
Collusion Detection in Reputation Systems for Peer-to-Peer Networks

Ze Li, Haiying Shen and Karan Sapra
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC, 29631
Email: {zel, shenh, ksapra}@clemson.edu

Abstract—In peer-to-peer networks (P2Ps), many au-
tonomous nodes without preexisting trust relationships share
resources (e.g., files) between each other. Due to their open en-
vironment, P2Ps usually employ reputation systems to provide
guidance in selecting trustworthy resource providers for high
system reliability and security. A reputation system computes
and publishes reputation score for each node based on a
collection of opinions from others about the node. However,
collusion behaviors impair the effectiveness of reputation sys-
tems in trustworthy node selection. Though many reputation
calculation methods have been proposed to mitigate collusion’s
influence, little effort has been devoted to specifically tackling
collusion. In this paper, we analyze transaction ratings in the
Amazon and Overstock online transaction platforms during
one year. The analysis of real trace confirms the existence
of collusion as well as its important behavior characteristics
and influence on reputation values in real reputation systems.
Accordingly, we propose a collusion detection method to
specifically thwart collusion behaviors. We further optimize the
method by reducing the computing cost. Experimental results
show that the proposed method can significantly enhance the
capability of existing reputation systems to deter collusion with
low cost.

Keywords-Collusion Detection; Reputation Systems; Peer-to-
Peer Networks

I. INTRODUCTION

A P2P is a world-wide distributed system, where each
node acts as both a client and a server. It interconnects
geographically distributed resources (e.g., file, computing
and storage resources) to make possible the sharing of the
resources. A recent survey shows that more than 50% of the
files downloaded and 80% files uploaded on the Internet
are through P2Ps [23]. Due to P2Ps’ open environment
where many autonomous nodes without preexisting trust re-
lationships share resources between each other, they usually
employ reputation systems for high reliability and security.

In a reputation system, reputation manager(s) computes
and publishes reputation score for each node based on a
collection of ratings from others about the node in order to
provide guidance in selecting trustworthy resource servers.
Despite the effectiveness of the reputation systems, they are
generally vulnerable to collusion [12, 29], which impairs
their effectiveness in trustworthy node selection. In collu-
sion, two or more malicious peers conspire to give each
other high local reputation values and (or) give all other
peers low local reputation values in order to gain high global

reputation [9]. Colluders usually offer low quality of service
(QoS) and receive low ratings from nodes outside of the
colluding collective [12, 29].

Current methods that can indirectly deal with collusion
focus on how to calculate node reputations to mitigate the
influence of collusion. They can be generally classified into
three groups: (1) a node calculates others’ reputations based
on its own experience [8, 13, 17, 18]; (2) a node includes
the feedback of pretrusted peers and (or) assigns weights
to nodes’ feedback according to their global reputation [9,
21, 24, 27]; and (3) a node uses friends’ voting to choose
trustworthy nodes [6, 7, 28]. These methods can reduce the
impact of collusion when determining node trustworthiness,
but they do not specifically tackle collusion. SocialTrust [11]
and Bazaar [15] are proposed to detect collusion based on
social network and interaction networks. However, building
such networks may cost high system overhead. Meanwhile,
how to ensure the links in the networks are trustable is a
new problem. Our proposed methods can be a complement
of existing reputation systems to enhance their capabilities
to detect and combat collusion, which is only based on user
interaction history.

In this paper, we analyze transaction ratings in the Ama-
zon [1] and Overstock [3] transaction platforms during one
year. The analysis of real trace confirms the existence of
collusion as well as its important behavior characteristics
and influence on reputation values in real reputation systems.
That is, the suspected colluders (1) gain high global reputa-
tions, (2) frequently give each other high reputation values
and (or) give other peers low reputation values, (3) receive
low ratings from other nodes, and (4) tend to conspire in
pairs rather than in a group of more than 2 nodes. The
observations of (1) and (2) are consistent with the definition
of collusion in [9]. The observation (3) is consistent with
the conclusion in [12] that most group collusion are pairs
and groups of three of more are rare in a file sharing system.
Thus, in this paper, we mainly consider pair collusion and
leave collusion of more nodes as our future work.

According to the behavior characteristics and influence,
we propose a collusion detection method to directly thwart
collusion behaviors by directly monitoring user interaction
history with low overhead. In the method, the reputation
manager(s) detects collusion based on collected rating values
and rating frequency between nodes. If two high-reputed

nodes give high ratings to each other at a high frequency,
while they receive low ratings from other nodes, the two
nodes are suspected colluders. We discuss how to conduct
collusion detection in centralized reputation systems using
a single reputation manager, and in decentralized reputation
systems using a number of reputation mangers. We further
optimize the method by reducing computing cost. We con-
duct experiments to compare the proposed methods with
another reputation system capable of handling collusion.
Experimental results show that the proposed method can
significantly enhance the capability of existing reputation
systems in deterring collusion with low cost.

II. RELATED WORK

Many reputation systems have been proposed that assign
reputation scores based on performance measures of peers,
and then judge the peers according to the peers’ reputation
scores. A number of systems [5, 19–21, 26, 30, 31] focus on
how to accurately calculate the global reputation value of the
nodes. PeerTrust [26] computes peer reputation scores based
on three basic trust parameters and two adaptive factors.
Trustme [19] offers an approach toward anonymous trust
management, which can provide mutual anonymity for both
the trust host and the trust querying peer. TrustGuard [21]
incorporates historical reputations and behavioral fluctua-
tions of nodes into the estimation of their trustworthiness.
FuzzyTrust [20] uses fuzzy logic inferences to better han-
dle uncertainty, fuzziness, and incomplete information in
peer trust reports. GossipTrust [30] enables peers to share
weighted local trust scores with randomly selected neigh-
bors until reaching global consensus on peer reputations.
Hwang et al. [31] proposed PowerTrust, which dynamically
selects small number of power nodes that are most reputable
using a distributed ranking mechanism. By using a look-
ahead random walk strategy and leveraging the power nodes,
it significantly improves in global reputation accuracy and
aggregation speed. Scrubber [5] fights polluted file content
by rating both the file provider and file. A number of systems
focus on first-hand reputation calculation [8, 13, 17, 18]. In
these systems, a node only believes its own observations
about other nodes’ behaviors, and exchanges of reputation
information between nodes are disallowed. Cornelli et al. [4]
proposed a hybrid approach for P2P security where servants
can share with others information about the reputation of
their peers. Each client is allowed to compute a personal-
ized, rather than global, performance score for peers in the
network.

