
SOS: A Distributed Mobile Q&A System Based on
Social Networks

Ze Li and Haiying Shen and Guoxin Liu
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {zel, shenh, guoxinl}@clemson.edu

Jin Li
Microsoft Research

Redmond, WA 98052
Email: jinl@microsoft.com

Abstract—Recently, emerging research efforts have been fo-
cused on question and answer (Q&A) systems based on social
networks. The social-based Q&A systems can answer non-
factual questions, which cannot be easily resolved by web search
engines. These systems either rely on a centralized server for
identifying friends based on social information or broadcast a
user’s questions to all of its friends. Mobile Q&A systems, where
mobile nodes access the Q&A systems through Internet, are
very promising considering a rapid increase of mobile users and
the convenience of practical use. However, such systems cannot
directly use the previous centralized methods or broadcasting
methods, which generate high cost of mobile Internet access, node
overload, and high server bandwidth cost with the tremendous
number of mobile users. We propose a distributed Social-based
mObile Q&A System (SOS) with low overhead and system
cost as well as quick response to question askers. SOS enables
mobile users to forward questions to potential answerers in their
friend lists in a decentralized manner for a number of hops
and then resort to the server. It leverages lightweight knowledge
engineering techniques to accurately identify friends who are able
to and willing to answer questions, thus reducing the search and
computation costs of mobile nodes. The trace-driven simulation
results show that SOS can achieve a high query precision and
recall rate, a short response latency and low overhead. We have
also deployed a pilot version of SOS for use in a small group
in Clemson University. The feedback from the users shows that
SOS can provide high-quality answers.

I. INTRODUCTION

Traditional search engines such as Google [1] and Bing [2]
have been significantly impacting our everyday lives in in-
formation retrieval. To improve the performance of search
engines, social search engines [3–10] have been proposed to
determine the results searched by keywords that are more
relevant to the searchers. These social search engines group
people with similar interests and refer to the historical selected
results of a person’s group members to decide the relevant
results for the person.

Although the search engines perform well in answering
factual queries for information already in a database, they are
not suitable for non-factual queries that are more subjective,
relative and multi-dimensional (e.g., can anyone recommend a
professor in advising research on social-based Q&A systems?),
especially when the information is not in the database (e.g.,
suggestions, recommendations, advices). One method to solve
this problem is to forward the non-factual queries to humans,
which are the most “intelligent machines” that are capable

of parsing, interpreting and answering the queries, provided
they are familiar with the queries. Accordingly, a number
of expertise location systems [11–14] have been proposed
to search experts in social networks or Internet aided by
a centralized search engine. Also, web Q&A sites such as
Yahoo!Answers [15] and Ask.com [16] provide high-quality
answers [17] and have been increasingly popular.

Recently, emerging research efforts have been focused on
social network based question and answer (Q&A) systems
[17–22], in which users post and answer questions through
social network maintained in a centralized server. As the
answerers in the social network know the backgrounds and
preference of the askers, they are willing and able to provide
more tailored and personalized answers to the askers, enhanc-
ing the satisfaction on the Q&A sites. The social-based Q&A
systems can be classified into two categories: broadcasting-
based [17–19] and centralized [20–22]. The broadcasting-
based systems broadcast the questions of a user to all of
the user’s friends. The centralized systems [20–22] rely on a
centralized server to identify possible answerers to a question
without broadcasting. The centralized server constructs and
maintains a social network of users, and searches the answerers
for a given question from the asker’s friends, friends of friends
and so on.

In respect to the client side, the rapid prevalence of smart-
phones has boosted mobile Internet access, which makes the
mobile Q&A system as a very promising application. The
number of mobile users who access Twitter [23] increased
182% from 14.28 million in Jan 2010 to 26 million in
Jan 2011. It was estimated that Internet browser-equipped
phones will surpass 1.82 billion units by 2013, eclipsing the
total of 1.78 billion PCs by then [24]. The mobile Q&A
systems enable users to ask and answer questions anytime and
anywhere at their fingertips. However, the previous broadcast-
ing and centralized methods are not suitable to the mobile
environment, where each mobile node has limited resources.
Broadcasting questions to all friends of a user generates a
high overhead to the friends, since many friends (including
those unlikely to answer questions) receive questions. Also,
broadcasting results in many costly interruptions to users
by sending questions that they cannot answer and increase
their workload of looking for questions that they can answer
through a pool of received questions. The centralized methods,

by serving a social network consisting of hundreds of millions
of mobile users (which are also rapidly increasing), suffer from
high cost of mobile Internet access, high query congestion, and
high server bandwidth and maintenance costs. It was reported
that Facebook spent more than 15 million per year for server
bandwidth costs and data center rent in addition to 100 million
for purchasing 50,000 servers to release the high burden of
traffic [25].

To tackle the problems in the previous social-based Q&A
systems and realize a mobile Q&A system, a key hurdle to
overcome is: How can a node identify friends most likely
to answer questions in a distributed fashion? To solve this
problem, in this paper, we propose a distributed Social-based
mObile Q&A System (SOS) with low node overhead and
system cost as well as quick response to question askers. SOS
is novel in that it achieves lightweight distributed answerer
search, while still enabling a node to accurately identify its
friends that can answer a question. We have also deployed
a pilot version of SOS for use in a small group in Clemson
University1. The analytical results of the data from the real
application show the highly satisfying Q&A service and high
performance of SOS.

SOS leverages the lightweight knowledge engineering tech-
niques to transform users’ social information and closeness,
as well as questions to IDs, respectively, so that a node can
locally and accurately identify its friends capable of answering
a given question by mapping the question’s ID with the social
IDs. The node then forwards the question to the identified
friends in a decentralized manner. After receiving a question,
the users can decide to forward the question or answer the
questions if they can. The question is forwarded along friend
social links for a number of hops, and then resorts to the
server. The cornerstone of SOS is that a person usually issues
a question that is closely related to his/her social life. As
people sharing similar interests are likely to be clustered in
their social network [26], the social network can be regarded as
social interest clusters intersecting with each other. By locally
choosing the most potential answerers in a node’s friend list,
the queries can be finally forwarded to social clusters that have
answers for the question. As the answerers are socially close
to the askers, they are more willing to answer the questions
compared to strangers in the Q&A websites. In addition, their
answers are also more personalized, trustable and accurate.

SOS is featured by three advantages:
(1) Decentralized. Rather than relying on a centralized

server, each node identifies the potential answerers from its
friends, thus avoiding the query congestion and high server
bandwidth and maintenance cost problem.

