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Abstract—When monitoring environments with wireless sensor
networks, optimal sensor deployment is a fundamental issue and
an effective means to achieve desired performance. Selecting
best sensor deployment has a dependence on the deployment
environments. Existing works address sensor deployment within
three types of environments including one dimensional line,
2-D field and 3-D space. However, in many applications the
deployment environments usually have network structures, which
cannot be simply classified as the three types. The deployed
locations and communications of sensor nodes are limited onto
the network edges, which make the deployment problem distinct
from that in other types of environments. In this paper, we
study sensor deployment in network-structured environments
and aim to achieve k-coverage while minimizing the number of
sensor nodes. Furthermore, we jointly consider the optimization
of sink deployment and routing strategies with the goal to
minimize the network communication cost of data collection.
To the best of our knowledge, this paper is the first one to
tackle sensor/sink deployment under the deployment constraints
imposed by the network structure. The hardness of the problems
is shown. Polynomial-time algorithms are proposed to determine
optimal sensor/sink deployment and routing strategies in tree-
topology network structure. Efficient approximation algorithms
are proposed for the general graph network structure and their
performances are analyzed. Theoretical results and extensive
simulations show the efficiency of the proposed algorithms.

I. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly deployed
for many monitoring tasks, such as traffic monitoring [1], wa-
ter quality monitoring [2], pipeline monitoring [3], [4]. These
tasks often put forward requirements to WSNs on sensing
quality, network lifetime, coverage, etc. Since the positioning
of sensors has essential impact on these performances, sensor
deployment is an important research issue, and extensively
studied in the literature [5].

The strategies of sensor deployment are usually proposed
with the goals to maximize area coverage [6]–[8] or sensing
quality [9], [10], or to minimize the number of sensors [11]
or communication cost [12], [13], while under the constraints
of some other performance metrics. These works address
sensor deployment problems in deployment environments of
one dimensional line [4], [14], [15], 2-D plane field [7]–[11],
[13], or 3-D space [6].

However, in many applications, we note that the underlying
environments where sensor networks are deployed have net-
work structures, such as river network, oil pipeline network

and road network. The sensor nodes are usually manually
deployed along the edges, i.e., riverways, pipelines and roads,
to monitor river quality, oil temperature and traffic. That is, the
deployment locations of sensors are limited into the underlying
network structure. As we can see, few works address the sensor
deployment problem with such deployment limitation imposed
by the network structure. To fill the gap, this paper addresses
sensor deployment in network-structured environments.

In WSNs, sensing coverage is a basic functionality and an
important QoS (Quality of Service) measure of the network.
To tolerate sensor failure and precisely localize the monitoring
object, many applications may impose the requirement of k-
coverage of the deployment area with k > 1, which means
that every location in the area can be monitored by at least
k sensors, where k is a given parameter. Due to its great
importance, k-coverage has been widely studied in 2-D [16],
[17] field and 3-D space [6]. On the other hand, to save
the deployment cost of WSNs, users may want to deploy a
minimum number of sensors while desired performances can
be achieved. Therefore, in this paper, we consider the problem
of deploying sensors to ensure that the network structure is k-
covered, while minimizing the number of sensors. As opposed
to previous works, the deployment locations of sensors are
restricted by network structure in this problem.

Besides, data collection is an essential task for the monitor-
ing applications, in which all sensors transmit their readings
to the sinks. Since the amount of data may be large and
sensor nodes are usually battery-powered, it is critical to
design energy-efficient strategies for data collection to prolong
network lifetime. Given a sensor deployment, the locations
of sinks and the routing strategy of sensor data would have
profound effects on the communication cost incurred by data
collection. Therefore, in this paper we jointly consider the
optimization problems of sink deployment and routing with
the goal to minimize the communication cost. In particular,
the deployed locations of sinks are limited to the intersections
of network structures and the sensors transmit their readings
along the edges to the sinks, which follows our observations
from real applications like oil pipeline/road networks. In
road networks, the traffic management center collects the
information from sinks, which are usually deployed around
the intersections to collect sensor readings from incident
roads [1]. In pipeline networks, the heat stations are built along
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the pipelines. Sinks are deployed with the stations, whose
positions can be treated as intersections, to collect temperature
and pressure readings and send them to the stations [4].

In summary, our contribution is as the following.
(1) We point out the current lack of works on optimal

sensor deployment in network-structured environments and
study the the problem of k-coverage sensor deployment on
underlying networks with the goal to minimize the number
of sensors. We prove that the problem is NP-Complete, and
propose a polynomial-time optimal algorithm for tree-topology
network structures and an approximation algorithm for general
topology with performance analysis.

(2) Given a sensor deployment on a network structure, we
study joint optimization of sink deployment on the intersec-
tions and routing strategies along the edges to minimize the
total communication cost of data collection. We provide a
polynomial-time optimal algorithm for tree-topology network
structures and a heuristic algorithm for general topology.

(3) We provide theoretical analysis and also conduct ex-
tensive simulations to evaluate the performance of proposed
algorithms. The results show the efficiency of our algorithms.

