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Abstract—Previous Delay Tolerant Network (DTN) routing
algorithms exploit either past encounter records (probabilistic
routing) or social network properties (social network based
routing) to derive a node’s probability of delivering packets
to their destinations. However, they only have a local view of
the network, which limits the routing efficiency. Also, when two
nodes meet, they have to exchange the delivery probabilities to
the destinations of all packets in the two nodes, which incurs
high resource consumption. In a social network, the people a
person frequently meets are usually stable, which makes them
play a more important role in forwarding message for the person.
Based on this, we propose a lightweight distributed Social MAp
based Routing algorithm in delay Tolerant networks (SMART).
In SMART, each node builds its own social map consisting of
nodes it has met and their frequently encountered nodes in a
distributed manner. Based on both encountering frequency and
social closeness of the two linked nodes in the social map, we
decide the weight of each link to reflect the packet delivery
probability between the two nodes. The social map enables more
accurate forwarder selection through a broader view. Moreover,
nodes exchange much less information for social map update and
need fewer updates due to social map stability, which reduces
resource consumption. Trace-driven experiments and tests on the
GENI ORBIT testbed demonstrate the high efficiency of SMART
in comparison with previous algorithms.

I. INTRODUCTION

In recent years, the development of wireless networks has
stimulated significant research on Delay Tolerant Networks
(DTNs) [1]. Among many types of DTNs, we are particularly
interested in those consisting of nodes carried by human
beings (i.e., pocket switch network [2]) in a specific area (e.g.,
campus, event site, etc.), due to their ability to support various
intriguing applications. For example, students on a campus
can share files through mobile phones directly; drivers can
obtain traffic and road information from passing vehicles. In
this paper, we study the packet routing in DTNs, which is a key
function supporting these possible applications. However, it is
non-trivial task since mobile nodes meet intermittently and
have limited communication ranges and resources in DTNs.
Though wireless Internet is common nowadays, we assume
a pure DTN scenario without Internet connection in order to
better exploit the dynamic routing opportunities in DTNs.

Epidemic routing [3] is a simple way to realize effective
routing in DTNs. In this algorithm, when two nodes meet, they
exchange the information about all packets and replicate pack-
ets that are not on its memory from the other node. As a result,
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Fig. 1. The social map of Bob.

it requires high storage and transmission resources and thus
is not practical in DTNs. Other previous routing algorithms
in DTNs can be classified into two categories: probabilistic
routing [4]–[7] and social network based routing [8]–[12].

Probabilistic routing algorithms predict a node’s probability
of delivering the packet to its destination based on its past
encountering records. Packets are always forwarded to nodes
with higher delivery probability. Though these algorithms
avoid the flooding in epidemic routing, they suffer from
two problems. First, the delivery probability is decided by
either direct encounter probability or 2-hop accumulated relay
probability. Such limited local view in forwarder selection may
miss better forwarding opportunities with longer paths. We
elaborate the reasons for this drawback in Section III-A. Sec-
ond, two encountered nodes need to exchange their delivery
probabilities to the destination nodes of all packets they carry
to decide which packets should be forwarded, which is a non-
trivial burden for resource-limited DTNs.

Since mobile device carriers (i.e. human beings) usually
are connected with certain social relationships, social network
based routing algorithms are proposed recently. They group
nodes with frequent contact into communities [8], [9], [11]
and/or choose a node with high centrality (i.e., more contacts)
or similarity (interest/context/common friends) with the des-
tination node as the packet forwarder [10]–[12]. Essentially,
these methods are similar to the probabilistic routing except
that they further consider social factors in delivery probability
calculation. Therefore, they suffer the same problems as the
probabilistic routing methods. In a nutshell, none of them
builds the social structure/map on mobile nodes. Therefore,
a node only has a view of its own connections/relationships
with other nodes or communities but has no knowledge about
the surrounding social structure, leading to a restricted local
view and limited routing efficiency. Two encountering nodes
also need to exchange delivery probabilities, resulting in a high
communication overhead.

In order to overcome these shortcomings, we propose a



lightweight distributed Social MAp based Routing algorithm
in delay Tolerant networks (SMART). In SMART, each node
builds social map to record its surrounding social network in
DTN. The social map is constructed by learning each encoun-
tered node’s most frequently met nodes (i.e., stable friends).
Each link in the social map is associated with a weight based
on the encountering frequency and social closeness of the two
connected nodes. The weight is used to deduce the delivery
probabilities among nodes. Figure 1 shows an example of
social map of Bob. The social map is not limited to one or two
hops and reflects possible long relay paths to provide better
forwarder selection. When two nodes meet, they only need to
exchange the information of their most frequently encountered
nodes for social map update. For example, when Bob meets
Allen, without querying Allen’s probabilities to meet other
nodes, he would know that packets for Emma, Frank or Glair
should be forwarded to Allen. Also, the stability of most
frequently encountered nodes requires no frequent social map
update, which reduces resource consumption.

The design of SMART is inspired by a social network
property that the people a person frequently meets are usually
stable, which makes them play a more important role in
message forwarding for the person [13]. For example, we often
meet the same colleagues, friends, and family members daily.
Our analysis on trace data from the MIT Reality project [14]
and the Haggle project [15] in this paper has confirmed
this property. SMART does not require social maps to be
identical in all nodes or to be complete by including all two-
hop nodes in the social structure, which makes the social
map construction simple and suitable for distributed DTNs.
In summary, our contributions are twofold:
• First, we propose a lightweight distributed social map

construction algorithm to enable each node to discover its
surrounding social network. To the best of our knowledge,
this work is the first to build social maps on individual
nodes for DTN routing.