(2) Low cost. Rather than broadcasting a question to all of
its friends, an asker identifies the potential answerers who are
very likely to answer this question, thus reducing the node
overhead, traffic and mobile Internet access.

(3) Quick response. Due to the close social relationship

1The demo of the application and call for participation can be found from
http://people.clemson.edu/∼shenh/.

between the question receivers and an asker, the question
receivers are likely to be willing to provide answers quickly.

The contributions are summarized as follows:
(1) As far as we know, it is the first work to design a distributed

Q&A mobile system based on social networks, which can
be extended to low-end mobile devices. The system can
tackle the formidable challenge facing distributed systems:
precise answerer identification.

(2) We propose a method that leverages lightweight knowledge
engineering techniques for accurate answerer identification.

(3) We propose a method that considers social closeness in
addition to interest similarity in question forwarder selec-
tion in order to increase the likelihood of the receiver to
answer/forward the question.

(4) We have conducted extensive trace-driven simulations
based on the crawled data from Yahoo!Answer and Twitter
with regards to node interactions in online Q&A systems
and online social networks. Experimental results show the
high answerer identification accuracy, low cost and short
response delay of SOS.

(5) We have deployed a pilot version of SOS for use in a
small group in Clemson University and revealed interesting
findings in the mobile social-based Q&A system. Though
Google earns a little higher user satisfaction degree than
SOS on factual questions, users have much higher satisfac-
tion degree on SOS for non-factual questions than Google.
Also, socially close users tend to respond questions quickly.
Note that we do not endorse a complete removal of the

centralized server from the system. We believe that dedicated
servers still play an important role in the system, particularly
when a node cannot find answerers in the social network. The
rest of the paper is organized as follows. Section II presents
related work. Section III present the design of SOS. Section IV
and Section V show the trace-driven simulation results and real
testbed results. We conclude this paper with remarks on future
work in Section VI.

II. RELATED WORK

While there has been relatively little research on distributed
Q&A systems based on social networks, we take a slightly
larger view of the problem space and compare SOS with social
search, expertise location, and online Q&A systems.
Social search: In order to improve the user experience in
a web search engine [1, 2], a number of works have been
proposed to enable users to find resources by using social
annotations or bookmarks. Evan et al. [3] pointed out that
social interactions play an important role throughout the
search process, and suggested that sharing search information
among people may be valuable to individual searchers. The
Phoaks [4], Answer Garden [5] and Designer Assistant [6]
social search systems attempted to enable social interactions
when existing information spaces are inadequate in providing
experts’ contact information. Amitay et al. [7] assumed that
the interests of a searcher’s friends provide a good prediction
for the searcher’s preferences, David et al. [8] proposed to
re-rank the searched results by considering the strength of the

relationship between the results and the searchers. Kolay et
al. [9] studied how social bookmarked URLs lead to new or
high-quality content on the Web. Bao et al. [10] proposed a
SocialSimRank algorithm to calculate the similarity between
social annotations and web pages as well as a SocialPageRank
algorithm to capture the popularity of web pages. However, the
social search aims to improve the web search engine, which
perform poorly in non-factual questions [18].
Expertise location: Chen et al. [11] proposed an open system
to recommend potential research collaborators for scholars and
scientists based on the structure of the coauthor network and a
user’s research interests. Lin et al. [12] introduced SmallBlue,
which is a social network search engine used to help IBM
employees find and access expertise and information through
their own social networks. ReferralWeb [13] mined public Web
documents for the knowledge about potential experts through
webpage content analysis. Expertise Recommender [14] stud-
ied software source control systems and technical support
databases in order to find expertise. However, these systems
only try to identify experts, but do not have mechanisms to
ensure that the identified experts are willing to help.
Online Q&A systems: Numerous online Q&A systems exist
in the Internet [15, 16], in which anonymous users can post
questions and respond to others’ questions. However, the
systems cannot guarantee quick response of posted questions.
Morris and Teevan [18, 19] studied how people use status mes-
sage in a social network to ask questions. By posting questions
on his/her status wall, a user can broadcast the questions to
all of his/her friends. Hsieh et al. [17] proposed a market-
based Q&A service called MiMir, in which all questions are
broadcasted to all users in the system. However, broadcasting
a user’s question to all of his/her friends only enables direct
friends to see the question, generates high cost and produces
interruptions to friends who are unable to answer the question.
White and Richardson [20, 21] developed a synchronous Q&A
system called IM-an-Expert, which automatically identifies
experts via information retrieval techniques and facilitates
real-time dialog via instant messaging without broadcasting.
However, it also focuses on the direct friends of a user,
and the synchronous communication faces challenges such as
interruption costs and the availability of friends during the
questioning time. Aardvark [22] is a centralized Q&A system,
in which the centralized server receives a user’s question,
identifies and forwards the question to the most appropriate
person in the Aardvark community. However, the centralized
system structure may suffer from high query congestion, high
server bandwidth and maintenance costs. As far as we know,
SOS is the first distributed Q&A system that enables nodes to
forward queries to efficiently and accurately find answerers.

III. SYSTEM DESIGN

A. Question Routing

SOS incorporates an online social network, where nodes
connect each other by their social links. As shown in Figure 1,
a registration server is responsible for node registration. Each
user has an interest ID, which represents his/her interest.

Registration�
Server

1 One�hop�search
2 Two�hop�search
3 Server�search

3

193021031

351322031

270093452

030241529
114093021

547240982 102340213

200932011

309100345

214578901
1

1
2

A

B

C
D

Fig. 1: Querying process in SOS.

The closeness of two user’s interest IDs means the similarity
between the two users’ interests. Users sharing more common
interests with an asker are more likely to be able to answer the
asker’s questions. Also, users having shorter social distances
with an asker are more likely to be willing to answer the
asker’s questions.

SOS has a metric similarity (S) that measures the likelihood
of a node to be able and willing to answer another node’s
question. It is determined by the interest similarity between
the question’s interest and the receiver’s interest as well as the
social closeness between the question receiver and sender. SOS
defines a constant K, which is the largest number of friends
that a node can send/forward a question in its friend list.
SOS allows each node to define TTL, which is the maximal
number of hops that a question can be forwarded. A node
determines TTL depending on how urgent the question is.
Figure 1 shows the question routing process in SOS. After
asker A initiates a question, it forwards the question to the
top K friends (nodes B and C) who have the highest S in
its friend list with the question. A question receiver replies to
A if it has an answer for the question. Otherwise, the user
forwards the question to its top K friends in its own friend
list in the same manner (B to D) and reduces TTL by 1. The
question is forwarded along node social links until TTL=0. If
the question initiator has not received an answer after delay
above its specified threshold corresponding to TTL (e.g., 1
hour), it sends the question to the server that holds a discussion
board, which can be accessed by all users in the system. The
discussion board serves as a store for unsolved questions in the
distributed system. Then, the questions in the discussion board
are handled as in online Q&A systems. From this process, we
can see that three problems need to be resolved.
• How to derive the interests of a question or a user (Sec-

tion III-B)?
• How to infer the interest from a question and a user for

more accurate answerer identification (Section III-C)? For
example, from “Tom is a male CS student who likes reading
book,” we can infer “Tom likes fiction” so that he can
be identified as the answerer for the question “who is the
author of star war?” Without inference, Tom may not be
identified as an answerer for the question.