The rest of this paper is organized as follows. Section II
summarizes related works. Section III introduces the network
model and gives the problem description. Section IV formu-
lates the sensor deployment problem and investigates its hard-
ness and Section V proposes algorithms for network structure
of tree and general graph topology. Section VI formulates
the sink deployment and routing problem and Section VII
proposes corresponding algorithms. Section VIII presents the
simulation results. Section IX concludes this paper.

II. RELATED WORK

There are extensive works that focus on node deploy-
ment in WSNs. In terms of the role of nodes, the existing
works address the deployment of sensors, relays and data
collectors(namely, sinks and base stations). They consider
node deployment with various optimization goals including
minimizing the number of sensor ndoes [11] and communi-
cation cost [12], [13], and maximizing coverage [6]–[8] and
sensing quality [9], [10]. A comprehensive overview of node
deployment is provided by Younis et al. [5].

Existing solutions for sensor deployment depend on the
types of the deployment environment including one dimen-
sional line [4], [14], [15], 2-D plane field [7]–[11], 3-D
space [6]. Liu et al. [14] investigate the problem of how to
optimally deploy the data back-haul nodes in a linear topology
to maximize the lifetime of WSNs and propose a greedy de-
ployment scheme to achieve near-optimal performance. Chen
et al. [15] study the optimal sensor deployment in a linear
network with two objectives that are to maximize the network
lifetime and to minimize the application-specific cost, given
the number of sensors and certain coverage requirement. Guo
et al. [4] also study the linear sensor placement problem in
monitoring oil pipelines with the goal of maximizing the
network lifetime. Besides, most existing works address sensor
deployment on 2-D plane field. S.Dhillon et al. [11] propose
two algorithms to determine the minimum number of sensors

and their locations, under the constraints of imprecise detec-
tions and possible obstacles in the terrain. Wang et al. [7] study
the sensor deployment problem to minimize the number of
sensors while achieving k-coverage of the area. Zou et al. [8]
propose a virtual force algorithm as a sensor deployment strat-
egy to maximize the sensor field coverage. Krause et al. [9]
address sensor deployment with the goals to minimize the
communication cost under the requirement of specified sensing
quality and to maximize sensing quality subject to budget on
the communication cost. Zhang et al. [10] study best sensor
deployment to minimize estimation distortion at the fusion
center. Besides, Andersen et al. [6] consider the problem of
deploying wireless sensors in a three dimensional space to
achieve a desired degree of coverage, while minimizing the
number of sensors.

Existing works consider the optimal sink placement problem
on 2-D plane. Youssef et al. [18] address the gateway place-
ment with the goal to minimize the number of hops between
a sensor and one of the gateways to reduce latency. Pan et
al. [19] aim to locate the base station optimally such that the
lifetime of battery-powered video nodes can be maximized.
Shi et al. [20] consider the base station placement with the
optimization objectives of network lifetime and capacity. As
we can see, the deployment problems of sensors and sinks
have not been addressed with location constraints imposed by
network-structured environments. This paper fills the gap.

Many literatures have studied routing problems for reducing
the communication cost of data collection and prolonging the
network lifetime. For example, Park et al. [21] develop an on-
line heuristic for the problem of routing message to maximize
the network lifetime. Chang et al. [22] formulate the routing
problem as a linear program, with the objective to maximize
the network lifetime defined by the time until the network
partition due to battery outage. Given the locations of sensors
and the base station, Kalpakis et al. [23] propose algorithms
to determine the routings for data collection from all sensors
to the base station with the goal to maximize the network
lifetime. Xiong et al. [24] formulate the maximum lifetime
data collection problem as an integer program to get close
to optimality. As opposed to these works, we jointly search
optimal solutions for routing strategies and sink deployment
to minimize the communication cost of data collection.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model
We assume a WSN is deployed in a network-structured en-

vironment, such as oil pipeline/road network. The environment
can be modeled as an undirected graph G(V,E), in which a
vertex A ∈ V refers to an intersection in the network, and
an edge AB ∈ E stands for the connection between the two
intersections. For convenience, an edge is regarded as a line
segment, rather than its physical shape, i.e., a curve in real
world. The edge can be treated as the straightened result of the
real physical shape. The length of edge AB means the distance
between intersection A and B, denoted as |AB|. The location
of a point P on AB, denoted as Loc(P ), is represented by
(AB : x) or (BA : |AB|−x), where x is the distance between
P and A on edge AB. For two arbitrary points P and Q on the
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Fig. 1. A sample network-structured environment with three intersections
A, B, C, and line segments AB, AC, BC of equal length l. P , R, and Q
are three points on AB and AC, resp. Note that although the lengths of the
line segments reflect the geographic distances, it is not always be the case.

edges in E, a path from P to Q, denoted as PA1A2 . . . AmQ,
is a sequence of line segments PA1, A1A2, . . ., AmQ, where
PA1 and AmQ are parts of the edges in E where P and Q
locate, resp., and AiAi+1 ∈ E for 1 ≤ i < m. The length of
the path is the sum of the lengths of the line segments. The
network distance between P and Q is the minimum length
of all the possible paths from P to Q, denoted as 〈PQ〉. For
instance, in Figure 1, (PA,AQ) and (PB,BC,CQ) are two
paths from P to Q, 〈PR〉 = l/4 and 〈PQ〉 = l.