However, as Lian et al. [12] indicated, the existing rep-
utation systems are vulnerable to collusion. To understand
more about collusion behaviors, they conducted an empirical
study of such behaviors in the Maze P2P file sharing system,
and detected different types of collusion patterns. Moreton et
al. [14] proposed the stamp algorithm to combine reputation
and payment protocols, which effectively inhibits the collu-

sion behaviors. In the algorithm, peers issue stamps to use as
virtual currency for each interaction, and the value of each
peer’s stamps is maintained by exchange rates that act as
reputation values. EigenTrust [9] depends on the friend net-
work to break collusion collectives by using the feedback of
pretrusted peers. Yang et al. [27] proposed to leverage trust
relationships among peers in the social network and assumed
that the pretrusted peers only trust their friends other than
the other peers in the network. Srivatsa et al. [21] proposed
the notion of personalized (local) credibility measurement
in which the feedbacks from similar raters are given more
weight. SocialTrust [11] adaptively adjusts the weight of
ratings based on the social distance and interest relationship
between peers to combat collusion. XRep [7] and X2Rep [6]
extended the work in [4] by additionally computing object
reputations based on weighted peer voting. Sorcery [28] in-
troduces a social network to the P2P content sharing system,
in which each client establishes friend-relationships with ei-
ther acquaintances in reality or those reliable online friends.
Sorcery clients utilize the overlapping voting histories of
both their friends and the content providers to challenge the
latter’s actively, and judge whether a content provider is a
colluder based on the correctness of its response.

III. ANALYSIS OF REPUTATION DATA IN AMAZON

Amazon [1] and Overstock [3] are by far two of the
most successful transaction platforms using a centralized
reputation system. We analyze the public domain of Amazon
and Overstock reputation systems to verify our conjecture
that suspicious collusion exists in a typical reputation sys-
tem, and to better understand user collusion behaviors in
a real reputation system and its influence on the reputation
values. Although we cannot confirm whether these observed
suspicious behavior are real collusion or not, by prevent-
ing colluders from gaining profits (e.g., reputations value)
through these suspicious collusion after we detect them, the
colluders underlying business model will be destroyed. Then
nodes do not have incentives to collude with each other.

In Amazon, the feedback score is within [1, 5]. The scores
1 and 2 are classified as negative rating (-1), 3 as neutral
rating (0) and 4 and 5 as positive rating (1). A seller’s
reputation is simply calculated by dividing the number of
positive ratings by the sum of all ratings.

We have crawled a total of more than 2.1 million ratings
for 97 book sellers during the time period from April 15,
2009 to April 1, 2010. We randomly picked a number
of sellers in each reputation level and show their total
numbers of ratings (i.e., transactions) consisting of positive
and negative ratings in Figure 1. The figure illustrates that
high-reputed sellers [0.94-0.98] have more transactions than
median-reputed sellers [0.88-0.91]. An exceptional case is
that a seller with reputation 0.98 has fewer transactions than
median-reputed nodes. This is because the seller joined in

30000

25000

30000

s

Negative ratings
Positive ratings

15000

20000

25000

30000

 r
a

ti
n

g
s

Negative ratings
Positive ratings

5000

10000

15000

20000

25000

30000

To
ta

l r
a

ti
n

g
s

Negative ratings
Positive ratings

0

5000

10000

15000

20000

25000

30000

98 98 98 98 97 97 96 96 95 94 94 91 91 90 90 89 88 88 88 88 83 83 83 67

To
ta

l r
a

ti
n

g
s

Negative ratings
Positive ratings

0

5000

10000

15000

20000

25000

30000

98 98 98 98 97 97 96 96 95 94 94 91 91 90 90 89 88 88 88 88 83 83 83 67

To
ta

l r
a

ti
n

g
s

Seller final reputation (%)

Negative ratings
Positive ratings

0

5000

10000

15000

20000

25000

30000

98 98 98 98 97 97 96 96 95 94 94 91 91 90 90 89 88 88 88 88 83 83 83 67

To
ta

l r
a

ti
n

g
s

Seller final reputation (%)

Negative ratings
Positive ratings

(a) Rating vs. reputation.

5

6

e

Rater 2 Rater 3

3

4

tin
g

va
lu

e Rater 1
Rater 2
Rater 3
R t 4R t 1Rater 4 Rater 5

1

2R
at Rater 4

Rater 5
Rater 1Rater 4 Rater 5

0
3/28/2009 7/6/2009 10/14/2009 1/22/2010 5/2/2010

Rating time

(b) Ratings on a suspicious seller

40

50

60

tin
gs

er

 d
ay Suspicious node

Normal node

20

30

40

m
be

r o
f r

at
m

 a
 ra

te
r p

e

0

10

87 88 95 96 97 93 96 97 98

N
um

fr
om

Reputation of each seller (%)

(c) # of ratings of a rater per day (d) Graph of interaction in Overstock

Figure 1: Analysis of the reputation data from Amazon and Overstock.

Amazon later than others. The figure also shows that low-
reputed sellers [0.67-0.79] receive few transactions. This is
because most of the customers do not trust the services of
the low-reputed sellers and select high-reputed sellers for
purchases. Generally, the data implies that a higher reputed
seller can attract more transactions, and lower reputation
nodes have fewer transactions. This is the reason that col-
luders try to increase their reputations by collusion. Since
high reputation is the objective of colluders, colluders are
very likely to have high reputations.

It is very intriguing to find that although the sellers
with reputation in [0.94,0.97] have lower reputations than
the sellers with reputation 0.98, the former still received
approximately the same number of ratings as the latter. We
suspect some of these nodes are colluders that receive high
ratings from other colluders. Since colluders always repeat-
edly submit ratings in order to boost the reputation value of
each other, in order to verify our conjecture, we further find
the sellers that have received a large number of ratings from
the same buyer from April 15, 2009 to April 1, 2010. The
collected data shows that the average number of transactions
of a seller-buyer pair is 1 per year. In order to shed to
light to a small number of subspinous users for detailed
analysis, we set the suspicious behavior filtering threshold
as 20 ratings, which gives us 18 suspicious sellers and 139
suspicious raters. These suspicious sellers include the sellers
with reputation in [0.94,0.97] in the Figure 1. It confirms our
conjecture that these high-reputed nodes are very likely to
be colluders. From this result, we can conclude that:
Characteristic 1 (C1). Collusion leads to high reputation
of the colluders [9].
C2. Among the high-reputed nodes, colluders receive more
low reputations than non-colluders [12, 29].
Because our observations are consistent with the conclusions
from other papers, we indicate the papers along with the
characteristics.