• How to locate K friends in the friend list by considering
both interest similarity and social closeness (Section III-D)?

Below, we introduce the solutions for these three problems.

B. Question/User Interest Representation

When a user first uses the SOS system, s(he) is required to
complete his/her social profile such as interests, professional
background and so on. Based on the information, the registra-
tion server recommends friends to the user, and the user then
adds friends into his/her friend list. The friend lists along with
the profiles of the friends are stored in the local database of
the user as shown in Figure 2. Users A, B and C connect with
each other based on their social relationships, and each user
has a social profile. Each node maintains the social identify
representation (social ID in short) of each of its friends, which
is used to measure the capability and willingness of a friend
to answer the node’s question. The social ID of a friend is
retrieved by preprocessing the social information of the friend.
As shown on the right part of Figure 3, to preprocess a friend
based on his/her social information, the node first derives
the first-order logic representation (FOL) [27], then conducts
first-order logic inference to infer the friend’s interests, from
which it retrieves interest ID. The node then combines the
interest ID with the social closeness between itself and the
friend to calculate the friend’s social ID (we will explain
the combination in Section III-D) represented by a numerical
string (e.g., 3202001001).

Profile�of�A
Favorite�
movie
Favorite�
actor

Favorite�
book

Favorite�
music

Education
back�ground

Major
Residential�
address
HabitsA

B C
Kinship

College�
mate

Friendship
Profile�of�B

Favorite�
movie
Favorite�
actor

Favorite�
book

Favorite�
music

Education
back�ground

Major
Residential�
address
Habits

Profile�of�C
Favorite�
movie
Favorite�
actor

Favorite�
book

Favorite�
music

Education
back�ground

Major
Residential�
address
Habits

Fig. 2: An example of a node’s social network.

Figure 3 shows the local answerer selection process for
forwarding a question in one mobile node in the SOS system.
To parse a question, the node first processes the questions
in the nature language, it then represents the question in the
FOL format and uses the FOL inference to infer the question’s
interests. Finally, it transforms the question to a numerical
string (question ID). After the node parses its initiated question
to an ID, it then finds the top K friends whose social ID
are closest to the question’s ID. Subsequently, it forwards the
question to the identified friends.

For instance, an asker may ask a question “Where is the
best place to watch the movie Avatar in Clemson?”. The
corresponding keyword list of this question is resolved to
the FOL format [where, place, movie, Avatar, Clemson] after
natural language processing. After the FOL inference, the FOL
format is changed to [movie(sci-fi), director (James Cameron),
place(Clemson)], which is later encoded as a numerical string
such as 3200001000. Similarly, a student in Clemson Uni-
versity who likes to watch sci-fi movie is represented as
[movie(sci-fi), career(student), place(clemson)] after the FOL
inference and be further encoded as 3202001001. Because the

Processing�question�
in�natural�language

First�order�logic�
representation

First�order�logic�
Inference

First�order�logic�
representation

First�order�logic�
Inference

Peer�search�string Social�Identity�
representation

Select�K�nearest�
friends

Friends�list
question

Tokens�of�question

FOL�terms

Search�string

Social�information�
of�peers

FOL�terms

FOL�terms FOL�terms

Social�Identity�String

Internet

Preprocess�social�informationParse�question�at�runtime
A mobile�phone�in�SOS

Fig. 3: Answerer selection process for forwarding a question in one node.

student’s social ID is close to the question’s ID, he is identified
as one of the K top friends to send the question to. By com-
paring the similarity between a question’s ID and its friend’s
social ID, a node can identify its friends that are willing and
able to answer/forward questions. More details of the parsing
process for a question or for a user is demonstrated in Figure 4
and Figure 5, respectively. The figures list the three steps in
the process: FOL representation, FOL inference, and ID trans-
formation. Below, we introduce the details of the three steps.

1) Preliminary of the first-order logic (FOL): FOL is a
powerful tool to describe objects and their relationships in real
life. In FOL, the users need to define basic rules or axioms,
which serve as the base of the inference. For example, the
FOL for an axiom in nature language “All computer science
(CS) male students who like reading like sci-fi movies” is

(∀x, y)(CS(x) ∧ male(x) ∧ Activity(Reading) ⇒ like(y)),

where “CS(x)”, “male(x)”, “Activity(Reading)”, and “like(Sci-
Fi)” are predicate symbols, and ∧ is connectives symbol.
In a FOL representation, connectives symbols (e.g., ∼, ∧)
and quantifiers (Universal(8) and Existential (9)) logically
connect constant symbols, predicate symbols which map from
individuals to truth values (e.g., green (Grass)) and function
symbols which map individuals to individuals (e.g., father-
of(Mary)=John). These symbols represent objects (e.g., peo-
ple, houses, numbers), relations (e.g, red, is inside) and
functions (e.g., father of, best friend), respectively.

2) First-order logic representation: A question or user
profile information is always expressed in the natural language.
To convert a question or profile information into a format
that a computer can understand, we can use part-of-speech
tagging [28] or Modern natural language processing (NLP)
techniques [29] to divide the question into a group of related
words expressed by words, 2-word phrases, the wh-type (e.g.,
“what”, “where” or “when”). Then we transform questions
into the FOL representation. First, we parse the natural lan-
guage into token keywords. These token keywords will be the
constant symbols in the FOL representations. The step 1 in
Figure 4 shows an example of FOL representation of the query.
The keywords of the question “Where is the best cinema in
location A?” is “cinema” and “location A”.