Most existing works on sensor deployment in 2-D field
assume the disc sensing model, i.e., the sensing range of a
sensor is a disc with a certain radius centered at the position
of the sensor. However, in network-structured environments,
the sensing range of a sensor is restricted to the edges of
the network. Therefore we use a new sensing model for the
network-structured environment: the sensing range of a sensor
A consists of every point B on the network with 〈AB〉 ≤ d,
where d is a threshold provided by the user. Such assumption
is reasonable and practical. For example, in water quality
monitoring of a river network, the measurement of a sensor
indicates the situation of waters within a certain distance to
that sensor along the tributaries.

For environment monitoring, the sensors are deployed on
the edges, i.e., roads or pipelines, to measure the traffic or oil
temperature, while the sinks are deployed on the vertices to
collect data from sensors on incident edges through wireless
radios. In real environments, wireless links usually cannot be
established across edges due to possible obstructions and long
distances among the edges. Thus, we assume that there is no
data transmission across edges, a sensor only forwards data
to other sensors or sinks located on the same edge, and each
sensor has one unit data to be delivered in a data collection
task. Let the distance between two sensors P and Q be d, the
communication cost for P to send one unit data to Q, denoted
as c(PQ), can be modeled as c(PQ) = αdβ+γ, where α, β, γ
are system-dependent parameters and 2 ≤ β ≤ 4 [25].

B. Problem Description

In this paper, we focus on the following two problems:
(1) Given a network structure, how to deploy sensors to

achieve k-coverage on the network structure while the number
of sensors is minimized?

(2) Given a network structure and a sensor deployment, how
to deploy sinks on the intersections of the network structure
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Fig. 2. The construction from an instance of the Vertex Cover problem to
that of the Sensor Deployment problem. The edge AB is removed, while 6
vertices and 9 edges with a equal length of d

2
are added in the new graph.

and how to determine a routing path from each sensor to a
sink along each edge, such that the total communication cost
incurred by a data collection task is minimized?

IV. HARDNESS OF SENSOR DEPLOYMENT PROBLEM

Problem 1 (Sensor Deployment). Given a network structure
G(V,E), a distance threshold d > 0, and a coverage degree
k > 0, the goal is to find out a set of points on the edges in E
with the minimum size, where sensors are deployed, denoted as
S, such that for arbitrary point P on any edges in E, ∃Q ⊆ S,
where |Q| ≥ k and 〈PQ〉 ≤ d, ∀Q ∈ Q.

Theorem 1. The Sensor Deployment problem in decision
version is NP-Complete, even if the coverage degree k = 1.

Proof: We consider the decision version of the Sensor
Deployment (SD) problem with k = 1, which asks whether
such an S exists fulfilling the constraints with |S| ≤ t for a
given parameter t. First, we prove that the SD problem is in
NP. Next, we conduct a polynomial-time reduction from the
Vertex Cover (VC) problem to the SD problem.

A polynomial-time algorithm can be used to check the
validity of an answer to the problem. For each P ∈ S, all
the paths starting from P with length d are computed, and
the line segments on the paths are marked as “active”. The
validity of the answer can be verified by checking whether all
the edges in E are fully covered by the active line segments.
Since there are O(t · |E|) active line segments, it requires time
polynomial in the input size, and the problem is in NP.

Given a graph G∗(V∗,E∗), the VC problem asks for a set
C∗ ⊆ V∗ with the minimum size, such that each edge in
E∗ is incident to at least one vertex in C∗. For an arbitrary
instance G∗(V∗,E∗) of the VC problem, the instance of the
SD problem can be constructed by (1) assigning k = 1 and d,
and (2) building a graph G(V,E). Initially, V = V∗ and E = ∅.
Then for each edge AB ∈ E∗, two groups of vertices are added
into V, which are X = {X1, X2, X3} and Y = {Y1, Y2, Y3},
and nine edges are added into E, as shown in Figure 2. The
length of each edge is set to d/2. It is easy to see that the
construction takes time polynomial in the size of G∗(V∗,E∗).

Now we show that the VC problem has an answer C∗ of
size t or less, iff the SD problem has an answer S of size t
or less. On one hand, suppose ∃C∗ ⊆ V∗ such that C∗ is a
vertex cover and |C∗| ≤ t, let S = C∗, then at least one vertex
in {A,B} is in S for any AB ∈ E∗. Therefore, all the points
on the edges in E are within a distance no more than d to A
or B, and S is an answer to the SD problem. On the other
hand, suppose the SD problem has an answer S ⊆ V such that
|S| ≤ t. If ∃AB ∈ E∗ such that A 6∈ S and B 6∈ S, S must have
three points {Pi|1 ≤ i ≤ 3} where each Pi is on one of edges
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Algorithm 1 The SDT Algorithm
INPUT: A tree rooted at Rr with weighted edges, k and d.
OUTPUT: S = {Si|0 ≤ i < t} with Loc(Si) for 0 ≤ i < t.