The received rating patterns from the suspicious sellers
are similar. Therefore, we randomly picked one suspicious
seller to investigate its received ratings as an example. The
reputation of the selected suspicious seller is 0.95 and it
received 2,037 negative ratings and 21,958 positive ratings.
We found that two buyers rated the seller more than 20 times
from April 15, 2009 to April 1, 2010. One repeatedly gave

score 5 while the other repeatedly gave score 1. This means
one node is possibly a partner colluder that tried to increase
the seller’s reputation, while the other node is possibly the
seller’s rival that tried to decrease its reputation. We also
observed that 26 buyers rated the seller more than 15 times
during that time and their behaviors exhibit three patterns.
We chose 5 raters with the 3 typical behavior patterns and
plot their ratings over time in Figure 1(b). The figure shows
that raters 2 and 3 continuously rated the seller with the
highest score 5. They are very likely to be colluders since
a buyer has a very low probability of repeatedly choosing
a median-reputed seller among many high-reputed nodes in
Amazon. We also can see that rater 1 continuously rated
with the lowest score. Such behavior is also not reasonable.
For a normal node, if it receives poor service from a seller,
it will no longer choose that seller. Thus, rater 1 is possibly
a rival colluder that tried to decrease the seller’s reputation.
Since raters 4 and 5 sometimes gave high and sometimes
gave low ratings to the seller, they should be not colluders.
From this result, we can conclude that:
C3. Colluders frequently submit very high ratings for their
conspirators [9].

We randomly chose 5 suspicious and 4 unsuspicious
sellers and show each rater’s average number of ratings per
day, and the maximum and minimum number of all of its
ratings during April 15, 2009 to April 1, 2010 in Figure 1(c).
The figure shows that for the nodes with similar reputations,
the average number of ratings of a rater per day and the
maximum number of a rater during all the time received by
suspicious sellers are much larger than those of unsuspicious
nodes. The suspicious sellers may be colluding with raters
to increase their reputations and counter the negative ratings
from other raters. We also can see from the figure that
the suspicious sellers exhibit much larger rating variance
than the unsuspicious sellers. It means that some raters (i.e.,
suspected colluders) give ratings much more frequently than
other raters, and the high maximum ratings of the suspicious
sellers are from the colluders. Thus, we can conclude
C4. The rating frequency between colluders is much higher
than the rating frequency between normal nodes. In Amazon,
the maximum frequency is 55/year for the former, and is
15/year for the latter.

In Amazon, buyers rate the sellers but sellers do not

rate buyers. In order to study group collusion patterns, we
crawled rating data from the Overstock Auction system
where each user can be both seller and buyer. We crawled
the ratings among approximately 100,000 users with over
450,000 transactions during Oct., 2009 to Sept., 2010. To
make the graph looks more clear, we randomly sample 500
users and represent them as nodes in a graph. If the number
of ratings between node i to node j exceeds 20, we drew
an edge between the two nodes. Figure 1(d) shows the final
graph. We removed many other nodes without edges in order
to show the suspected colluders clearly. The black nodes on
the graph are suspected colluders since they rate each other
with high rating frequency, and grey nodes are buyers and
(or) sellers only. We can see that the suspected colluders
rate each other in pairs. There is no closed structure with 3
or more nodes, which means there is no suspected collusion
involving more than 2 nodes. The figure has three nodes
connecting together, but they are still in a pair-wise manner,
which means a node may have multiple colluders but only
in a pair rather than a group with >2 nodes. The graph
confirms the conclusion in [12] that:
C5. Most collusion behaviors are in pairs, and the collusion
of multiple colluders in one group rating each other is very
rare [12].

IV. COLLUSION DETECTION METHODS

A. Background

Our proposed methods can be built on any reputation
system to enhance its capacity to combat collusion. In a
centralized reputation system, such as the one in Amazon,
a resource manager collects the ratings of all nodes and
calculates the reputation values of all nodes. The decentral-
ized reputation systems are more complex. We use Eigen-
Trust [16] as an example to explain how a decentralized
reputation system works. EigenTrust forms a number of
high-reputed power nodes into a Distributed Hash Table
(DHT) for reputation aggregation and calculation. These
power nodes are reputation managers. We use IDi to
represent the DHT ID of node ni, which is the consistent
hash value [10] of node ni’s IP address. The reputation
manager of reputation ratings on node ni is the DHT owner
of IDi. A node uses DHT function Insert(IDi,ri)
to send the rating of node ni to its reputation manager,
and uses Lookup(IDi) to query the reputation value of
node ni from its reputation manager. A reputation manager
periodically collects the ratings and computes the global
reputation values of its responsible nodes.

Figure 2 presents a 4-node reputation system built on
top of the Chord DHT [22] with 4-bit circular hash space.
Other nodes report to n15 about n10’s local reputation
by Insert(10,r10). Node n15 calculates n10’s global
reputation value. When a node, say n6, wants to select a
server from several candidates, it queries for the reputation

n15

n10

16/0

n8

n6

n10’s trust host

requester
Trust

Figure 2: A distributed reputation system.

values of the servers. For example, it uses Lookup(10) to
query n10’s reputation value, denoted by R10.

There are many ways to calculate global reputation values
of nodes [9, 25, 26]. We use the local reputation calculation
method in eBay [2] and EigenTrust [9] as an example in this
paper. That is, the local reputation rating for each interaction
for a node is -1, 0 and 1. A node’s final reputation is the sum
of all its received reputation evaluation values. Reputation
systems usually specify a reputation threshold TR. Nodes
whose R ≥ TR are considered as trustworthy while nodes
with R < TR are considered as untrustworthy. To apply our
method to the reputation systems that use different reputation
calculation methods, we regard local reputation rating with
≥ TR as 1, and local reputation rating with < TR as -1.

