.

Marti et al. [16] investigated how existing social networks

could benefit P2P data networks by leveraging the inherent

trust associated with social links for DHT routing. This

work only deals with misrouting problems, while Social-P2P

targets more general file trustworthiness problem. Kalofonos

et al. [36] proposed a platform for secure P2P personal and

social networking services. They focused on accesses control

rather than file trustworthiness.

Tribler [37] exploit social phenomena as a set of extensions

of BitTorrent. However, they simply group all friends of a user

for file sharing. SOS further explore the interests pattern and

social closeness among friends for more efficient and secure

P2P file sharing service.

VI. CONCLUSION

In this paper, driven by the observations from the trace data

from Facebook and Bittorrent, we propose Social-P2P that

synergistically integrates a social network into a P2P network

for efficient and trustworthy file sharing. Taking advantage of

the interest information in the social network, the socially close

nodes with similar multi-interests are clustered together. Nodes

are connected with their friends within a cluster. Within each

cluster, a trust-based random walk is used to forward a query

message along trustworthy links, enhancing file searching

efficiency and trustworthiness. Comparably stable nodes from

clusters form a DHT for inter-cluster communication. Nodes

also decrease the trust weights of links to their neighbors

which have high probability to forward messages to mis-

behaving nodes. The experimental results from trace driven

simulations and the prototype on PlanetLab demonstrate the

efficiency and trustworthiness of file sharing in Social-P2P.
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