1: t = 0 and S = ∅;
2: Sensor on Tree(Rr);
3: return S;

procedure Sensor on Tree(P )
4: ret = 0 and y = 0;
5: for each child C of vertex P do
6: l = |PC| – Sensor on Tree(C);
7: while l ≥ 2d do
8: S = S ∪ {Si|Loc(Si) = (PC : l − d), t ≤ i < t+ k};
9: t = t+ k and l = l − 2d;

10: if l > d then
11: S = S ∪ {Si|Loc(Si) = (PC : l − d), t ≤ i < t+ k};
12: t = t+ k;
13: ret = max{ret, 2d− l};
14: else if l ≥ 0 then
15: y = max{y, l};
16: else
17: ret = max{ret,−l};
18: if y > ret then
19: ret = −y;
20: if P = Rr then
21: S = S ∪ {Si|Loc(Si) = Loc(P ), t ≤ i < t+ k};
22: t = t+ k;
23: return ret;

{AXi, BXi, XiYi} excluding A and B, such that the points
{Yi|1 ≤ i ≤ 3} can be covered. Clearly, all the points covered
by the sensors deployed at {Pi|1 ≤ i ≤ 3} are within the
coverage of the sensors deployed at A and B. Hence, a valid
answer to the SD problem, denoted as S′, can be obtained by
replacing {Pi|1 ≤ i ≤ 3} with A and B for all AB ∈ E∗
where A 6∈ S and B 6∈ S. Since |S′| ≤ t and ∀AB ∈ E∗,
at least one vertex in {A,B} is in S′, let C∗ = S′, and C∗
is an answer to the VC problem. Because the VC problem is
NP-Complete [26], the SD problem is NP-Complete.

V. ALGORITHMS FOR SENSOR DEPLOYMENT PROBLEM

In this section, we present an algorithm called SDT (Sen-
sor Deployment on Trees) to compute an optimal sensor
deployment when the network structure is a tree, and an
approximation algorithm named SDG (Sensor Deployment on
Graphs) for general network structure. The optimality and
approximation ratio of the algorithms are proved.

A. An Optimal Algorithm for Tree Topologies
Denote the tree rooted at P as Tree(P ), and the SDT

algorithm computes an optimal or “partial-optimal” answer
for Tree(P ), ∀P ∈ V, with the corresponding extra coverage
maximized. The answer is denoted by S(P ), and we say that
S(P ) is partial-optimal, if (1) Tree(P ) cannot be fully k-
covered by S(P ) with |S(P )| = |Sopt| − k where Sopt is
an optimal answer for Tree(P ), and (2) S(P ) becomes an
optimal answer when additional k sensors deployed at P
are added into S(P ). The extra coverage of the sensors on
Tree(P ) refers to their ability to cover the network structure.
Specifically, if Tree(P ) is fully k-covered, the extra coverage
is the maximum distance between P and any k-covered point
Q 6∈ Tree(P ) by the sensors in S(P ). Otherwise, it refers to
the opposite number of the maximum distance between P and
any point Q ∈ Tree(P ) not k-covered by S(P ).
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Fig. 3. A running example of the SDT algorithm, in which |AB| = 6,
|BC| = 9, |BD| = 12, and |AE| = 23. The sub-figures show four
successive steps. In each sub-figure, the P and PC referred in Algorithm 1
are marked black and thick, resp.

By employing procedure named Sensor on Tree, the al-
gorithm computes S(P ) in a bottom-up way, i.e., S(Ci) is
computed before S(P ) for each child Ci (1 ≤ i ≤ p) of P .
S(Ci) is guaranteed to be part of an optimal answer, as proved
in Theorem 2, hence in computing S(P ), the algorithm only
deploys sensors on each PCi. First, it calculates l, the length
of the fragment on PCi that cannot be covered by S(Ci).
Next, it deploys bl/(2d)ck sensors on PCi, and reduces l to
l−bl/(2d)c2d. After that, if l ∈ (d, 2d), k sensors are deployed
on the uncovered fragment, otherwise no sensor is deployed no
matter l ≥ 0 or not. When the deployment operations finish for
all PCi, the algorithm computes the longest distance between
P and any uncovered point in Tree(P ), and the longest extra
coverage provided by the sensors on Tree(Ci), denoted as y
and ret, resp. If y ≤ ret, S(P ) is optimal, and ret is returned
as the extra coverage, otherwise S(P ) is partial-optimal, and
the algorithm returns −y and leave the uncovered fragments
to Sensor on Tree(Q) where Q is an ancestor of P . If P is
the root, k sensors are deployed at P . The pseudo code of the
SDT algorithm is shown in Algorithm 1.

Figure 3 depicts a running example of Algorithm 1 with
d = 10, k = 1, and the tree rooted at A. Sensor on Tree(P )
traverses the tree and takes each vertex as its parameter in pre-
depth-first order. Sensor on Tree(C), Sensor on Tree(D),
and Sensor on Tree(E) return 0 since C, D, and E are all leaf
vertices. When executing Sensor on Tree(B), the algorithm
deploys no sensor on BC since |BC| < d, and deploys
S0 at (DB : 10), as shown in Figure 3(1)-(2). Because S0

cannot cover all the points on BC, Sensor on Tree(B) returns
−|BC|. When executing Sensor on Tree(A), the algorithm
deploys S1 at (BA : 1) so as to cover all the points on BC,
and deploys S2 at (EA : 10), as shown in Figure 3(3)-(4).
Since S1 can cover all the points on AE that are uncovered
by S2, the algorithm terminates and returns S = {S0, S1, S2},
otherwise it should deploy another sensor at A.