B. Basic Collusion Detection Method

Based on the characteristics of collusion (C1-C5) pre-
sented in Section III, we build a collusion model shown

gs s

ni nj

w
 ra

tin
g

ra
tin

gs

High ratingsLo
w

Lo
w

Figure 3: Collusion model.

in Figure 3 that incor-
porates all the charac-
teristics. In the collu-
sion, two (C5) nodes fre-
quently (C4) rate high
reputation for each other
(C3) in order to in-
crease their global rep-
utation values (C1), but
offer low-QoS to other nodes and receive low ratings from
other nodes (C2).

Consider a pair of nodes ni and nj , we define a number of
notations shown in Table I. We use a to denote the percent
of positive ratings in all ratings from nj for ni, and use b
to denote the percent of positive ratings in all ratings from
all nodes except nj for ni. We specify a threshold Ta for a
and a threshold Tb for b. Ta and Tb can be determined by
the historical data of a and b of pairs of nodes with high
interaction frequency. For example, in our crawled data in
Section III, for those suspicious colluders found using the
threshold=20 for the average number of transactions of a
seller-buyer pair per year, the average a=98.37 and average
b=1.63. If we want to reduce the false negatives in collusion
detection, we can decrease Ta and increase Tb. On the other
hand, if we want to reduce the number of false positives in

collusion detection, we can increase Ta and decrease Tb. We
use N(i,j) to denote the number of ratings from nj for ni in
T which is the time period for updating global reputations.
We also specify rating frequency threshold TN for N(i,j) to
show how frequently nj rates ni. Based on our trace data,
TN=20/year.

Table I: A list of notations in the paper.

T the time period for updating global reputations
Ni the number of all ratings for ni in T
N(i,j) the number of ratings from nj for ni in T
N(i,−j) the number of ratings from all nodes except nj for ni in T

N+
(i,j)

the number of positive ratings from nj for ni in T

N+
(i,−j)

the number of positive ratings from all nodes except nj for ni in T

N−
(i,j)

the number of negative ratings from nj for ni in T

N−
(i,−j)

the number of negative ratings from all nodes except nj for ni in T

a percent of positive ratings in all ratings from nj for ni

b percent of positive ratings in all ratings from all nodes except nj for ni

In the proposed collusion detection method, resource
manager(s) relies on the reputation values and frequencies
of ratings between a pair of nodes for collusion detection
according to the constructed collusion model in Figure 3. We
first describe the method in a centralized reputation system,
and then describe how the method works in a decentralized
reputation system.

Since colluders are usually high-reputed nodes, and rep-
utation systems regard nodes whose R > TR as trustworthy
nodes, we only check these nodes in collusion detection.
For each node in the system, the centralized reputation
manager keeps track of the frequency of ratings and fre-
quency of positive ratings of every other node to the node.
The reputation manager builds an n × n matrix, where
n is the number of nodes in the network. The matrix
records the reputation ratings for nodes whose R ≥ TR.
If node ni’s reputation value Ri ≥ TR, matrix element
aij=< IDi, Ri, N

+
(i,j), N(i,j) > (1 ≤ j ≤ n). Otherwise,

aij=empty.
The manager periodically updates the matrix with its

collected information and detects collusion according to the
characteristics in the collusion model. In collusion detection,
the manager scans each row in the matrix in the top-down
manner, and scans elements in each row from the left to the
right. For high-reputed node ni (C1) in a row (non-empty
line), the manager checks aij from every other node nj (each
column) for ni. If Rj>TR and N(i,j)≥TN , which means nj

also has a high reputation (C1) and nj rates ni frequently
(C4), then N+

(i,j) is further checked. If N+
(i,j)/N(i,j)≥Ta,

which means a large portion of nj’s ratings are positive
(C3), then the ratings from all other nodes except nj

(all other columns) are checked. The manager scans each
element in the line of ni except aij and calculate the sum
of all positive ratings, N+

(i,−j), and the sum of all ratings,
N(i,−j). If N+

(i,−j)/N(i,−j)<Tb, which means a large portion
of ratings from other nodes except nj are negative (C2),
then we can conclude that ni’s high reputation is mainly
caused by nj’s frequent ratings that are deviated from most

others’ rating values. In this case, the manager finds the
line of nj in the matrix and repeats the same process for
nj to check if nj’s high reputation is also mainly caused
by ni’s ratings. Then, if N(j,i)≥TN , N+

(j,i)/N(j,i)≥Ta

and N+
(j,−i)/N(j,−i)<Tb, ni and nj are very likely to be

colluding together. During the checking process, after an
aij is checked, the manager marks aij and aji to indicate
that the two elements no longer need checking.

Unlike centralized reputation systems, decentralized repu-
tation systems distribute the role of the centralized resource
manager to a number of trustworthy nodes. As mentioned,
a reputation manager Mi of node ni keeps track of all
ratings of other nodes for ni. Thus, using the same way as
the centralized reputation systems, each reputation manager
builds a ñ × n matrix, where ñ is the number of its
responsible nodes. For reputation manager Mi, for each
of its responsible node ni with Ri≥TR, if N(i,j)>TN ,
N+

(i,j)/N(i,j)≥Ta and N+
(i,−j)/N(i,−j)<Tb, ni is suspected

to collude with nj . Then, if Mi is the reputation manager
of node nj , it uses the same method in the centralized
reputation system for the collusion detection. Otherwise,
Mi contacts nj’s reputation manager Mj by the DHT
function Insert(j,msg). Then, Mj checks Rj and rat-
ings from ni for nj . If nj has high reputation and its
reputation is mainly caused by ni’s frequent ratings that
deviate from most others’ ratings, i.e., Rj>TR, N(j,i)≥TN ,
N+

(j,i)/N(j,i)≥Ta and N+
(j,−i)/N(j,−i)<Tb, Mj sends a pos-

itive response to Mi indicating that ni and nj are likely to
be colluders.

We use m to denote the number of high-reputed nodes
and n to denote the total number of nodes in the system.

Proposition 4.1: In the collusion detection method, the
computation complexity to identify colluders in the P2P
system is O(mn2).

Proof: For each high-reputed node ni (1 ≤ i ≤ m),
at most n elements should be checked. For each checking,
at most n elements are scanned. Thus, the computation
complexity to identify colluders in the system is O(mn2).

The collusion detection method can effectively identify
the colluders based on the characteristics of collusion
behaviors. However, in order to calculate N+

(i,−j) and
N(i,−j), for each rater nj , each element in matrix line
i should be scanned, generating a high computing cost.
Therefore, we propose an optimized collusion detection
method that produces much lower computation cost without
compromising the collusion detection performance.