• Second, we propose a new DTN routing algorithm based
on the social maps with low cost and high efficiency. It
only needs each node’s best knowledge of the surround-
ing network for forwarder selection.

The remainder of this paper is arranged as follows. Related
work is introduced in Section II. Section III presents the
detailed design of SMART. In Section IV and Section V,
the performance of SMART is evaluated through trace-driven
experiments and real testbed tests. Section VI concludes this
paper with remarks on future work.

II. RELATED WORK

Epidemic routing [3] is a simple DTN routing algorithm,
in which two encountering nodes replicate all packets that
it hasn’t seen from the other node. Due to its flooding
nature, this method generates a high efficiency but also a high
communication and storage resource consumption. Therefore,
it is not suitable for resource-limited DTNs.

Probabilistic routing algorithms [4]–[7] exploit nodes’ past
encounter records to predict future delivery possibility. In
PROPHET [4], the delivery probability considers both direct

encountering probability and indirect relay through another
node, and is updated upon each encounter and aged over
time. Each packet is forwarded to the node with a higher
delivery probability. MaxProp [5], RAPID [6], and MaxCon-
tribution [7] are similar to PROPHET but further specify the
forwarding or storage priorities of different packets based on
their delivery probabilities. Packets with higher priority are
forwarded first and can replace packets with lower priority.
Both RAPID and MaxContribution propose different priority
calculation methods that can realize different performance
goals such as minimal delay and maximal hit rate. However,
the delivery probabilities in these methods only consider at
most two-hop relay, which may miss long but effective relay
paths, limiting routing efficiency. Also, these methods require
two encountering nodes to exchange delivery probabilities to
all destinations, which is a heavy burden for mobile nodes.

Social network based DTN routing algorithms [8]–[12]
exploit social network properties in DTNs to make forwarding
decisions. MOPS [8] builds a publish-subscribe system that
groups frequently encountered nodes into groups to facilitate
intra-community communication and selects nodes that visit
foreign communities frequently for inter-community commu-
nication. BUBBLE [9] assigns each node two ranks: global
and local. The global rank guides a packet to the community
that contains its destination, and the local rank helps to
route the packet to its destination within the community. The
work in [10] ranks the suitability of a node for carrying a
packet based on its centrality and similarity to the packet’s
destination node. Packets are forwarded from low-rank nodes
to high-rank nodes to gradually approach their destinations.
The publish-subscribe system in [11] forwards messages to
nodes with high utility value, which is calculated based on
a node’s frequency of encountering subscribers to the interest
category of the message and its connectivity with other nodes.
HiBop [12] labels each node with various contexts such as
personal information, residence, work, and so on. It selects
packet forwarder according to nodes’ historical encounter
records with the context of the packet destinations.

We see that packets in these social network based methods
are forwarded to high-rank nodes or nodes in the same com-
munity/context with the destinations since such nodes usually
have high probability of meeting the destinations. Thus, these
methods are similar to the probabilistic routing except incorpo-
rating social factors into the calculation of delivery probability.
Therefore, they also suffer from the same problems (i.e., local
view and high cost) as probabilistic routing. SMART provides
each node a broader view of surrounding nodes’ encountering
activities, hence helps to find a more efficient routing path.
It also reduces the resource consumption by reducing the
amount of exchanged meeting probability information upon
encountering and the social map updates.

III. ALGORITHM DESIGN

A. The Necessity of Social Map on Routing Efficiency

We first discuss the necessity of social map from the
perspective of routing efficiency with a simple scenario shown



in Figure 2(a). We denote the meeting probability and deliv-
ery probability between two nodes as Pij and Dij (i, j ∈
{a, b, c, d, e, f}), respectively. The former is the probability
of delivering a message to another node directly. The latter
refers to the probability of delivering a message to another
node through either direct forwarding or indirect relay. We
assume d is the destination node.

1) Necessity of Social map: In the routing algorithms that
use delivery probability, when a meets b, it updates its delivery
probability to d (Dad) by considering the relay through b. In
PROPHET [4], Dad = Dad + (1 − Dad) ∗ Pab ∗ Pbd ∗ β, in
which β ∈ [0, 1] is a scaling constant. Though the two-hop
relay delivery probability provides a wider view than the one-
hop meeting probability, the view is still very limited and may
miss a faster route with a longer path.

One may claim that using transitive probability calculation
can provide much wider view. That is, using b’s delivery
probability to d (Dbd) to update Dad: Dad = Dad + (1 −
Dad) ∗ Pab ∗Dbd ∗ β. Since Dbd is already calculated based
on all routes from b to d (e.g., b→ c→ d), the updated Dad

can reflect routes more than two hops (e.g., a→ b→ c→ d).
However, this may lead to delivery probability calculated for a
routing path with loops (e.g., a→ b→ a→ e→ c→ d). We
see from the equation that Dad is updated by Dbd. But sim-
ilarly, Dbd may be updated by Dad previously, which means
Dbd has already considered relaying through a. Therefore, by
updating with Dbd, Dad integrates the relay though itself. In
other words, Dbd and Dad are boosting each other repeatedly,
leading to inaccurate delivery probability.

We confirm this problem with real traces from the MIT
Reality project [14] and the Haggle project [15]. The former
was obtained from students in the MIT campus, while the latter
was collected from 98 scholars attending Infocom’06. Both
traces include encountering records among people. We set β
to 0.5 and measured the delivery probabilities of all nodes to a
randomly selected node using Pbd and Dbd, respectively. The
average delivery probabilities of all nodes are 0.43 and 0.70 in
the MIT Reality trace, respectively, and are 0.2 and 0.42 in the
Haggle trace, respectively. We see that by replacing Pbd with
Dbd, the delivery probability is exaggerated greatly, thereby
cannot provide accurate forwarder selection guidance. Thus,
using the transitive probability calculation to enlarge a node’s
view is not feasible. We propose social map for this purpose
without compromising the accuracy of forwarder selection.