We also transform user social information into the FOL
representation. As shown in Figure 2, a user’s social infor-

mation includes his/her profile (e.g., job, hobby, favorites)
and the social relationships with other users (e.g., kinship,
colleague, classmate). A user’s local database stores his/her
own profiles, social relationship to and the profile of each of
his/her friends. Specifically, a node first represents its profile
in the form of name-values pairs such as “movies: Avatar, The
Social Network”, “music: Hey, Jude”. That is, each interest is
indexed by a unique name (e.g., movie, music), and the interest
can have several values. The syntax name(value) is then
transformed to the FOL representation expressed by predicate
symbols. For example, the FOL representation of the previous
example is “movie(Avatar)”,“movie(The Social Network)”,
“music(Hey, Jude)”. The first step in Figure 5 shows an
example of FOL representation of a node’s profile. Tom has
several profile information in name-value pair format. He has
favorite book A1, A2, A3. This information is transformed into
FOL representation Fa bk(A1), Fa bk(A2) and Fa bk(A3).

Fuzzy�
database

Cinema
movie
Cinema

Inference�
engine

Career(Cinema�manager)
Interest�(movie)
location�(A)

4 9 �

Where�is�the�best�cinema�in�location�A?�
FOL�

representation
Cinema
Location�A

1
2

Query�ID�
transformation�
3

FOL�
Inference

Interest�table

0 0 0 0 0

Rules�
and

Axioms

Fig. 4: An example of FOL inference for a question.

Favorite�book:
Favorite�movie:
Favorite�singer:

Major:

A1

B1
C1
D1

A2 A3
B2
C2

Fa_bk(A3)Fa_bk(A1), Fa_bk(A2),
Fa_mv(B1), Fa_mv(B2)
Fa_sg(C1), Fa_sg(C2)
Major(D1)

Inference�
engine

Rules�
and

axioms

Profile�of�Tom

Fa_mv(x)�����Related�(x,�y)� Expert�(y)
Major(x)�����Subset�(x,�y)�������Expert�(y)��

Home(x)������Locatedclose(x,�y)�����Expert�(y)
�
�

�

�

1 3 0 2 0 9 0 0

Fuzzy�
database

1
FOL�

representation�

2

3 ID�
transformation

FOL�inference

Interest�table

� Expert�(������)�
Expert�(������)�
Expert�(������)��
Expert�(������)�

� ��

Fig. 5: An example of FOL inference for a user’s social information.

C. First-order Logic Inference

As shown in the step 2 in Figure 4 and Figure 5, the
FOL inference component consists of three parts: (1) fuzzy
database, (2) rules and axioms, (3) inference engine. The goal
of the inference is to identify node interests represented by
a numerical string that can accurately represent the capabil-
ity of a node to answer questions. The fuzzy database is
used to store words that have relationships, including subset,
alias, related, with the information in profiles. For example,
Related(cinema)=movie, Subset(computer science, algorithm),
Alias(USA)=US.

The rules and axioms provide basic formulas for the in-
ference. For example, given a rule “Major(x)∧ Subset(x)=y

Sci�Fi Goal�2 Goal�3

Activity�
(reading) Subgoal 2 Subgoal 3 Subgoal 4 Subgoal 5

Element�1 CS(Tom) Male(Tom) Element�4 Element�5 Element�6 Element�7
Fig. 6: Lattice in an inference engine.

⇒ expert(y)”, we search Major(x1) in a person’s profile and
search Subset(x1)=y1 in the fuzzy logic database. If both of the
entries can be found, then we can infer that the people should
be an expert of y1. If Tom majors in computer science, and
Algorithm is a subset of computer science, then Tom should
be good at answering questions on Algorithm.

Inference engine is the place that the elements and the rules
are evaluated. The inference engine sets each interest category
as an inference goal and builds lattice inference structure,
as shown in Figure 6, to connect all the FOL symbols with
the goals. Each node in the lattice is a FOL syntax symbols
and the arrows represent the connective symbols that connect
the symbols. By mapping the syntax symbols shown in the
question (or social information) and fuzzy database, we can
trace up from the basic elements to the final goal. For example,
as shown by the gray box in Figure 6, if three syntax symbols
CS(Tom), Male(Tom) and Activity(Reading) are all satisfied,
we can infer that the goal Sci-Fi is satisfied for Tom, i.e.,
Tom can answer the question about Sci-Fi. We can see from
Figure 4 and Figure 5 that after the elements pass the inference
engine, the previous FOL representation is transformed into
the interest table listing the interests of the question (or user).
As shown in the step 3 of Figure 4 and Figure 5, the interests
of a question (or user) are transformed to a numerical string
to represent the knowledge field of a question (or a user).

1.
2.
3. …… … … … …

… … … …
…
…

…
…

…
…

…
…

… … … …Interest�table
Expert�(Sci�fi)
Expert�(Pop)
Expert�(Math)
Expert�(Eminem)

Sci�Fi
Comedy
Action Classic

Pop

Jazz

CS

Telecom.
Math

Student
Programmer
Professor�

Lady�Gaga
Eminem

Tom�Cruise

Movie Music Career Actor/
SingerMajor Director Food Residential

region�
Places
visited

3 2 2 0 1

n

Fig. 7: An example of interest arrays.

Next, we introduce how to generate such a numerical string.
Below, interest and category are interchangeable used, and a
category interest means an element in the category. Figure 7
shows an example of category interest arrays. The top line
lists all categories in the system. The category interests of a
category are in the column below the category. These interests
are alphabetically sorted. Each interest in a category uses its
entry position to represent itself. Each category string for a
question (or user) has n digits (e.g., 322023150). Each digit
represents a category interest. For example, string 322023150
denotes “Sci-Fi, Pop, Math, Lady Gaga...” From the categories
of a question (or user) in the category table, if the profile
information of a person matches an element in a category,
the index of the element is the digit in the corresponding

position of the numeric string that represents the category. If a
person does not have any element in a category, the category’s
position in numeric string is set to 0. If the person can match
any specific element in this category, the category is set to ∞.
If the person have several elements for a category, we use “-”
to concatenate the index of the category. For example, string 1-
2-322023150 denotes “Action—Comedy—Sci-Fi, Pop, Math,
Lady gaga...” using categories as shown in Figure 7. The users
periodically update metadata containing their questions and
answering statistics to the registration server. Based on these
metadata, the rules and axioms can be added and updated to
reflect the most current behaviors of the users in the system.
These updated rules and axioms are then remotely configured
in the mobile phones of the users. From this design, we can see
that if two sets of inferred interests (from questions or users)
are similar to each other, they will have similar (question or
interest) IDs.