5

Theorem 2. Algorithm 1 returns an optimal answer to the
Sensor Deployment problem on tree topologies.

Proof: Clearly, Algorithm 1 returns an answer such that
all the points on Tree(Rr) are k-covered by the sensors.
By imposing induction on the root of a tree, we prove an
equivalent claim that ∀P ∈ V, S(P ) derived by the algorithm
is either optimal or partial-optimal with the corresponding
extra coverage maximized.

First, consider an edge PC ∈ E where C is a leaf, and
let |PC| = (2x + δ)d, in which x is a non-negative integer
and 0 ≤ δ < 2. Since any optimal answer for PC can be
converted by moving the sensors to eliminate the fragments
covered by more than k sensors, the number of sensors on PC
is at least k(x+ bδc), as calculated by Algorithm 1 in line 6-
13. Obviously, the extra coverage provided by the sensors on
PC is maximized, and the answer is optimal to cover PC
if δ ≥ 1, otherwise it is partial-optimal because an optimal
answer requires additional k sensors at P .

For any Tree(P ) of height 1, if all the points on Tree(P )
are k-covered, S(P ) derived by Sensor on Tree(P ) is optimal
for Tree(P ), because the number of sensors on each edge
is the lower bound in any optimal answer. Otherwise, since
the extra coverage provided by the sensors on each edge is
maximized and 0-covered points remain, an optimal answer
requires at least k additional sensors to cover Tree(P ). And
if k sensors are deployed at P , Tree(P ) can be fully covered
since 〈PQ〉 ≤ d, ∀Q uncovered by S(P ). Therefore, S(P )
is partial-optimal. In both cases, the extra coverage returned
by Sensor on Tree(P ) is maximized since the extra coverage
provided by the sensors on each edge is maximized.

Next, assume S(Ci) computed by the algorithm are optimal
or partial-optimal for P ’s children {Ci|1 ≤ i ≤ p} with
their extra coverage maximized. Denote an optimal or partial-
optimal answer for Tree(P ) as Sopt, and replace the sensors
on Tree(Ci) (1 ≤ i ≤ p) in Sopt with those in S(P ) to
obtain another sensor set, denoted as Stemp. According to the
assumption, |Stemp| ≤ |Sopt|.

If Stemp covers less points than Sopt, ∃Ci such that the
number of sensors on Tree(Ci) in Sopt is at least k larger
than that in Stemp, because no sensor set on Tree(Ci) of
size |S(Ci)| can cover more than S(Ci). In this case, we add
k sensors at each of such Ci into Stemp, and the obtained
extra coverage is no less than that in Sopt. Thus all the points
covered by Sopt are covered by Stemp, and |Stemp| ≤ |Sopt|.

Let the sensors on {PCi|1 ≤ i ≤ p} in S(P ) and Stemp be
S1 and S2, resp. Since S1 is optimal or partial-optimal to cover
each edge of length |PCi| − e1(i), and e1(i) ≥ e2(i), where
e1(i) and e2(i) are the extra coverages on Tree(Ci) in S(P )
and Stemp, resp., |S1| ≤ |S2|. Replace S2 in Stemp with S1,
and Stemp = S(P ) while the extra coverage on Tree(P ) is
maximized. Therefore S(P ) is optimal or partial-optimal with
the extra coverage maximized. If Sensor on Tree(Rr) in line
4-17 computes a partial-optimal answer, the algorithm deploys
k sensors at Rr so that Tree(Rr) is fully covered, and the
derived S(Rr) is optimal. Therefore, Algorithm 1 computes
an optimal answer for Tree(Rr).

Algorithm 2 The SDG Algorithm
INPUT: A graph G(V,E) with weighted edges, k and d.
OUTPUT: S = {Si|0 ≤ i < t} with Loc(Si) for 0 ≤ i < t.

1: t = 0 and S = ∅;
2: for each edge AB ∈ E do
3: |AB| = |AB| − b|AB|/(2d)c2d;
4: for each vertex A ∈ V and each edge BC ∈ E do
5: if d− 〈AB〉 ∈ (0, |BC|) then
6: P = P ∪ {P} with Loc(P ) = (BC, d− 〈AB〉);
7: if d− 〈AC〉 ∈ (0, |BC|) then
8: P = P ∪ {Q} with Loc(Q) = (CB, d− 〈AC〉);
9: if P,Q ∈ P and |BP |+ |CQ| > |BC| then

10: remove P and Q from P;
11: compute L according to V and P;
12: solve the set cover problem (V,L) to obtain S0 ⊆ V;
13: for each vertex A ∈ S0 do
14: S = S ∪ {Si|Loc(Si) = Loc(A), 1 ≤ i ≤ k};
15: t = t+ k;
16: restore the lengths of all the edges in E;
17: for each edge AB ∈ E with |AB| ≥ 2d do
18: find P at (BA : l), 〈PC〉 = d, 〈BC〉 ≤ d for some C ∈ S0;
19: while |AB| ≥ 2d do
20: S = S∪{Si|Loc(Si) = (AB : |AB|−l−d), t ≤ i < t+k};
21: t = t+ k and |AB| = |AB| − 2d;
22: return S;