2) Benefits of Social Map: Social map avoids the aforemen-
tioned loop problem by allowing each node to only record
and update its direct encountering probabilities with other
nodes. It also provides routes to the destination node with
any lengths, thus providing more accurate routing guidance.
Figure 2(b) gives a simple scenario to demonstrate this point,
in which the number on each link represents the meeting
probability between the two connected nodes. Suppose each
node has met other nodes sufficiently to learn their meeting
probabilities. Node h needs to select a node from a and e
as the next hop for a packet towards node d. Without social
map, PROPHET cannot consider relay routes that are more
than two hops. Then, Dad is 0.3 + 0.6 ∗ 0.2 = 0.42 and
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Fig. 2. Network scenarios to show the benefits of social map.

Ded is 0.3 + 0.6 ∗ 0.4 = 0.54, and node e is a better
forwarder than node a. With social map, we can calculate
Dad in longer routes (i.e., a → b → c → d). Then, Dad

is 0.3 + 0.6 ∗ 0.2 + 0.6 ∗ 0.8 ∗ 0.7 = 0.756, which is larger
than Ded, indicating that a is a better forwarder. Therefore,
the social map better reflects a node’s delivery probability.

B. Social Map Construction

Ideally, the social map should include all nodes in the
system. However, this would consume extensive resources for
information exchange and storage, thereby should be avoided.
Also, the social map structure should be stable to reduce the
necessity of timely update, which is hard to realize in DTNs.
Moreover, the derived social link weight should be able to
reflect actual delivery possibility between the connected nodes
for efficient routing. These problems pose two formidable
challenges: i) how can we build stable social maps with a
low maintenance cost? ii) How can we define the link weight
that can accurately reflect delivery probability? We introduce
our solutions to these challenges in below.

1) Lightweight Social Map Construction: In a social net-
work, a person usually meets his/her major social relations
frequently, and they play a more important role in his message
forwarding [13]. For example, we meet the same colleagues,
friends, and family members daily. Inspired by this, we only
keep the nodes a node has met and their top L most frequently
encountered nodes (called top L friends) in its social map. L
can be a fixed value or the number of encountered nodes whose
meeting frequencies with the node is higher than a predefined
threshold. Due to the stability of a node’s top L friends, the
social map requires low cost for the structure maintenance
and meeting probability update. In following, we first show
the stability of top L friends and then introduce the social
map construction process and the resulted cost saving.

a) Stability of Top L Friends: In order to verify the stability
of a node’s top L friends and frequencies of meeting them, we
analyzed two traces from the MIT Reality project [14] and the
Haggle project [15]. We set ten observation time points evenly
in the two traces. At each observation point, we generated the
top L friend lists of each node and calculated the ratio of
the same top L friends as |Fi∩Fi+1|

|Fi| , in which Fi and Fi+1

denote the set of top L friends at observation point i and
i + 1, respectively. We measured the ratio when L equal to
2, 4, 6, and 8. The average ratios of all nodes are shown in
Figure 3(a). We can see that after the initial two observation
points, the average ratio remains very high (around 90%). Note
that the length between two observation points is quite long
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Fig. 3. Evolution on the change of friend list and meeting frequency.

in the experiment. This result confirms that a node’s most
frequently met nodes are very stable.

We further measured the variance of each node’s meeting
frequencies with its top L friends over time. The frequency
change of a node to its friend is measured by |fi+1−fi|

fi
, in

which fi+1 and fi denote the meeting frequency with the
friend at observation point i and i+1, respectively. Figure 3(b)
shows the average of all nodes’ frequency changes when L
equals 4. We see that in both traces, the frequency change is
large only at the beginning and decreases to less than 20%
after the first two observation points and finally reaches about
10%. This result verifies that a node’s meeting frequencies
with its top L friends are also relatively stable.

b) Social Map Construction Process: We first introduce
a concept of friendship rank for a node’s top L friends,
which represent their meeting frequencies with the node. We
divide high meeting frequencies in the system to a number of
ranges and assign a rank to each of a node’s top L friends
based on its meeting frequency with the node. Higher rank
represents higher meeting frequency and rank 1 is the highest.
As observed from Figure 3(b), a node’s meeting frequencies
with its top L friends are relatively stable. Therefore, the ranks
of a node’s top L friends are relatively stable, as shown in
Figure 3(a). In this way, we can reduce the cost in social map
updates due to the fluctuation of meeting frequencies since
a friend’s rank does not need to be updated if its meeting
frequency changes are within current range. To determine the
ranks, we first collect the meeting frequencies of all pairs of
nodes for a period of time that is long enough to reflect move-
ment patterns. Then, we evenly split the top 40% high meeting
frequencies into l levels, that is, the number of frequencies in
each range is the same. The l value and associated ranges can
also be pre-defined by the system administrator.

We define each node’s top L friends and their friendship
ranks as its friend map. When two nodes meet, they exchange
and update their friend maps. Each node maintains a social
table that records friend maps of all nodes it has met, as shown
in Table I. A node’s social map is constructed by connecting
all nodes in its social table, with each node only appearing
once. A directional link from node i to node j means node
j is in the top L friend list of node i. Figure 4(a) shows an
example of the social map of node a with L=4.

The social map on a node, say node a, is updated after each
encountering with another node rather than at a specific time
spot. Specifically, when node a meets node b and receives its
friend map, if b is already in a’s social map, node a updates b’s

TABLE I
SOCIAL TABLE

Node Top L friends Friendship ranks
a f, e, d, g 1, 2, 3, 4
g d, a, c, h 3, 4 ,4, 5
b h, c a, j 2, 2, 3, 5
k i, o, m, n 1, 1, 3, 4
· · · · · · · · ·
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Fig. 4. Social map update process.