C. Optimized Collusion Detection Method

In the optimized collusion detection method, a resource
manager does not need to scan each element in matrix line i
for each N(i,j) (1 ≤ j ≤ n). Each manager detects collusion
only based on the global reputation value of each of their
responsible nodes ni and the frequency of ratings of each of

other nodes for ni. According to the global reputation value
calculation method, for a given pair of nodes ni and nj , we
can get:

b · (Ni −N(i,j)) = N+
(i,−j)

(1− b) · (Ni −N(i,j)) = N−
(i,−j)

a ·N(i,j) = N+
(i,j)

(1− a) ·N(i,j) = N−
(i,j)

N+
(i,−j) +N+

(i,j) −N−
(i,−j) −N−

(i,j) = Ri

⇒ Ri = 2b(Ni −N(i,j)) + 2aN(i,j) −Ni. (1)

Figure 4 visualizes Formula (1) when 1≥a≥Ta (1) and
Tb≥b≥0 (2), which means that a large portion of ratings
from nj are positive, whereas a large portion of ratings from
other nodes are negative. In this case, ni’s high reputation is
mainly due to nj’s ratings. Thus, we suspect that nodes ni

and nj collude with each other. The surface in the figure
shows the range of the reputation values of a suspected
colluder corresponding to N(i,j) and Ni, given different set
of Ta and Tb. Since (Ni − N(i,j))>0 and N(i,j)>0, based
on Equation 1 and the conditions (1) and (2), we can derive

2Tb(Ni −N(i,j)) + 2N(i,j) −Ni ≥ Ri ≥ 2TaN(i,j) −Ni. (2)

If the values of N(i,j), Ni and Ri conform Formula (2),
node ni and nj are very likely to collude with each other.

Percent of positive

ratings of node j

Percent of positive

ratings of other nodes

R
ep

ut
at

io
n

va
lu

e

1
T

b

0 T
a

2b(N
i
−N

(i, j)
)+2aN

(i, j)
−N

i

Figure 4: Reputations of colluders.

Therefore, to detect collusion, each manager Mi first
identifies nodes whose R≥TR. For each of such node ni, the
manager then checks the rating frequency of each rater of
ni, N(i,j). If N(i,j)≥TN , the manager then uses Formula (2)
to check whether ni’s high reputation is possibly due to its
collusion with nj . In the case that Formula (2) is satisfied,
if Mi is nj’s reputation manager, it checks whether nj’s
high reputation is possibly due to its collusion with ni in
the same manner. Otherwise, Mi uses Insert(j,msg) to
contact the reputation manager of nj . Reputation manager
Mj conducts the same process to check whether nj’s high
reputation is possibly due to its collusion with ni. If Rj≥TR,
N(j,i)≥TN and Formula (2) are also satisfied, ni and nj are
very likely to be colluding with each other.

Proposition 4.2: In the optimized collusion detection
method, the computation complexity to identify colluders
in the P2P system is O(mn).

Proof: For each high-reputed node ni (1 ≤ i ≤ m), at
most n elements should be checked for collusion detection.
Thus, the computation complexity to identify colluders in
the system is O(mn).

V. PERFORMANCE EVALUATION

In the simulation, we compare our proposed methods
with EigenTrust [9], which is a representative of
reputation management systems. EigenTrust employs
pretrusted nodes to combat collusion. A node’s reputation
R =

∑
j w1jrj +

∑
p w2rp, where w1j and rj are the rating

weight and rating from node nj , and w2 and rp are the
rating weight and rating from the pretrusted node np. A
node with higher reputation has higher w1j and w2 > w1j .
In our experiment, w1j = 0.2 and w2 = 0.5, which is the
honey spot parameters of the system.

Network model. In order to fully evaluate how the be-
haviors of people affect the collusion detection performance
of our proposed algorithm and EigenTrust, we consider a
generic P2P resource (e.g., file) sharing network in which
the peers are able to issue resources queries and resources
offers with different qualities directly between each other.
We built an unstructured P2P network with 200 nodes. The
ratio of the number of individual node’s interests to the
number of all interest categories is similar to the actual
ratio in Overstock [11]. Specifically, we assume there are 20
interest categories in the system. The number of interests a
node has is randomly chosen from [1,5], and the interests are
randomly chosen from the 20 interests. In the P2P network,
nodes with the same interest are connected with each other
in a cluster. A node with m interests is in m clusters. Each
node in the system has maximum 50 units of capacity (i.e.,
it can handle 50 requests simultaneously per query cycle).
For a request of a file in an interest, a node queries all of
its neighbors in the cluster of the interest, and chooses its
highest-reputed neighbor with available capacity greater than
0. If a number of options have an identical reputation value,
then the client randomly selects a node as a server.

Node model. We consider three types of nodes: pretrusted
nodes, colluders and normal nodes. The pretrusted nodes
always provide authentic files to the requesters. Normal
nodes provide inauthentic files with a default probability
of 20% unless otherwise specified. We use B to denote the
probability that a node offers an authentic file (i.e., good
behavior). We randomly chose 3 pretrusted nodes and 8
colluders. In order to show the results more clearly, the IDs
of the pretrusted nodes were set to 1, 2 and 3, and the IDs
of the colluders were set to 4-11. The weight of the ratings
from pretrusted nodes was set to 0.5 in EigenTrust.

Simulation execution. In the simulation process, a node
can only send out a file request when it is active. The
probability that a node is active is randomly chosen from
[0.3, 0.8]. The simulation proceeds in simulation cycles.
Each simulation cycle is subdivided into 20 query cycles.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 9
1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.6

(a) All nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.6

(b) First 20 nodes.

Figure 5: Reputation distribution in EigenTrust when
B=0.6 (Pretrusted node IDs 1-3, colluder IDs: 4-11).

0

0.02

0.04

0.06

0.08

0.1

0.12

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.2

(a) All nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.2

(b) First 20 nodes

Figure 6: Reputation distribution in EigenTrust when B=0.2 (Pretrusted node
IDs 1-3, colluder IDs: 4-11).

In each query cycle, each peer issues a query if it is active.
Each experiment has 20 simulation cycles. Each experiment
is run 5 times and the average of the results is the final result.

Collusion model. We simulate the pair-wise collusion,
which is the most common collusion (C5), in the experi-
ments. In addition to functioning as normal nodes, colluders
also mutually rate each other with positive value in order to
boost the reputation of each other. We paired up two collud-
ers and let them rate each other 10 times per query cycle.