B. An Approximation Algorithm for Graph Topologies

When the network structure is a general graph, the problem
seems much more complicated: multiple paths should be
considered when determining whether a point is covered by
a sensor, and there may be even no leaf vertex that can be
used to initiate a greedy deployment. Enlightened by the Set
Cover problem and the related algorithms, we propose the
SDG (Sensor Deployment on Graphs) algorithm, as shown in
Algorithm 2. The algorithm finds out a set of split points,
denoted as P. ∀P ∈ P, ∃A ∈ V, such that 〈PA〉 = d. The
edges are split by the vertices in V and the points in P into a set
of line fragments, denoted as L. Then the algorithm computes
a subset of V by greedy selections to cover all the lines in L,
and deploys sensors on the subset of vertices.

Specifically, the SDG algorithm deploys kb|AB|/(2d)c sen-
sors on edge AB, ∀AB ∈ E and |AB| ≥ 2d, so that a
fragment on AB with length b|AB|/(2d)c2d can be covered,
and the uncovered parts have a total length less than 2d. The
set of such sensors is denoted as Se. Next, the algorithm finds
out another set of sensors called Sv in which A is at a vertex
in V, ∀A ∈ Sv , so that the uncovered parts can be covered by
the sensors in Sv . Finally, the exact locations of the sensors
in Se are determined according to Sv , as shown in line 17-21.

To obtain Sv , the algorithm computes S0 ⊆ V in which the
vertices can cover all the lines in L, and then let k sensors in
Sv locate at A for each A ∈ V. To obtain P, the algorithm
assigns |AB| = |AB| − b|AB|/(2d)c2d, ∀AB ∈ E, computes
〈AB〉 ∀A,B ∈ V by shortest-path algorithms, and then adds
P or Q into P if |BP | = d − 〈AB〉 ∈ (0, |BC|) or |CQ| =
d−〈AC〉 ∈ (0, |BC|), resp., ∀A ∈ V and ∀BC ∈ E. Note that
P and Q should be removed from P if |BP |+ |CQ| > |BC|,
because in this case, both 〈AP 〉 and 〈AQ〉 are less than d.

Figure 4 shows a running example of Algorithm 2 with
d = 10, k = 1 on a graph with five vertices. Initially, 14 split
points are computed, denoted as P0, . . . , P13. For example,
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Fig. 4. A running example of the SDG algorithm, in which |AB| = |AE| =
|BE| = 10, |CD| = |DE| = |CE| = 8, and |AD| = |BC| = 19. The
locations of the split points are determined by |P2D| = |P3E| = |P4E| =
|P5D| = |P6D| = |P7E| = |P8E| = |P9C| = |P10C| = |P13C| = 2,
|P0A| = |P11B| = |P12C| = |P1D| = 9.

P1 is computed by 〈P1A〉 = 10, and P2, P5, P6, P9, P10,
P13 are computed by 〈P2E〉 = 〈P5E〉 = 〈P6E〉 = 〈P9E〉 =
〈P10E〉 = 〈P13E〉 = 10. Next, 22 line fragments and the
relations between the 5 vertices and the 22 fragments are
computed. For example, A covers AB, AP3, P3E, AP0, and
P0P1. Then the greedy algorithm selects C, A, B, and D in
order. The algorithm returns S = {Si|0 ≤ i ≤ 3} in which Si
(0 ≤ i ≤ 3) locates at C, A, B, and D, resp.

Theorem 3. The SDG algorithm returns an answer to the
Sensor Deployment problem within an approximation ratio of
2k [ln (2|V|+ 1) + ln (|E|) + 2].

Proof: Consider G∗(V∗,E∗) with |AB| ≤ 2d, ∀AB ∈
E∗, and denote the answer computed by Algorithm 2 and an
optimal answer as S∗app and S∗opt, resp. Then we replace each
sensor in S∗opt at (AB : x) (x > 0) by two sensors at A and B,
resp., ∀AB ∈ E∗. The derived set of vertices, denoted as S′,
satisfies |S′| ≤ 2|S∗opt|. Let Scov be an optimal answer to the
set cover problem, and |S′| ≥ |Scov| since S′ is an answer to
the set cover problem. Using greedy algorithms, Algorithm 2
can compute S∗alg with |S∗alg| ≤ k [ln |L|+ 1] |Scov|. There-
fore, |S∗alg| ≤ k [ln |L|+ 1] |S′| ≤ 2k [ln |L|+ 1] |S∗opt|.

For arbitrary graph G(V,E) in which E′ = {AB|AB ∈
E, |AB| > 2d}, denote the answer computed by the algorithm
and an optimal answer as Sapp and Sopt, resp. In any optimal
answer, at least kb|AB|/(2d)c sensors must be deployed on
AB, ∀AB ∈ E′. Let the set of such sensors be Sext, and
|Sopt| ≥ |Sext|. According to the algorithm, Salg = Sfix∪Sext,
where Sfix is computed by the algorithm on the converted
graph G∗(V∗,E∗) from G, in which |AB| ≤ 2d, ∀AB ∈ E∗.
Let an optimal answer on G∗ be S∗opt, |S∗opt| ≤ |Sopt|, and
|Salg| ≤ 2k [ln |L|+ 1] |S∗opt|+ |Sopt| ≤ 2k [ln |L|+ 2] |Sopt|.