L connected nodes in the social map accordingly. Otherwise,
node a integrates b’s friend map into its social map. Figure 4
demonstrates the update process of node a’s social map and
Figure 4(a) shows its initial social map. When a meets b, it
learns b’s top L friends (c, h, i, and j). As h and c are already
in the map, node a only adds b, i, and j to its social map.
There is no partition in the network. Later, node a meets node
k, whose friend map contains l, m, n, and o. Since none of
them are in a’s social map, a partition is created after they
are added into a’s social map, as shown in Figure 4(b). In
this case, we still regard it as part of the social map because
1) the partition shows some information of the network (i.e.,
o, l, m, n are good relays for node k), and 2) nodes that
can connect partitions may be encountered and inserted into
the social map later. Note that though the social map on each
node is updated upon each encountering, this process does
not consume too much resource since a node’s top L friends
usually are stable, as shown in Figure 3(a).

Clearly, the value of L affects the social map on each node
and the routing efficiency. Since the goal of the social map is
to reflect stable social relationships, we can determine L based
on the average number of stable friends each node has. This
can be realized in both centralized and distributed manner. The
former collects the friend information of all nodes to determine
an appropriate L, while the latter dynamically adjusts L based
on whether stable friends are included in the social map. Due
to page limit, we leave this as our future work.

Above algorithm finally generates social maps that are not
identical in all nodes and do not include all two-hop nodes.
This is similar to our daily lives that each person has his/her
own knowledge of the social structure. We will see that the
routing efficiency can still be ensured later in Section IV.

Some may question that the social map may fail to reflect
some forwarding opportunities, especially for active nodes,
since each node can only have at most L links in the
social map. We argue that it does not sacrifice the routing
performance because 1) the top L friends reflect the major
social relationships of each node, which usually take the major
roles in message forwarding, and 2) active nodes would appear
in more nodes’ social maps, thus having more total links
for message forwarding. Therefore, the specified L will not
compromise routing performance, which is verified in our
experimental results in Section IV.



c) Cost Saving Resulted from Social Map: In SMART, two
encountered nodes only exchange their top L friends and as-
sociated friendship ranks for social map construction. Assume
the information of one friend is T bytes, the total amount of
data exchanged is about 2TL bytes. In previous methods, two
encountered nodes exchange their delivery probabilities to the
destinations of all packets to make forwarding decision. The
size of each delivery probability can be roughly regarded as
T bytes too since it also represents the information of a node.
We assume packets on each node have N different destinations
in average. Then, the total amount of data exchange is about
2TN bytes. As a result, the total cost saving is 2T (N−L)M ,
where M is the total number of encounters. Recall that M
is very large, N is close to the total number of nodes (i.e,
hundreds), and L is less than 10. Therefore, the social map
greatly reduces the information exchange cost.

2) Social Link Weight Calculation: We assign a weight to
the link connecting two nodes, say node i and node j, in a
social map to represent the probability of node i successfully
forwarding a packet to node j (delivery probability). We
consider two factors to calculate the probability: the meeting
frequency and the social closeness between the two nodes,
which are reflected by friendship rank and shared top L
friends [10], respectively. We consider social closeness for
weight calculation because people with close relationships are
likely to share the same group of friends [10]. A shared top
L friend of two nodes is a good relay to forward messages
between them since both of them meet the friend frequently.
Then, the resultant link weight can more accurately reflect the
probability that a packet can be forwarded between the two
connected nodes.

We call the link path directly connecting two nodes as 1-
hop route and the link path connecting two nodes through one
shared top L friend as 2-hop route. The weight of a l-hop
(l = 1 or 2) route between node a and node b, denoted by
wab, is defined as 1 over the sum of the friendship rank of
each link in the route:

wab = 1/

l−1∑
k=0

rk (1)

where rk denotes the kth link’s rank. For two nodes, the
weight of one-hop route reflects their meeting frequency while
the two-hop routes show the social closeness.

Then, the weight for a link in the social map connecting
node a and node b, denoted Wab, integrates all one-hop and
two-hop routes between them.

Wab = 1/

m−1∑
k=0

wabk , (2)

where m is the total number of routes and wabk is the weight
of the kth route. With this design, the smaller Wab, the higher
forwarding probability the two nodes have.

Figure 5 shows an example of part of the social map created
on node h, in which L equals 4. We briefly introduce how to
calculate the weights of link Wab and Wef . There are three
routes between a and b: one one-hop route (b − a) and two
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two-hop routes through shared top L friend d and c (a− c− b
and a − d − b). Based on Equation 1, these routes’ weights
are 1/3, 1/3, 1/6, respectively. Based on Equation 2, Wab =
1/( 13 +

1
3 +

1
6 ) = 1.2. As for e and f, they have only one route:

e− f . Route e− g − f is not a two-hop route since g is not
a shared top L friend, as it only exists in the top L friend list
of e. Therefore, Wef = 1/ 1

2 = 2.

C. Social Map Based Routing Algorithm

In this section, we first introduce how to calculate the
delivery probability between two nodes from link weights and
then present the detailed routing process.