Reputation model. The initial reputation value of each
node is 0. Similar to the rating mechanism used in Amazon
and Overstock, a client gives a server rating 1 when it
receives an authentic file and rating -1 when it receives an
inauthentic file. A node’s local reputation value equals to the
sum of all ratings. Each node updates reputations once after
each simulation cycle based on the EigenTrust reputation
calculation method. The reputation threshold was set to
0.05. With a collusion-resilient reputation system, we expect
to see that the nodes with ID 4-11 (i.e., colluders) have
extremely low reputation values and the normal nodes have
comparably higher reputation values. We also conducted
experiments with different numbers of nodes and colluders.
The relative performance differences between the different
systems remain almost the same as those we will report.
Though we determine the experimental setting parameters
randomly in their reasonable ranges, changing the parameter
values will not change the relative performance differences
in a given experiment setup.

A. The Effectiveness of EigenTrust in Thwarting Collusion

Figure 5 shows the reputation distribution of all the nodes
in the system when B = 60% (i.e., a colluder offers
authentic files with 60% probability). Figure 5(a) shows that
the high-reputed nodes are skewed at pretrusted nodes with
IDs in 1−3 and colluders with IDs in 4−11. We also can see
that some normal nodes have relatively higher reputations
than others. In order to make the results clearer, we show the
reputations of 20 nodes with IDs in 1−20 in Figure 5(b). We
can see that colluders have much higher reputation values
than others. The reputations of pretrusted nodes are higher
than normal nodes, but are significantly lower than colluders.
Since the colluders behave well with probability of 60%,

they gain a certain number of high ratings though they have
40% probability to receive negative ratings. Furthermore,
because of the collusion, colluders increase the reputations
of each other greatly, which helps them to attract many
file requests to further increase their reputations. Though
the normal nodes and pretrusted nodes offer good services
with probabilities of 80% and 100%, respectively, they still
receive lower reputation values than colluders. The results
show that EigenTrust cannot detect the collusion behavior
and its generated reputations cannot accurately reflect the
trustworthiness of nodes.

Figure 6(a) shows the reputation distribution of the nodes
in the system when the colluders offer authentic files at
a probability of 20%. From this figure, we can see that
some normal nodes have higher reputations while others
have lower reputations. This is because at first when all
reputation values are 0, nodes randomly choose servers.
Since the chosen servers earn reputation, they will have
higher probability to be chosen and to further increase their
reputations later on. As a result, the nodes first chosen have
higher reputations than others. Figure 6(b) further shows the
reputation values of nodes with IDs in 1 − 20. Comparing
this figure with Figure 5(b), we can see that EigenTrust
is able to reduce the reputation values of the colluders
when B = 20%. Though colluders can try to increase the
reputation of each other, the reputations they receive from
many other nodes are very low with 20% good behavior
probability. Therefore, they are unable to greatly boost the
reputation of each other due to the low weight of their
ratings. Consequently, due to their low reputations, other
nodes will not ask for files from them. Also, the reputation
values of some normal nodes are accumulated constantly and
finally reach high values. Since pretrusted nodes with IDs in
1−3 always behave well, they can continuously accumulate
high reputation values, which finally leads to a much high
reputation. Therefore, EigenTrust can reduce the influence
of collusion behaviors in the system when the colluders offer
low QoS services at most of the time.

In the above experiment, we assume that the pretrusted
nodes are trustable and are not involved in the collusion.
In this experiment, we assume that pretrusted node n1

colludes with node n4 and pretrusted node n2 colludes

0

0.05

0.1

0.15

0.2

0.25

0.3
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior of
colluders = 0.2

(a) All nodes.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.2

(b) First 20 nodes.

Figure 7: Reputation distribution in EigenTrust with compromised
pretrusted nodes when B=0.2 (Pretrusted node IDs 1-3, colluder IDs:
4-11).

0

0.05

0.1

0.15

0.2

0.25

1 9
1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behaviors
of colluders = 0.2

(a) All nodes.

0

0.001

0.002

0.003

0.004

0.005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.2

(b) First 20 nodes.

Figure 8: Reputation distribution in our proposed collusion detection
methods when B=0.2 (Colluder IDs: 1-8).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1

5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3

R
e

p
u

ta
ti

o
n

 v
a

lu
e

Node ID

Probability of good behavior
of colluders = 0.6

(a) All nodes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

p
u

ta
ti

o
n

 v
a

lu
e

Node ID

Probability of good behavior
of colluders = 0.6

(b) First 20 nodes.

Figure 9: Reputation distribution in EigenTrust employing our proposed
methods when B=0.6 (Pretrusted node IDs 1-3, colluder IDs: 4-11).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 8
1

5
2

2
2

9
3

6
4

3
5

0
5

7
6

4
7

1
7

8
8

5
9

2
9

9
1

0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID

Probability of good behavior
of colluders = 0.2

(a) All nodes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behavior
of colluders = 0.2

(b) First 20 nodes.

Figure 10: Reputation distribution in EigenTrust employing our pro-
posed methods when B=0.2 (Pretrusted node IDs 1-3, colluder IDs:
4-11).

with n6. Nodes n4 − n11 are still paired up and collude
with each other. Colluders offer authenticate files with
probability of 0.2. Figure 7(a) shows that the high-reputed
nodes are skewed among pretrusted nodes and colluders.
Figure 7(b) further shows the reputation distribution of the
first 20 nodes. The figure shows that the reputations of
nodes n4 − n7 are boosted while the reputation value of
nodes n8 − n11 are much lower compared to Figure 6(b).
The reason is that because pretrusted nodes n1 and n2 rate
highly on node n4 and node n6, since EigenTrust assigns
more weight to the ratings of pretrusted nodes, n4 and
n6’s reputations are significantly increased. Since nodes n4

and node n6 rate highly on their colluding partners n5

and n7, respectively, the reputations of n5 and n7 also
increase greatly. Because nodes always choose the highest-
reputed nodes with available capacity, the reputations of
these colluders continually increase and ultimately even
exceed the pretrusted nodes’ reputations. Since they attract
more file requests, colluders n8−n11 with lower reputations
cannot receive more requests to increase their reputations.
The result implies that compromising pretrusted nodes will
exacerbate the negative impact of collusion on the reputation
system, and EigenTrust cannot effectively deal with such
malicious behaviors.