Since there are at most two points having network distance
d from each vertex in V on each edge in E, |L| ≤ (2|V|+1)|E|,
hence |Salg| ≤ 2k [ln (2|V|+ 1) + ln (|E|) + 2] |Sopt|.

VI. SINK DEPLOYMENT AND ROUTING PROBLEM

Suppose the user have m sinks to be deployed on the
intersections of the network structure, and at least one sink
must be deployed on one of the two ends of each edge
for data collection, i.e., m sinks form a vertex cover of the
network structure. With such constraint, the sink deployment
and routing problem is formulated as follows.

Problem 2 (Sink Deployment and Routing). Given a network
structure G(V,E) with the deployed sensor set S, and a

user-assigned integer m, the goal is to find a vertex cover
H ⊆ V of size m, ∀P ∈ H, a sink is deployed on P ,
and a routing path from each Si ∈ S to H(Si) ∈ H,
denoted as Path(Si, H(Si)) = S0

i S
1
i . . . S

pi
i where S0

i = Si,
Spii = H(Si), S

j
i ∈ S ∀0 ≤ j < pi, and all the points in a path

are on the same edge, such that the network communication
cost, Cost =

∑|S|−1
i=0

∑pi−1
j=0 c(Sji S

j+1
i ), is minimized.

The problem is NP-Hard if the communication cost is
considered as infinite when the m sinks cannot be deployed as
a vertex cover, because in this case, the problem is equivalent
to the VC problem, i.e., the cost is less than infinite iff a
vertex cover of size m exists. In Section VII, we provide the
lower bounds of m so that the proposed algorithms can always
derive valid vertex covers in polynomial time.

We provide a simple algorithm to compute optimal routing
paths for the sensors on a single edge, which is the basis to
solve the problem on trees and graphs. The key observation is
that each optimal path Path(Si, H(Si)) is a shortest path from
sensor Si to sink H(Si), where the weight of Path(Si, H(Si))
is the total communication cost for sending a unit data from
Si to H(Si) along it. Since H is a vertex cover, ∀AB ∈ E,
there may be one sink at A or B, or two sinks at A and
B, and the related optimal costs are referred as cost(AB),
cost(AB), and cost(AB), resp. The above optimal costs and
related optimal paths then can be computed by shortest-path
algorithms, such as Dijkstra’s algorithm. Since no cross-edge
transmission exists, the optimal paths on a single edge are
optimal on trees or graphs, and we omit the computation for
the routing paths in the following algorithms for simplicity.

VII. ALGORITHMS FOR SINK DEPLOYMENT AND
ROUTING PROBLEM

In this section, we propose an algorithm named SDRT
(Sink Deployment and Routing on Trees) to derive an opti-
mal sink deployment and routing strategy for tree-structured
environment, and a heuristic algorithm called SDRG (Sink
Deployment and Routing on Graphs) for the problem on
general graph-structured environment.

A. An Optimal Algorithm for Tree Topologies

Given a tree topology, a natural question is: how many
sinks are necessary to construct a vertex cover, which can be
answered by applying a greedy algorithm. We refer this lower
bound to λ, and suppose m lies in the range of [λ, |V |].

The optimal vertex cover H (|H| = m) and the correspond-
ing Cost can be computed by a dynamic programming algo-
rithm. Consider a vertex P with its children {Ci|0 ≤ i < p}
in the network, and a subtree rooted at P consists of the edges
{PCj |0 ≤ j ≤ i} and the subtrees {Tree(Cj)|0 ≤ j ≤ i}.
Suppose there are x sinks deployed on ∪ij=0Tree(Cj), and
let g(P, i, x) and g(P , i, x) be the minimum cost for data
transmission on the subtree, where P is selected to deploy
a sink or not, resp. The minimum costs can be computed by

g(P, i, x) = min{cost(PCi) + g(Ci, f(Ci), y − 1)

+g(P, i− 1, x− y), cost(PCi) + g(Ci, f(Ci), y)

+g(P, i− 1, x− y)}, 0 ≤ y ≤ x (1)
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Algorithm 3 The SDRT Algorithm
INPUT: A tree rooted at Rr , S, and m.
OUTPUT: A vertex cover H of size m, and Cost.

1: for ∀AB ∈ E do
2: compute cost(AB), cost(AB) and cost(AB);
3: MinCost on Tree(Rr ,m);
4: if g(Rr, f(Rr),m− 1) < g(Rr, f(Rr),m) then
5: Cost = g(Rr, f(Rr),m− 1);
6: Sink on Tree(Rr,m);
7: else
8: Cost = g(Rr, f(Rr),m);
9: Sink on Tree(Rr,m);

10: return H and Cost;
procedure MinCost on Tree(P ,x)