1) Delivery Probability: With above social map construc-
tion algorithm, the calculated link weight integrates both the
meeting frequency and social closeness and thereby can effec-
tively reflect the delivery probability between two nodes. For
two directly connected nodes, their link weight can be regarded
as the delivery probability between them. For two indirectly
connected nodes, we measure the delivery probability between
them by the minimal weight of all paths connecting them. The
weight of a path is defined as the sum of the weights of the
links in the path. Such a definition is based on the fact that
when a person tries to send a message to an unfamiliar person,
he would usually refer to people having the closest social
relationship with him and the unfamiliar person, despite there
are many people (i.e., paths) available for reference. Another
reason is that the weight of a link connecting two nodes has
already integrated the relaying possibility through shared top
L friends, alleviating the necessity to consider it again.

The delivery probability of two nodes is the minimum
weight of the shortest path between the two nodes. To find the
shortest path between node i and node j in the social map, we
use the well-known Dijkstra algorithm [16]. Specifically, we
take node i as the root node and calculate its shortest paths
to all other nodes iteratively until node j is discovered. Then,
the reciprocal of the weight of the shortest path is regarded as
the delivery probability between the two nodes. If two nodes
are disconnected, we regard the delivery probability between
them as the minimal possible value.

2) Routing Process: The guideline of our routing algorithm
is to always forward a packet to a node whose shortest path
to the destination node has the lowest weight. However, there
are some issues that need to be addressed, such as incomplete
social map, loop prevention and packet replacement strategy.
We first discuss approaches to solve these problems and then
introduce the routing algorithm.

a) Incomplete Social Map: As stated previously, the social
map created on each node may only cover part of the entire



social network. Thus, the destination node of a packet may
not exist in the social map. In this case, we rank a node’s
suitability of forwarding a packet by its active degree, which
is measured by the number of links connected to it. Then,
the packet is forwarded to the node with the highest active
degree until it arrives at a node whose social map contains
the destination node. This is inspired by the social network
property that an active person can meet more people and thus
has a higher probability of meeting the destination [13].

b) Loop Prevention: Since each node maintains its social
map independently, forwarding loops may happen in the
system. For example, two nodes may believe that the other side
is a better forwarder for a packet and forward the packet back
and forth repeatedly. To prevent such a loop, we require each
packet records the IDs of all nodes that it has been forwarded
to. Then, the loop can be avoided by simply forbidding a node
to forward a packet to a node that it has visited before.

c) Packet Replacement: It is possible that a node’s storage is
full when a packet arrives. In this case, SMART simply drops
the packet that has lived for the longest period of time.

We then summarize the routing algorithm in SMART as
below, with its pseudo-code shown in Algorithm 1.
(1) When two nodes meet each other, they first exchange

their friend maps, which are then used to update their
social maps (line 2-6). After this, each node processes its
packets sequentially.

(2) For the current packet, the node first checks if it has been
forwarded to the other node before. If not, it proceeds to
step (3). Otherwise, it goes to step (5) (line 10).

(3) By referring to its social map, the node checks whether
the other node’s shortest path to the packet’s destination
node has lower path weight than itself. If the destination
node is absent from its social map, the node checks
whether the other node has higher active degree. If
yes, the processing proceeds to step (4). Otherwise, the
processing goes to step (5) (line 11-19).

(4) The node forwards the packet to the other node. When
the other node receives the packet, if the storage is full, it
drops the packet that has been lived for the longest period
of time. If the node stores the packet in its memory, it
inserts its ID into the packet (line 21 and line 25).

(5) The process of the current packet stops. If there are
unprocessed packets, the checking process repeats from
step (2) for the next packet (line 8).

In summary, two encountering nodes in SMART only ex-
change a small amount of information for social map construc-
tion and forwarder selection. Also, the delivery probability in
SMART naturally considers the multi-hop relay through the
top L friends. This global view based forwarder selection can
enable more efficient routing.

D. Scalability Discussion

One may question the scalability of SMART on storage in
large networks (i.e., with more than 1,000 nodes) since a node
needs to store a lot of friend maps. However, we argue that
SMART is scalable in memory usage in two aspects. First,
recall that one friend map only contains L IDs and link ranks

Algorithm 1 Pseudo-code of the SMART routing algorithm
on node n.

1: Upon the reception of Hello message from node m
2: procedure EXCHANGETOPFRIENDSWITH(m)
3: n.sendTopFriendsTo(m)
4: n.receiveTopFriendsFrom(m)
5: n.updateSocialMap()
6: end procedure
7: procedure EXCHANGEPACKETSWITH(m)
8: for each packet k in node n do
9: bForward ← false

10: if k.hasBeenOn(m) 6= true then
11: if n.containInMap(k.des) then
12: if m.getW(k.des) < n.getW(k.des) then
13: bForward ← true
14: end if
15: else
16: if m.getDegree( ) > n.getDegree( ) then
17: bForward ← true
18: end if
19: end if
20: if bForward = true then
21: n.forwardPacketTo(k, m)
22: end if
23: end if
24: end for
25: n.receivePacketsFrom(m)
26: end procedure

(only about 8L bytes). Then, the storage of 10,000 friend maps
requires about 80L KB memory, which is not a big burden
for most mobile devices nowadays. Second, a node can only
store the friend maps of its frequently met nodes since a node
usually meet a limited number of nodes frequently, which
are forwarders for the node’s messages in most cases. This
is similar to our daily lives that people usually only remember
the information of limited number of friends.

IV. TRACE-DRIVEN PERFORMANCE EVALUATION

We first conducted event-driven experiments using real
traces from the MIT Reality project [14] and the Haggle
project [15]. We compared SMART with following represen-
tative DTN routing algorithms.

(1) PROPHET: PROPHET is a probabilistic routing al-
gorithm. It calculates delivery predictability based on past
encountering records and forwards packets to nodes with a
higher delivery predictability to destinations.

(2) SimBet: SimBet is a social network based algorithm. It
calculates the suitability of a node for carrying a packet by
the node’s centrality value and its similarity (the number of
shared encountered nodes) to the destination node. Packets are
always forwarded to nodes with better suitability.