B. The Effectiveness of Our Proposed Methods in Thwarting
Collusion

In this section, we test the collusion detection effec-
tiveness of our proposed basic collusion detection method
(denoted by Unoptimized) and optimized collusion detec-
tion method (denoted by Optimized). Since our proposed

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behavior
of colluders = 0.2

(a) All nodes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

p
u

ta
ti

o
n

 v
a

lu
e

Node ID

Probability of good behavor
of colluders = 0.2

(b) First 20 nodes.

Figure 11: Reputation distribution in EigenTrust employing our pro-
posed methods with compromised pretrusted nodes when B=0.2
(Pretrusted node IDs 1-3, colluder IDs: 4-11).

methods do not use pretrusted nodes, in the experiments,
nodes n1−n8 are configured as colluders. After the methods
detect the colluders, they set their reputations to 0. Since
Unoptimized and Optimized are only used for collusion
detection rather than reputation value calculation, their final
reputation distributions of the nodes are the same. We show
the results of both Unoptimized and Optimized in Figure 8(a)
and (b) with the probability of good behavior of colluders
equals to 20%. Figure 8(a) shows that some normal nodes
have very high reputation values. As explained previously,
this is because nodes randomly choose servers at first and
later choose the highest-reputed node with available capacity
for files. Thus, the nodes first chosen have high probability to
be chosen later on. Figure 8(b) shows that both Unoptimized
and Optimized can detect all colluders, which indicates that
the methods can effectively detect the colluders based on
their contact frequency and reputation values.

Next, we test how Unoptimized or Optimized can help

enhance EigenTrust’s capability in detecting collusion. Since
Unoptimized and Optimized generate the same results in
collusion detection, we use Optimized to represent both and
use EigenTrust+Optimized to denote EigenTrust employing
Optimized. Figure 9(a) shows the reputation distribution
of the nodes in EigenTrust+Optimized when the colluders
offer authentic files with probability of 60%. Figure 9(b)
further shows the reputation distribution of the nodes with
IDs in 1 − 20. Comparing to Figure 5, we find that
EigenTrust+Optimized leads to increased average reputation
values for many normal nodes. Also, it reduces the high rep-
utations of colluders with IDs in 4−11 to 0, and significantly
increases the reputations of pretrusted nodes. The results
demonstrate the effectiveness of Optimized in detecting
collusion. By analyzing the rating patterns of the nodes,
Optimized quickly identifies the colluders and reduces their
reputation to 0. Subsequently, the colluders can no longer
attract requests. By receiving more requests, the reputation
values of other nodes increase, especially the pretrusted
nodes due to their better QoS and higher reputations.

Figure 10(a) shows the reputation distribution of the nodes
in EigenTrust+Optimized when the colluders offer authentic
files with probability of 20%. Figure 10(b) further shows the
reputation distribution of the first 20 nodes. Comparing to
Figure 6, we observe that EigenTrust+Optimized increases
the reputations of normal nodes by a greater amount than
EigenTrust. Also, it reduces the reputation values of the
colluders to 0. The results confirm the effectiveness of Op-
timized in collusion detection by their rating patterns. Since
the pretrusted nodes can attract more file requests as they
always offer authentic files, their reputation values remain
high. As the normal nodes receive more opportunities to of-
fer service, their average reputation values are also increased.

Figure 11 (a) and (b) show the reputation distribution of
the nodes in Eigentrust+Optimized in the same scenario as
Figure 7. Comparing Figure 11 and Figure 7, we see that
Eigentrust+Optimized increases the reputations of normal
nodes in Eigentrust. By compromising pretrusted nodes, col-
luders can receive much higher reputations than pretrusted
nodes in Eigentrust. While in Eigentrust+Optimized, both
colluders and compromised pretrusted nodes receive 0
reputation values. Since the pretrusted node with ID=3 does
not involve in the collusion, its reputation value is still high.
Because the detected colluders and compromised nodes have
0 reputations, the normal nodes have more opportunities
to receive file requests and their reputations subsequently
increase. In conclusion, our proposed Unoptimized and
Optimized collusion detection methods can greatly enhance
the collusion detection capability of EigenTrust.

C. Performance Comparison

Figure 12 shows the percent of the file requests sent to the
colluders in the total number of requests in the system versus
the number of colluders in the system. In this experiment, the

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

8 18 28 38 48 58

P
er

ce
n

t
o

f
re

q
u

es
ts

se

n
t

to
 c

o
llu

d
er

s

Number of colluders

EigenTrust
Unoptimized
Optimized

Figure 12: Effectiveness of thwart-
ing collusion.

0

5000000

10000000

15000000

20000000

8 18 28 38 48 58

O
p

er
at

io
n

 c
o

st

Number of colluders

EigenTrust
Unoptimized
Optimized

Figure 13: Cost for thwarting col-
lusion.

setting of EigenTrust is identical to Figure 6. If the computed
global reputation values can accurately reflect the actual be-
havior of nodes, the number of requests sent to the colluders
should be small. The figure shows that the percentages in
Unoptimized and Optimized are approximately the same.
Meanwhile, as the number of colluders in the system in-
creases, the percentages of the requests sent to the colluders
increase a little. The results indicate that Unoptimized and
Optimized are effective in Thwarting Collusion. In contrast,
in EigenTrust, the percent of the requests sent to the collud-
ers is much higher than the other methods. Moreover, as the
number of colluders increases, the percent increases sharply.
Since EigenTrust is not effective at collusion detection, the
high reputations of the colluders attract many file requests
from other nodes. Also, as the number of the colluders in
the system increases, the total number of requests received
by them increases accordingly, which subsequently leads to
a higher percentage. The results in Figure 12 are in line with
the results in Figure 6 and Figure 8.

We define operation cost as the number of computer
cycles for thwarting collusion. The operation cost of Eigen-
Trust includes the cost for calculating all global reputa-
tions for all nodes, and the operation cost of Unoptimized
and Optimized includes the cost for information analysis
and computation. Figure 13 shows the operation costs of
Unoptimized, Optimized and EigenTrust. The figure shows
that Unoptimized generates significantly higher operation
cost than others, and EigenTrust produces higher operation
cost than Optimized. The reason why Unoptimized has the
highest operation cost is that for each high-reputed node
in the system, Unoptimized needs to scan all of its raters
for rating values and frequency for each rater. Meanwhile,
for all high-reputed nodes, the method needs to check each
possible pair combination to identify the nodes rating for
each other with high frequency. As the number of colluders
in the system increases, more high-reputed nodes need to be
checked, leading to higher operation cost. The operation cost
in EigenTrust is caused by the recursive matrix calculation,
which is determined by the number of the nodes in the sys-
tem rather than the number of colluders in the system. This is
the reason that the operation cost of EigenTrust is constant
as the number of colluders in the system increases. Since
the matrix normally can converge within several iterations,
EigenTrust generates less operation cost than Unoptimized.