D. Similarity Value Calculation.

After users’ social information and questions are trans-
formed into numerical strings, the similarity between a user
and a question can be calculated based on two parts: interest
similarity between the user and question, and social closeness
between the question sender and receiver.
Interest similarity: To evaluate the interest similarity of a
question of user i and a user j, we use a method proposed
in [30]. We use Qi and Ij to denote the interest strings of the
question of user i and the user j respectively. We use n to
denote the number of interest categories of interest elements
owned by Qi but not by Ij ; use l to denote the number of
categories of interest elements owned both by Qi and Ij , and
m the number of categories of interest elements owned by Ij
but not by Qi. Then the similarity of two strings is defined
as:

simI(i, j) =
l + 1

2
(

1

l + n+ 2
+

1

l +m+ 2
) (1)

The value of sim() ranges in the classical spectrum [0, 1],
and it represents the level of likelihood that two strings under
comparison are actually similar. The complete overlapping of
the two string (n = m = 0) tends to the limit of 1 as long
as the number of common features grows. The underlying
idea of Equation (1) is that two strings with longer complete
overlapping should have higher similarity than the two strings
with less complete overlapping. In the case of no overlapping
(l = 0), the function approaches to 0 as long as the number of
non-shared entries grow. It indicates that for two strings with
larger number of entries, if they share no common entries, it
is more likely that they have smaller similarity than the string
with smaller number of entries and share no common entries.
Social closeness: The social closeness directly affects the
willingness of people to answer or forward questions. Several
recent works have studied how to effectively calculate the
social closeness between two users [31, 32]. However, to
reduce the load on the mobile devices, SOS directly lets user
rate each friend with a closeness value, which is represented
by simC(i, j). Therefore, the final similarity between a user

i’s question and its friend j can be calculated as

sim(i,j) = χsimI(i, j) + (1− χ)simC(i, j), (2)

where χ is a parameter that satisfies χ ∈ [0, 1), which is used
to adjust the weight of the social closeness simC(i, j) and
interest similarity. We confine the number of search hops to 3
hops since the social trust between two nodes decrease expo-
nentially with distance. This relationship has been confirmed
by other studies [33, 34]. Binzel et al. [33] discovered that a
reduction in social distance between two persons significantly
increases the trust between them. Swamynathan et al. [34]
found that people normally conduct e-commerce business with
people within 2-3 hops in their social network.

Algorithm 1 shows the pseudocode of the friend selection
algorithm for each node. As shown in Line1 - Line8, similarity
calculation has a time complexity of O(n). Line10 - Line14
show a K-node selection algorithm with a time complexity of
O(f), where f is the number of a node’s friends. Therefore, a
node can selects K nodes with the highest similarity value with
the question from its friend list in linear time. As simC(i, j)
can be pre-processed, only simI(i, j) needs to be calculated at
run time. As the number of keywords in a question is generally
very small, the calculation of simI(i, j) costs few computation
resources of the mobile devices. Therefore, the friend selection
algorithm has very low complexity.

Algorithm 1 Pseudocode of the friend selection algorithm con-
ducted by node ni.
1: if Received a question && Cannot answer query then
2: for All nodes nj in the FriendList do
3: Calculate sim(i,j)
4: end for
5: K-node-list ← Select K highest node().
6: Send the question to the K nodes in K-node-list
7: end if
8:
9: List Select K highest node() {

10: find the Kth largest element
11: ← QuickSort partition around the Kth largest element
12: return First-K-Node-List
13: }

IV. PERFORMANCE EVALUATION

In order to simulate the features of people interactions in
online Q&A sites and social networks, we crawled about 9419
questions posted in the “Entertainment & Music–Movies” sec-
tion in Yahoo!Answer, and 2559 tweets posted by a user with
username ReadWriteWeb [35] and his/her followers in Twitter
between Oct. 5, 2010 and Oct. 26, 2010. The questions that
are used to evaluate the SOS system are from Yahoo!Answers.
Since Yahoo!Answers does not have user profile information,
we crawled 1000 users from Facebook to form a social net-
work. We used one user as a seed and used breadth-first search
to crawl their personal profile information. We ignored users
that did not fill out their profiles. The crawling stopped when
1000 users were crawled. Users’ profiles contain their current
locations, education backgrounds, hobbies and interests, such
as books, movies, music and television programs. This infor-
mation was parsed and conversed to FOL and finally encoded

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20

P
re

c
is

io
n

 r
a
te

Number of selected neighbors (K)

SOS-w/o-infer SOS-w/-infer
Flooding Random walk

Fig. 8: Query precision rate vs. K.

0%

20%

40%

60%

80%

100%

120%

5 10 15 20

R
ec

al
l

ra
te

Number of selected neighbors (K)

SOS-w/o-infer SOS-w/-infer
Flooding Random walk

Fig. 9: Query recall rate vs. K.

1

2

4

8

16

32

64

128

256

512

100 200 300 400 500

O
ve

rh
ea

d

Network size

SOS-w/o-infer SOS-w/-infer
Flooding Random walk

Fig. 10: Communication overhead.

12

14

16

18

20

22

24

26

100 200 300 400 500

D
e
la

y
 (

m
in

)

Network size

SOS-w/o-infer SOS-w/-infer
Flooding Random walk

Fig. 11: Communication delay.

as strings using the method introduced previously. In the
experiment, we focused on evaluating the questions related to
movies, because most of the Facebook users filled out a large
amount of information in the movie section in their profiles.

Since the Facebook data set is separated from the Ya-
hoo!Answers data set, we cannot directly tell which persons
can answer which questions. Therefore, to make the exper-
iment operable, we focused on the questions in the Movie
categories in Yahoo!Answers, where we selected 100 questions
having keywords that can be mapped to a Facebook user’s
profile interests. For each of the 100 questions, we assigned the
answers of the question to the Facebook users whose profile
interests match most to the question’s keywords; one answer to
one Facebook user. The 100 questions were randomly assigned
to the Facebook users to ask. We set χ to 0.5 to balance
the impact of interest similarity and social closeness. In order
to build the correlations between actors, movie companies,
directors, we imported movie data in Internet Movie Data
Base (IMDB) into the fuzzy database. Thus, when a question
is issued about a certain actor A, we can search the movies,
directors that are related to actor A. Then, the people who are
fond of the movies or the directors that related to the actor
are considered as the potential questions answerers with the
inference engine.

We use RLA to denote the number of ReLevant Answers to
a question existing in the system (i.e., the number of answers
to a question in Yahoo!Answers), and RTA to represent the
number of ReTrieved Answers in the SOS system for a
question. By default, the number of friends K that a user
selects for forwarding the question was set to 5. The number of
hops in a social network (social hops in short) that a question
is forwarded was set to 3.