(3) StaticWait: In StaticWait, a source node carries its packet
until meeting the packet’s destination. We use this algorithm
as a baseline method to show the routing efficiency when no
active forwarding strategy is adopted.

In the experiment, the first 1/3 of both traces were used
as the initialization period to collect enough encountering
records. After this, packets were generated at the rate of Rn

per 300s and per 40s in the MIT trace and the Haggle trace,
respectively. The size of a packet was set to 1 KB. The source
and destination of a packet were randomly selected from all



nodes in the system. In SMART, L was set to 4 by default. In
PROPHET and SimBet, the parameters used to calculate the
delivery probability and utility were configured the same as in
their papers. We used the same packet replacement algorithm
as in SMART for PROPHET and SimBet.

We tested the performance of SMART with different packet
rates, different memory sizes on each node, and different
values of L. In the test with different packet rates, the total
number of packets was varied from 5,000 to 25,000 (i.e., Rn

was varied from 1 to 5 with an increase of 1 in each step).
The memory size on each node was set to 100KB. In the test
with different memory sizes, the memory on each node was
varied from 60KB to 140 KB with an increase of 20 KB in
each step, and the packet rate (Rn) was set to a medium value
of 3. In the test with different values of L, we varied the value
of L from 2 to 8, and set the packet rate to 3 and memory
size on a node to 100 KB.

We measured the following metrics during the test, and the
confidence interval was set to 95%.
• Hit rate: the percentage of requests that are successfully

delivered to their destination nodes at the end of the
experiment. This metric represents the effectiveness of
successful delivery of a routing method.

• Average delay: the average delay time of all successfully
delivered packets. This metric represents the efficiency of
a routing method.

• The number of forwarding hops: the total number of
packet forwarding hops throughout the experiment. This
metric represents the efficiency of a routing method.

• Routing cost: the number of information units exchanged
between two encountering nodes throughout the experi-
ment. This metric shows the cost incurred for maintaining
necessary information needed for forwarder selection.

A. Performance with Different Packet Generating Rates

1) Hit Rate: Figure 6(a) and Figure 7(a) demonstrate
the hit rates of the four methods with the Haggle trace
and the MIT Reality trace, respectively. From the two fig-
ures, we see that the hit rates of the four methods follow
SMART>SimBet>PROPHET>StaticWait.

StaticWait shows the lowest hit rate because packets only
statically wait in their generators to reach destinations. By ex-
ploiting encountering probabilities between nodes, PROPHET,
SimBet, and SMART achieve higher hit rate than StaticWait.
SMART deduces nodes’ delivery probabilities to destinations
relying on relatively stable social maps. It can choose an
optimal forwarder in a long path to the destination with a
broad view without being limited by the local view of directly
encountered nodes, thereby generating the highest hit rate.
PROPHET and SimBet evaluate the delivery probability within
one or two hops by past encounters, which cannot provide long
routing paths, leading to a lower hit rate than SMART.

We see that the hit rate of SimBet is slightly higher than that
of PROPHET with the Haggle trace and is overlapped with that
of PROPHET with the MIT Reality trace. This is caused by
the different properties of the two traces. The Haggle trace was
obtained from a conference, in which nodes meet with each

other frequently in a small area. Then, nodes with high cen-
trality in the test with the Haggle trace can meet more nodes
and have high forwarding ability. By integrating centrality in
forwarder selection, SimBet generates slightly higher hit rate
than PROPHET. On the other hand, the MIT Reality trace
represents a loose campus environment, so the centrality used
in SimBet cannot contribute much to forwarding efficiency.
Therefore, PROPHET and SimBet have similar performance.

We observe that as the total number of packets increases,
the hit rates of the four methods decrease. This is because the
forwarding opportunities and memory available for packet for-
warding are limited. Then, when more packets are generated,
more packets get replaced in nodes, leading to a decreased
hit rate. It is interesting to see that the hit rates of the three
methods with active forwarding decrease more quickly than
that of StaticWait. In these three methods, certain nodes tend
to receive more packets since they are more active or connect
to more nodes. Then, there are more packet replacements
on them. But in StaticWait, packets are relatively evenly
distributed among all nodes, which means that the memory
on all nodes are utilized, leading to fewer replaced packets.

With above results, we conclude that SMART can achieve
efficient routing in the DTN environment with the proposed
social map. These results also justify the correctness of the
design of the link weight calculation method that considers
both meeting frequency and social closeness.

2) Average Delay: Figure 6(b) and Figure 7(b) show the
average delays of the four methods in the tests with the Haggle
trace and the MIT Reality trace, respectively. From the two
figures, we find that the average delays of the four methods
follow SMART<SimBet<PROPHET<StaticWait at different
packet rates. SMART has the lowest average delay because
it considers multi-hop forwarding opportunities when making
forwarding decisions with a broader view from the social map,
which enables a packet to travel through a fast route to its
destination. Both PROPHET and SimBet fail to consider long
routing paths that may generate shorter delay than the 1-hop
or 2-hop paths. Therefore, they produce higher average delay
than SMART. StaticWait has the highest average delay since
packets only wait in their initiators for destinations without
being forwarded. Such results further demonstrate the high
efficiency of SMART in terms of routing delay.

We also find that the average delays of the four methods
decrease as the packet generating rate increases. This is caused
by two reasons: 1) we only counted the average delay of
successfully delivered packets, and 2) the four methods drop
the oldest packet when the storage in a node is full upon
a packet arrival. As a result, when the number of packets
increases in the system, more old packets with the large delays
are dropped, leading to a lower average delay.