The operation cost of Optimized is very low because there
is no need to scan the ratings from a node’s raters. The
only operation cost of Optimized is caused by checking the
high contacting frequency between high-reputed nodes and
collusion inference.

VI. CONCLUSION

Reputation systems calculate reputation values based on
performance measures of peers, and then find the deceptive
peers according to the reputation values. Despite the
effectiveness of these systems, they are generally vulnerable
to collusion behaviors. Though many reputation systems try
to reduce the influence of collusion on calculating reputation
values, there are few works that specifically tackle collusion
currently. After analyzing the Amazon and Overstock
transaction traces during a year, we confirm the previously
claimed collusion characteristics in a real reputation system.
According to the collusion characteristics, we propose a
collusion detection method to thwart collusion behavior
and further optimize the method by reducing the computing
cost. Experiment results show the methods achieve higher
capacity in combating collusion in comparison with the
EigenTrust reputation system. The methods can detect
colluders even when they compromise pretrusted high-
reputed nodes to increase their reputations. In our future
work, we will study how to determine the threshold values
used in this paper effectively and efficiently according to
the given system parameters. We will also investigate how
to detect a collusion collective having more than two nodes
such as Sybil attack.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
OCI-1064230, CNS-1049947, CNS-1156875, CNS-0917056
and CNS-1057530, CNS-1025652, CNS-0938189, CSR-
2008826, CSR-2008827, Microsoft Research Faculty Fel-
lowship 8300751, and Oak Ridge Award 4000111689.

REFERENCES

[1] Amazon. http://www.amazon.com/.
[2] ebay, the online marketplace. http://www.ebay.com.
[3] Overstock. http://www.overstock.com/.
[4] F. Cornelli, E. Damiani, S. Vimercati, S. Paraboschi, and

P. Samarati. Choosing reputable servents in a P2P network.
In Proc. of WWW, 2002.

[5] C. P. Costa and J. M. Almeida. Reputation systems for
fighting pollution in peer-to-peer file sharing systems. In Peer-
to-Peer Computing, pages 53–60, 2007.

[6] N. Curtis, R. Safavi-Naini, and W. Susilo. X2Rep: Enhanced
Trust Semantics for the XRep Protocol. In Proc. of ACNS,
2004.

[7] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. A reputation-based approach for choosing
reliable resources in peer-to-peer networks. In Proc. of CCS,
2002.

[8] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
incentive techniques for peer-to-peer networks. In Proc. of
EC, 2004.

[9] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in P2P net-
works. In Proc. of WWW, 2003.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and P. R. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide
Web. In Proc. of STOC, 1997.

[11] Z. Li, H. Shen, and K. Sapra. Leveraging social networks
to combat collusion in reputation systems for peer-to-peer
networks. In Proc. of IPDPS, 2011.

[12] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li.
An empirical study of collusion behavior in the maze P2P
file-sharing system. In Proc. ICDCS, 2007.

[13] Z. Liang and W. Shi. Pet: a personalized trust model with
reputation and risk evaluation for P2P resource sharing. In
Proc. of HICSS, 2005.

[14] T. Moreton and A. Twigg. Trading in trust, tokens, and
stamps. In Proc. of P2PECON, 2003.

[15] A. Post, V. Shah, and A. Mislove. Bazaar: Strengthening user
reputations in online marketplaces. In Proc. of the NSDI,
2011.

[16] M. S. S. Kamvar and H. Garcia-Molina. The EigenTrust
algorithm for reputation management in P2P networks. In
Proc. of WWW, 2003.

[17] R. S. S. Lee and B. Bhattacharjee. Cooperative peer groups
in nice. In Proc. of INFOCOM, 2003.

[18] A. A. Selcuk, E. Uzun, and M. R. Pariente. A reputation based
trust management system for P2P networks. International
Journal of Network Security, 6(3):235245, 2008.

[19] A. Singh and L. Liu. TrustMe: anonymous management for
trust relationships in decentralized P2P systems. In Proc. of
P2P, 2003.

[20] S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok. Trusted P2P
transactions with fuzzy reputation aggregation. IEEE Internet
Computing, 2005.

[21] M. Srivatsa, L. Xiong, and L. Liu. Trustguard: Countering
vulnerabilities in reputation management for decentralized
overlay networks. In Proc. of WWW, 2005.

[22] I. Stoica, R. Morris, D. Liben-Nowellz, D. R. Kargerz, M. F.
Kaashoekz, F. Dabekz, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE TON, 2003.

[23] Topic: p2p statistics. http://www.bloglines.com/ref/p2p-
statistics.html.

[24] K. Walsh and E. G. Sirer. Experience with a distributed object
reputation system for peer-to-peer filesharing. In Proc. of the
NSDI, 2006.

[25] Y. Wang and J. Vassileva. Trust and reputation model in
peer-to-peer networks. In Proc. of P2P, 2003.

[26] L. Xiong and L. Liu. Peertrust: Supporting reputation-based
trust for peer-to-peer electronic communities. TKDE, 16(7),
2004.

[27] M. Yang, Y. Dai, and X. Li. Bring reputation system to social
network in the maze P2P file-sharing system. In Proc. of CTS,
2006.

[28] E. Zhai, R. Chen, Z. Cai, L. Zhang, E. K. Lua, H. Sun,
S. Qing, L. Tang, and Z. Chen. Sorcery: Could we make
P2P content sharing systems robust to deceivers? In Proc. of
P2P, 2009.

[29] S. Zhao and V. Lo. Result verification and trust-based
scheduling in open peer-to-peer cycle sharing systems. In
Proc. of P2P, 2005.

[30] R. Zhou and K. Hwang. Gossip-based reputation management
for unstructured peer-to-peer networks. IEEE TKDE, 2007.

[31] R. Zhou and K. Hwang. Powertrust: A robust and scalable
reputation system for trusted peer-to-peer computing. IEEE
TPDS, 2007.