In the experiments, we focus on the following metrics.
• Precision rate: it is a measure of exactness of the returned

results: Precision = (|RLA
⋂

RTA|)/|RTA|
• Recall rate: it is a measure of completeness of the

returned results: Recall = |RLA
⋂

RTA|/|RLA|
• Overhead: it is the number of messages transmitted in

the system during the entire simulation process.
• Delay: it is the time duration between a query is issued

and the first answer is received.
In our evaluation, the users returned by the different ap-
proaches are judged correct if the user has the correct answer
to the question as shown in the Q&A data set.

We compare the routing performance of SOS with Flooding
routing and Random walk routing. The Flooding method
was mainly proposed for online social networks, in which a

question is flooded to all nodes in the network. The Random
walk method can mimic the question/answer behavior pattern
of a user in the online Q&A sites, in which the question is
randomly visited by different users until receiving an answer.
In the experiments of Random walk, each node randomly
sends a question to L = K randomly selected friends until
the answer is found. The number of search hops in SOS is
limited to three. We use SOS-w/-infer to denote SOS with
the FOL inference engine and SOS-w/o-infer to denote SOS
without the FOL inference engine.

Figure 8 shows the comparison results of the precision rates
of the four systems. We varied the number of selected friends
K for each node from 5 to 20 with 5 increase in each step.
We can see from the figure that SOS has the highest query
precision rate. This is because SOS can accurately identify
the potential answerers based on their social information and
relationship to the question and the asker. Since SOS-w/o-infer
has much less parsed information than SOS-w/-infer, SOS-w/-
infer outperforms SOS-w/o-infer. In Flooding, a node forwards
a question to all of its friends in the social network, so the
precision rate is relative low. In Random walk, the queries are
randomly sent to users, so it generates low precision rate. It is
interesting to find that the precision is decreased in SOS-w/o-
infer and SOS-w/-infer as the K increases from 5 to 20 while
the precision remains constant in Flooding and Random walk.
This is because some selected questions in the Yahoo!Answers
data set have very few potential answers in Facebook user
profiles. As we choose more neighbors to send an asker’s
question, more users that cannot answer the question will
receive the questions. This contributes to the decrease in the
precision rate of SOS. As K increases, Random walk performs
similar to Flooding as more users that are unable to answer a
question receive the question.

Figure 9 shows the comparison results of the recall rates
of the four systems. Since more users in the social network
receive questions, the number of relevant users that receive
questions increases. That is why as the number of selected
neighbors K increases, the recall rate of Flooding, SOS, and
Random walk increases. Since Flooding forwards a question
to all the neighbors of a node in the social network, Flooding
has the highest recall rate. Although SOS can find relevant
answerers with high precision, it may not be able to identify
all the relevant users. Therefore, SOS generates much lower
recall than Flooding. Again, SOS-w/-infer outperforms SOS-
w/o-infer slightly because of its prediction ability. As a user
randomly approaches others for answers in Random walk, its
recall rate is even lower than Flooding and SOS.

10%

12%

14%

16%

18%

20%

22%

24%

26%

1 2 3

R
e
c
a
ll
 r

a
te

Number of question forwarding hops
in the social network

SOS-w/o-infer
SOS-w/-infer

Fig. 12: Query recall with social
closeness.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3

P
re

c
is

io
n

 r
a
te

Number of question forwarding hops in
the social network

SOS-w/o-infer
SOS-w/-infer

Fig. 13: Query precision with social
closeness.

To evaluate the scalability of the SOS system, we test the
SOS system with different network sizes. For the network
with size N , we selected the first N crawled users in the
data crawling step to ensure the evaluated social network of
these N users has the same topology as the online social
networks. Figure 10 shows how overhead, measured by the
number of queries, with the number of nodes in the social
network. Flooding forwards a question to all the neighbors of
an asker in the social network, leading to a high overhead,
although it can improve its recall rate significantly. Random
walk has lower overhead than Flooding, but it still has much
more overhead than SOS as it needs to keep on forwarding to
randomly chosen nodes until it finds an answerer. With high
precision, SOS only needs to forward questions to only a few
users. Therefore, the overheads of SOS-w/o-infer and SOS-
w/-infer are much less than Flooding and Random walk. We
can also see from the figure that as the network size increases,
the overhead in Flooding and Random walk increases, but the
overhead in SOS remains constant. In SOS, most answers can
be accurately located. Therefore, the node increase does not
increase question forwarding hops.

Figure 11 shows the comparison results of question response
delay versus network size of the four systems. We set the
response delay in each hop in the social network as 12
min as shown in our trace data in Twitter. Since Flooding
forwards askers’ questions to all the neighbors in the social
network, any neighbor with the knowledge of the question can
answer the question immediately. Therefore, it generates the
lowest response delay. As SOS-w/o-infer and SOS-w/-infer
can accurately identify the potential answerers, the average
reply delay in SOS is comparable to Flooding. Since SOS-w/-
infer generates much more inferred information than SOS-w/o-
infer for potential answerer selection, SOS-w/-infer produces
much less response delay than SOS-w/o-infer. In Random
walk, randomly selected friends have low probability to answer
the question, thus a node needs to search more nodes to
reach an answerer. As a result, the delay of Random walk
is relatively high compared to the other two methods. We can
also see from the figure that as the network size increases,
the delay of Random walk increases slightly and the delay
of SOS and Flooding keeps constant due to the same reasons
as in Figure 10. Though Flooding provides constant response
delay, this comes at a high cost of flooding overhead, while
SOS generates considerably lower overhead.

To test the impact of question forwarding distance on the
Q&A performance, we varied the number of social hops that
a question is forwarded from 1 to 3. Figure 12 shows the

recall rates of SOS-w/o-infer and SOS-w/-infer versus the
different number of social hops that a question is forwarded.
As the number of social hops increases, the recall rate of both
SOS-w/o-infer and SOS-w/-infer increases. This is because
the increased social hops lead to more users to be visited.
Therefore, more relevant answers will be received. Figure 13
shows the comparison results of precision rates of the systems
versus the different number of social hops that a question is
forwarded. We can see from the figure that 80% of the answers
can be retrieved from the direct friends. This is because in
social networks, friends with a close social relationship are
closely clustered. Therefore, it is very easy for a node to find
the answers from the direct friends. The reason why SOS-w/-
infer has both a higher recall and precision rate than SOS-
w/o-infer is because SOS-w/-infer can identify the potential
answerers with higher accuracy with its inferred information
from users and questions.

(a) Main menu. (b) Question.

Submit Forward

(c) Answer.