3) The Number of Forwarding Hops: Figure 6(c) and
Figure 7(c) show the number of forwarding hops of the
four methods with the Haggle trace and the MIT Reality
trace, respectively. We observe that StaticWait and SimBet
produce the smallest and the second to the smallest number of
forwarding hops, respectively. StaticWait lets each packet wait
in its initiator for the destination, so each packet is forwarded
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Fig. 6. Performance of each method with the Haggle trace under different packet rates.
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Fig. 7. Performance of each method with the MIT Reality trace under different packet rates.

at most once. SimBet considers both similarity and centrality.
Therefore, the nodes with high centrality (i.e., actively contact
many other nodes) afford most of the forwarding load, leading
to a small number of forwarding hops. We also see that
PROPHET has slightly more forwarding hops than SMART
with the Haggle trace and fewer forwarding hops than SMART
with the MIT Reality trace. PROPHET always forwards a
packet to nodes with high meeting frequencies to the desti-
nation. Then, as nodes in the Haggle trace meet each other
frequently, it is easy to find a better forwarder in PROPHET
even though it is only slightly better, thus generating many
packet forwarding hops. But in the MIT Reality trace, meeting
frequencies are more diverse and packets are mainly forwarded
to few nodes having high meeting frequencies with their
destinations, leading to less packet forwarding.

4) Routing Cost: Figure 6(d) and Figure 7(d) plot the
routing costs of the four methods with the Haggle trace and the
MIT Reality trace, respectively. We see that StaticWait has no
routing cost since no information exchange is needed. SMART
incurs a significantly lower routing cost than PROPHET and
SimBet. This is because two encountered nodes only need to
exchange their friend maps with L (usually a small value) en-
tries in SMART, while nodes need to exchange the information
regarding the destination nodes of all packets in PROPHET
and SimBet. SimBet has a slightly higher routing cost than
PROPHET since in addition to the similarity information, a
node has to send its centrality information to the newly met
node. In a nutshell, StaticWait incurs the least total costs but
has a low efficiency, SMART consumes low total transmission
and storage costs, and PROPHET and SimBet generate very
high total transmission and storage cost. This result confirms
SMART’s low-cost on information exchange.

B. Performance with Different Memory Sizes on Each Node
1) Hit Rate: Figure 8(a) and Figure 9(a) demonstrate the

hit rates of the four methods with the Haggle trace and the
MIT Reality trace when the memory size varies, respectively.
We see that the hit rates of the four methods follow the same

as in Figure 6(a) and Figure 7(a) due to the same reasons. We
also find that when the memory size on a node increases, the
hit rates of all methods also increase. This is because with
lager memory size, each node can carry and forward more
packets to their destinations, leading to a higher hit rate.

2) Average Delay: Figure 8(a) and Figure 9(a) show the
average delay of the four methods with the Haggle trace
and the MIT Reality trace when the memory size on each
node varies, respectively. We find that the average delays also
match the results in Figure 6(a) and Figure 7(a) for the same
reasons. It is interesting to see that when the memory size
on a node increases, the average delays also increase. This is
because 1) SMART always replaces the oldest packet with the
longest delay when memory is full, and 2) we only counted
the delays of successful packets. Therefore, when memory size
increases, fewer old packets are dropped, thus producing more
successfully delivered packets with longer delays.

3) The Number of Forwarding Hops: Figure 8(c) and
Figure 9(c) show the number of forwarding hops of the four
methods with the Haggle trace and the MIT Reality trace when
the memory size on each node varies, respectively. We find that
the number of forwarding hops follow the same relationship
as in Figure 6(c) and Figure 7(c) due to the same reasons. We
also see that when the memory size in a node increases, the
forwarding hops in the four methods increase slightly. This
is because when each node can store more packets, more
forwarding operations occur during each node encountering.

4) Routing Cost: Figure 8(d) and Figure 9(d) demonstrate
the routing costs of the four methods with the Haggle trace
and the MIT Reality trace when the memory size on each
node varies, respectively. We find that the routing costs are
the same as the Figure 6(d) and Figure 7(d) for the same
reasons. This is because the routing cost is irrelevant to the
number of packets on each node but only related to the L
for SMART and the number of nodes in the system for other
three methods. Combining all the above results, we conclude
that SMART has superior performance than other methods in
DTN routing with different memory sizes on each node.
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Fig. 8. Performance of each method with the Haggle trace under different memory sizes.
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Fig. 9. Performance of each method with the MIT Reality trace under different memory sizes.

C. Effect of the L Value

In this section, we varied the value of L used in SMART
from 2 to 8 to evaluate its effect on the routing performance
and verify that large L values (i.e., greater than a threshold)
would not significantly enhance the routing performance. The
total number of packets was set to a medium value of 15,000.
The results are shown in Table II and Table III.

TABLE II
ROUTING PERFORMANCE WITH THE HAGGLE TRACE

L Hit Rate Ave. Delay (s) Forwarding Hops Routing Cost
2 0.541425 30,843.3 40,544 277,704
3 0.551023 29,679.3 40,765 416,556
4 0.551156 29,227.1 41,750 555,408
5 0.560021 29,125.4 41,542 833,112
6 0.56822 29,813 41,427 833,112
7 0.572219 29,675.7 41,419 971,964
8 0.576218 29,790.9 41,272 1,110,816

TABLE III
ROUTING PERFORMANCE WITH THE MIT REALITY TRACE

L Hit Rate Ave. Delay (s) Forwarding Hops Routing Cost
2 0.431467 278,990 26,074 546,892
3 0.459933 276,096 32,948 820,338
4 0.481467 273,978 35,088 1,093,784
5 0.502867 280,568 36,845 1,367,230
6 0.502533 272,873 37,899 1,640,676
7 0.515667 279,737 38,631 1,914,122
8 0.515933 283,755 38,345 2,187,568

1) Hit Rate: We see that the hit rate of SMART increases
steadily when L increases from 2 to 8. This is because the
calculation of link weight depends on the number of shared
top L friends. Therefore, when L increases, the calculated
weight can reflect the delivery probability of the two connected
nodes more precisely. Consequently, a node can more correctly
decide if a newly met node is a better carrier for its packets,
leading to improved routing efficiency. This result confirms the
feasibility of constructing a social map by exchanging only the
top L friends in DTNs and implies that L can be adjusted to
achieve a tradeoff between cost and routing efficiency.