Fig. 14: Client software execution on iPhones

V. PROTOTYPE IMPLEMENTATION AND TESTING

We deployed SOS client in Object-C with iOS 4.1, and
the server was written in Java using JDBC connector with
MySQL. The client was deployed on iTouch/iPhones con-
necting to a sqlite database. The iTouch/iPhones use WiFi
connectivity to access to the registration server and com-
municate between each other. We also developed a forum
written by PHP connecting to MySQL, for the Apache2 web
server, which is aimed to receive the unsolved questions
from mobile users. Screenshots of the iPhone clients are
presented in Figure 14. Figure 14 (a) shows the main menu
of the SOS. Users can communicate with each other using the
ask/answer interface and conduct operations for registration,
log in or off, add/delete friends and update profile information.
Figure 14 (b) and Figure 14 (c) show the question and answer
interfaces, respectively. In the question interface, users type
their questions in the textfield and send the questions out by
pressing Find Answer button. In the answer interface, if a user
can answer the received question, s(he) can directly submit
the answers by pressing the submit button. Otherwise, s(he)
can forward the questions to his/her own social friends by
pressing the forward button. SOS then forwards the question
to the user’s K top friends.

We tested the system within a small group of 30 students
in Clemson University. The students are from 6 different
departments with students in natural science majors and social
science majors. In the experiments, we mainly focused on four
categories of questions: Music, Book, Movie and Television.
We imported 9787 fuzzy keywords from WordNet that are
related to the four categories into SOS’s fuzzy database and
imported 137 rules into SOS’s rule-based inference engine
for interest inference. These rules are designed based on
common sense relation between personal interests. In total,
389 questions were collected from the testing. We set K to 3
considering the small size of our social network in testing.

For each question an asker asked, the question is sent to the
social network via both the SOS-w/-infer system and SOS-
w/o-infer system. After receiving an answer, an asker needed
to rate the answer with a 0-10 star. The asker was also required
to search the question’s answer through Google and rate the
Google results. This is to compare the performance of SOS
and Google search engine. Figure 15(a) and Figure 15(b) show
the comparison results of average rating values for factual and
non-factual questions for SOS-w/-infer, SOS-w/o-infer and
Google. The figures show that for the factual based questions
such as “Who is the director of Kung Fu Panda 2?”, “Who
is the author of Gone with the Wind?”, Google has slightly
higher ratings than SOS-w/o-infer and SOS-w/-infer. This is
because the number of the participants in the testing group is
limited, leading to limited knowledge in our social network.
The participants may not remember some of the facts asked
in the factual questions. However, for some common factual
questions such as “What is the oldest book in the world?”, or
technical questions that relate to their majors or career, such
as “The author of the book Introduction to Algorithms?”, the
participants can give accurate answers.

0

1

2

3

4

5

6

7

8

9

10

SOS-w/o-infer SOS-w/-infer Google

A
v

e
.

ra
ti

n
g

 v
a

lu
e

s

fo
r

fa
c

tu
a

l
Q

u
s

.

(a) Factual based questions.

0
1
2
3

4
5
6
7
8

9
10

SOS-w/o-infer SOS-w/-infer Google

A
v
e
.

ra
ti

n
g

 v
a
lu

e
s

fo
r

n
o

n
-f

a
c
tu

a
l
Q

u
s
.

(b) Non-factual based questions.

Fig. 15: Comparison of three systems.

On the other hand, as shown in Figure 15(b), for the non-
factual questions such as “How is the course ECE613 in Clem-
son University?”,“How to set the width of caption in Latex?”,
SOS-w/o-infer and SOS-w/-infer have much higher ratings
than Google, since the answers to these questions cannot be
found in Google easily. For questions such as “Is the movie
Transformer 3 worth going to watch?”, which can be found in
both Google and SOS, SOS even receives much higher ratings
than Google, because users tend to trust the answers from their
friends, and the results from Google are often overwhelmed by
advertisements. From both figures, we see that SOS-w/-infer
outperforms SOS-w/o-infer for both factual question and non-
factual questions. This is because that the inference engine

in SOS-w/-infer can provide more interest information for an-
swerer identification, which increases the likelihood to identify
a potential answerer. The results are in line with our trace-
driven simulation results. From these figures, we can see that
SOS provides a good user experience for information search,
especially for those non-factual questions that cannot be well
answered by Google. Another interesting finding from the test
is that some people even directly used SOS as a communica-
tion tool as in current online social networks. For example, for
some complex questions such as “How to analyze the com-
plexity of a new algorithm? ”, the answerers directly asked the
asker to go to his/her office for discussion. Some users asked
the question “Who want to play soccer on this coming Friday.”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 ForumP
e

rc
e

n
t

o
f

re
s

p
o

n
s

e
Asker-answerer distance in hops in the

social network

SOS-w/o-infer (factual)
SOS-w/-infer (factual)
SOS-w/o-infer (non-factual)
SOS-w/-infer (non-factual)
SOS-w/-infer (droped)

Fig. 16: Percent of responses vs.
social hops.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3

P
e
rc

e
n

t
o

f
b

e
s
t

a
n

s
w

e
rs

Asker-answerer distance in hops in the
social network

SOS-w/o-infer (factual)
SOS-w/-infer (factual)
SOS-w/o-infer (non-factual)
SOS-w/-infer (non-factual)

Fig. 17: Percent of best answers vs.
social hops.

Figure 16 shows the percent of question responses versus the
number of social hops between the asker and answerer in the
social network, and the percent of dropped questions versus the
number of hops between the asker and the user who dropped
the question. The figure shows that the question dropping
rate increases slightly at the second hop and the third hop.
However, the overall packet dropping rate is still extremely
small. This is because as the questions are propagated among
socially close friends, users do not easily drop questions
considering the close social relationship. The slightly increased
dropping rate may be resulted from the decreased social
closeness between the asker and question receiver. We can
also see from the figure that as the number of hops in the
social network increases, the number of question responses is
reduced. The result indicates that socially closer friends of a
user are more likely to answer the questions from the user. The
figure also shows that users within one social hop are better at
answering non-factual questions than factual questions because
the small number of users within one-hop social distance
may not have enough knowledge to answer certain kinds of
factual questions. As the social hop increases, those unsolved
questions can be answered by people in other social clusters
that are specialized in other topics.

Each asker in the test chose the best answer for each of
his/her questions. Figure 17 shows the percent of best answers
to the questions given by the answerers in different social
distances from the askers in the social network. The figure
shows that for the non-factual questions, more than 80% of
the questions can be answered by the users within one hop
in the social network in both SOS-w/o-infer and SOS-w/-
infer. Less than 10% of the best answers come from the
users within 3 hops. The figure indicates that as the non-
factual questions are normally the questions about suggestions,
advises and recommendations, the answers from socially close

friends are more likely to be trusted. The figure also shows that
for the factual questions, less than 60% of the best answers
are provided by the friends within 1 hop. For SOS-w/o-
infer, friends in three hops can provide better answers than
friends in two hops. This is because factual questions need
more specific knowledge to be answered. The users who have
specific knowledge may be socially far away from the askers.
SOS-w/o-infer can more accurately identify the best answerers
with more inferred interests from the friends and the question.

VI. CONCLUSION

In this paper, we have described the design and imple-
mentation of a distributed Social-based mObile Q&A System
(SOS). SOS is novel in that it achieves lightweight distributed
answerer search, while still enabling a node to accurately
identify its friends that can answer a question. SOS uses the
FOL representation and inference engine to derive the interests
of questions, and interests of users based on user social
information. A node considers both its friend’s parsed interests
and social closeness in determining the friend’s similarity
value, which measures both the capability and willingness
of the friend to answer/forward a question. Compared to the
centralized social network based Q&A systems that suffer
from traffic congestions and high server bandwidth cost, SOS
is a fully distributed system in which each node makes local
decision on question forwarding. Compared to broadcasting,
SOS generates much less overhead with its limited question
forwardings. Since each user belongs to several social clusters,
by locally selecting most potential answerers, the question
is very likely to be forwarded to an answerer that can
provide an answerer. The low computation cost makes the
system suitable for low-end mobile devices. We conducted
extensive trace-driven simulations and implemented the system
on iPhone/iTouch mobile devices. The results show that SOS
can accurately identifies answerers that are able to answer
questions. Also, SOS earns high user satisfaction ratings on
answering both factual and non-factual questions. In the future,
we will release the application in the App Store and study the
Q&A behaviors of users in a larger-scale social network.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF

grants OCI-1064230, CNS-1049947, CNS-1156875, CNS-
0917056 and CNS-1057530, CNS-1025652, CNS-0938189,
CSR-2008826, CSR-2008827, Microsoft Research Faculty
Fellowship 8300751, and Oak Ridge Award 2008833.

REFERENCES

[1] Google. http://www.google.com.
[2] Bing. http://www.bing.com.
[3] B. M. Evans and E. H. Chi. An elaborated model of social

search. Information Processing & Management, 2009.
[4] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter.

Phoaks: A system for sharing recommendations. Comm. of the
ACM, 1997.

[5] M. S. Ackerman. Augmenting organizational memory: a field
study of answer garden. ACM TOIS, 1998.

[6] L. G. Terveen, P. G. Selfridge, and M. D. Long. Living design
memory: Framework, implementation, lessons learned. Human-
Computer Interaction, 1995.

[7] E. Amitay, D. Carmel, N. Har’El, S. Ofek-Koifman, A. Soffer,
S. Yogev, and N. Golbandi. Social search and discovery using
a unified approach. In Proc. of HT, 2009.

[8] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el,
I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized
social search based on the user’s social network. In Proc. of
CIKM, 2009.

[9] S. Kolay and A. Dasdan. The value of socially tagged URLs
for a search engine. In Proc. of WWW, 2009.

[10] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. In Proc. of WWW, 2007.

[11] H. H. Chen, L. Gou, X. Zhang, and C. L. Giles. Collabseer:
A search engine for collaboration discovery. In Proc. of JCDL,
2011.

[12] C. Y. Lin, N. Cao, S. X. Liu, S. Papadimitriou, J. Sun, and
X. Yan. Smallblue: Social network analysis for expertise search
and collective intelligence. In Proc. of ICDE, 2009.

[13] H. Kautz, B. Selman, and M. Shah. Referral web: combining
social networks and collaborative filtering. Communications of
the ACM, 1997.

[14] D. W. McDonald and M. S. Ackerman. Expertise recommender:
a flexible recommendation system and architecture. In Proc. of
CSCW, 2000.

[15] Yahoo answer. http://answers.yahoo.com.
[16] Ask.com. http://www.ask.com.
[17] F. Harper, D. Raban, S. Rafaeli, and J. Konstan. Predictors of

answer quality in online Q&A sites. In Proc. of SIGCHI, 2008.
[18] M. R. Morris, J. Teevan, and K. Panovich. What do people

ask their social networks, and why?: a survey study of status
message q&a behavior. In Proc. of CHI, 2010.

[19] J. Teevan, M. R. Morris, and K. Panovich. Factors affecting
response quantity, quality, and speed for questions asked via
social network status messages. In Proc. of AAAI, 2011.

[20] R. W. White, M. Richardson, and Y. Liu. Effects of community
size and contact rate in synchronous social q&a. 2011.

[21] M. Richardson and R. W. White. Supporting synchronous social
q&a throughout the question lifecycle. In Proc. of WWW, 2011.

[22] D. Horowitz and S. D. Kamvar. The anatomy of a large-scale
social search engine. In Proc. of WWW, 2010.

[23] Twitter. http://www.twitter.com/.
[24] Mobile internet stats roundup. http://econsultancy.com/us/blog.
[25] Facebook may be growing too fast. http://techcrunch.com/.
[26] A. Mtibaa, M. May, C. Diot, and M. Ammar. Peoplerank: Social

opportunistic forwarding. In Proc. of infocom, 2010.
[27] R. M. Smullyan. First-order logic. Dover Publications, 1995.
[28] K. Toutanova and C. D. Manning. Enriching the knowledge

sources used in a maximum entropy part-of-speech tagger. In
Proc. of SIGDAT, 2000.

[29] C. Manning and H. Schuetze. Foundations of Statistical Natu-
ral Language Processing. The MIT Press, June 18, 1999.

[30] M. Kirsten and S. Wrobel. Extending K-Means Clustering to
First-Order Representations. In Proc. of ICILP, 2000.

[31] Z. Li, H. Shen, and K. Sapra. Leveraging Social Networks
to Combat Collusion in Reputation Systems for Peer-to-Peer
Networks. In Proc. of IPDPS, 2011.

[32] Z. Li and H. Shen. SOAP: A social network aided personalized
and effective spam filter to clean your E-mail box. In Proc. of
INFOCOM, 2011.

[33] C. Binzel and D. Fehr. How Social Distance Affects Trust and
Cooperation: Experimental Evidence from A Slum. In Proc. of
ERF, 2009.

[34] G. Swamynathan, C. Wilson, B. Boe, K. C. Almeroth, and B. Y.
Zhao. Can Social Networks Improve e-Commerce: a Study on
Social Marketplaces. In Proc. of WOSN, 2008.

[35] Readwriteweb. http://twitter.com/#/RWW.