We also see that the incensement of hit rate with the MIT
Reality trace is much larger than that with the Haggle trace
when L increases. This is because the two traces were obtained
in different environments. The Haggle trace was conducted in
a crowded conference scenario, in which each node can meet
many nodes frequently; so a small L can still approximately
represent the social structure and will not decrease the hit rate
significantly. However, the MIT Reality trace was obtained in a
sparse campus environment. In this case, a small L would lose
some important friends, thereby providing fewer forwarding
opportunities and leading to a low hit rate.

2) Average Delay: We find that the average delay of
SMART decreases when L increases at the beginning and
remains at the same level when L is larger than a medium
value (i.e., 5). Recall that we only count the delay of suc-
cessful packets. When the L increases from a small value, as
stated in previous section, the social map constructed on each
node becomes more and more complete, resulting in better
forwarder selection and decreased average delay even when
more packets are delivered. After L reaches the medium value,
which enables social maps to show almost all most frequently
met nodes and optimal path, the enhancement in the routing
efficiency is not significant if L further increases, as shown
in the first column of the two tables. Therefore, when more
packets are successfully delivered, their average delays remain
on the same level. As a result, the average delay fluctuates at
a certain level when the number of delays increases.

3) The Number of Forwarding Hops: We see that when
L increases from 2 to 8, the number of forwarding hops of
SMART increases in the test with the MIT Reality trace but
remains at the same level when the Haggle trace is used. This
is also caused by the different environments of the two traces.
In the Haggle project, nodes are more crowded, so it is still
easy to find a next-hop node even when L is small. But in the
MIT Reality trace, nodes are sparser, so a small L may not
be able to reflect the social structure well, leading to fewer
forwarding opportunities. This also matches the results about



hit rate in the two tables.
4) Routing Cost: We find that the routing cost increases

in proportion to the value of L when it increases from 2
to 8 with both traces. This is because the routing cost is
actually the number of encounters multiplied by 2L. We see
that the routing cost is still quite small when L is 8 compared
to that of SimBet and PROPHET shown in Figure 6(d) and
Figure 7(d). This result shows the efficiency of SMART in
reducing information transmission, and also implies that it is
important to find an optimal L value that generates low routing
cost while achieving high routing efficiency.

5) Summary: Above experimental results indicate that
SMART still works efficiently when L is set to a small value.
For example, even when L = 2, SMART still generates close
performance on hit rate, average delay, and cost with other
compared methods in Figure (8) and Figure (9). Also, the
performance of SMART is improved when L increases and
remains stable when L is larger than 5. This result justifies the
idea that top L friends can provide a sufficient reflection of the
social structure in a DTN and provide critical information to
guide packet forwarding. SMART achieves an optimal balance
between efficiency and cost when L is set to a medium value
such as 4 or 5 for the two traces. This value may change in
different scenarios. However, since the increase in the routing
cost is linear when L increases, we conclude that SMART is
energy efficient and suitable for DTNs.

V. GENI EXPERIMENT

We further evaluated the performance of the four methods
on the real-world GENI ORBIT testbed [17], [18]. In ORBIT,
nodes communicate with nodes within communication range
through the wireless interface. Since all nodes are fixed in
ORBIT, we again used the MIT Reality trace to drive node
encountering. The total number of packets was set to 15,000,
and the memory on each node was set to 100 KB.

TABLE IV
EFFICIENCY AND COST IN THE GENI TEST

Method Hit Rate Ave. Delay (s) Forwarding Cost Routing Cost
SMART 0.511 251,954.4 41,954 1,103,472
SimBet 0.496 269,007.0 32,357 14,173,600
PROPHET 0.501 271,546.5 24,357 12,315,306
StaticWait 0.31 308,046.1 5,263 0

The test results are shown in Table IV. We see that SMART
still produces the highest hit rate, the lowest average delay and
the second lowest cost compared to other three methods for the
same reasons described previously. Such results further prove
the high efficiency of SMART in the real-world testbed.

VI. CONCLUSION

In this paper, we propose SMART, a lightweight distributed
social map based routing algorithm for DTNs. By exploiting
the social network properties that a person’s most frequently
encountered friends often remain stable, SMART enables
each node to build a social map recording its knowledge of
surrounding social structure. Specifically, nodes exchange the
top L most frequently encountered nodes when they meet
for social map construction. In the social map, the delivery
probability between two nodes is evaluated by considering

both meeting frequency and social closeness. Then, packets
are forwarded to nodes with higher delivery probability to
their destinations. SMART is more efficient than previous
probabilistic routing algorithms because the social map of-
fers a broader view for forwarder selection. Moreover, two
encountering nodes only need to exchange the information
of their top L friends, which is relatively stable, leading to
a low information exchange and update overhead. Extensive
real-trace driven experiments and testbed tests demonstrate the
effectiveness and efficiency of SMART in comparison with
previous algorithms. In the future, we plan to investigate the
L value that leads to the optimal tradeoff between routing
efficiency and cost, and use adaptive L for nodes with different
active levels to further improve routing efficiency.
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