11: for each child Ci of P do
12: MinCost on Tree(Ci,x);
13: for z = 0 to x do
14: initialize g(P, i, z) = +∞ and g(P , i, z) = +∞;
15: for y = 0 to z do
16: update g(P, i, z) according to Equation (1);
17: update g(P , i, z) according to Equation (2);
18: let g(P, i− 1, z − y1) and (T, y1) point to g(P, i, z);
19: let g(P, i− 1, z − y2) and (T, y2) point to g(P , i, z);

procedure Sink on Tree(T ,x)
20: if T = P then
21: add P into H;
22: for each child Ci of P in reverse order do
23: obtain g(T, i− 1, x− y) and (T ′, y) that point to g(T, i, x);
24: Sink on Tree(T ′,y);
25: x = x− y;

g(P , i, x) = min{cost(PCi) + g(Ci, f(Ci), y − 1)

+g(P , i− 1, x− y)}, 0 ≤ y ≤ x (2)

where f(Ci) refers to the maximum index of Ci’s children.
To see the correctness of the two recursion functions,

consider any optimal deployment with cost g(P, i, x) and
suppose g(P, i − 1, z), g(Ci, f(Ci), z) and g(Ci, f(Ci), z)
(0 ≤ z ≤ x) are already computed as the optimal costs for
the corresponding cases. If there are y sinks in Tree(Ci),
x − y sinks must be deployed in the previous i subtrees
of P , and the cost for x − y sinks in these subtrees must
be g(P, i − 1, x − y). Furthermore, if Ci is selected as a
sink, y − 1 sinks must be deployed in Tree(Ci) with cost
g(Ci, f(Ci), y − 1), otherwise y sinks must be deployed
in Tree(Ci) with cost g(Ci, f(Ci), y). Hence Equation (1)
enumerates all the possible cases that lead to an optimal
g(P, i, z), and finally selects the minimum cost in the cases.
Equation (2) obtains g(P , i, x) in a similar way, however, Ci
is always selected as a sink because P is not a sink and PCi
must be covered by P or Ci.

According to Equation (1) and Equation (2), the algorithm
must compute g(Ci, f(Ci), x) and g(Ci, f(Ci), x) for all P ’s
children before computing g(P, i, x) and g(P , i, x) ∀0 ≤ i ≤
f(P ). Furthermore, g(P, i, z) and g(P , i, z) for 0 ≤ z ≤ x
must be computed before g(P, i, x) or g(P , i, x). Therefore,
three nested loops on i, z, and y, resp., are required in the
dynamic programming.

The pseudo code of the dynamic programming algorithm is
illustrated in Algorithm 3, in which line 1-2 compute the opti-
mal costs for each edge. Line 3 evokes the MinCost on Tree
procedure to compute the intermediate costs, and line 4-
9 derive Cost which stems from g(Rr, f(Rr),m − 1) or

Algorithm 4 The SDRG Algorithm
INPUT: A graph G(V,E), S, and m.
OUTPUT: a vertex cover H of size m, and Cost.

1: H = ∅ and Cost = 0;
2: for ∀AB ∈ E do
3: compute cost(AB), cost(AB) and cost(AB);
4: while ∃AB ∈ E, A,B 6∈ H do
5: for all AB ∈ E, A,B 6∈ H do
6: compute Edge Selection Cost(AB);
7: select AB with the minimum Edge Selection Cost(AB);
8: H = H ∪ {A,B}, m = m− 2;
9: while m > 0 do

10: for all A ∈ V, A 6∈ H do
11: compute Vertex Selection Cost(A);
12: select A with the minimum Vertex Selection Cost(A);
13: H = H ∪ {A}, m = m− 1;
14: for each edge AB ∈ E do
15: add cost(AB) or cost(AB) or cost(AB) to Cost;
16: return H and Cost;

procedure Vertex Selection Cost(A)
17: ret = 0;
18: for each neighbor B of A do
19: ret+ = cost(AB) if B ∈ H, otherwise ret+ = cost(AB);
20: return ret;

procedure Edge Selection Cost(AB)
21: ret = Vertex Selection Cost(A)+Vertex Selection Cost(B);
22: return ret+ cost(AB)− cost(AB)− cost(AB);

g(Rr, f(Rr),m), and evoke the Sink on Tree procedure to
obtain H. In order to determine whether Ci is in H, the
algorithm needs to record the status of Ci (denoted as T ,
T = Ci or Ci) and the number of sinks (denoted as y1 or
y2) deployed on Tree(Ci) that lead to an optimal answer to
Tree(P ) having z sinks, as shown in line 18-19. Then the
Sink on Tree procedure retrieves the status of each vertex in
a top-down manner, and update H accordingly.

B. A Heuristic Algorithm for Graph Topologies

It is difficult for the user to provide a sufficient small m for
the sink deployment and routing problem on graphs, because
if m is too small, the sinks may even be unable to form a
vertex cover, and the minimum Vertex Cover problem is NP-
Complete. However, m ≥ w/2, where w is the number of
vertices in a maximum matching of the graph. Hence, m is
sufficient large for constructing a maximal matching (and also
a vertex cover) if it is no less than the number of vertices in
a maximum matching. In the following, we assume that m ∈
[w/2, n], and propose a heuristic algorithm, denoted as the
SDRG (Sink Deployment and Routing in Graphs) algorithm.

The SDRG algorithm constructs a maximal matching, and
adds the vertices in the matching into H, and then it continues
to add a vertex not in the matching into H until |H| = m. To
reduce the communication cost, the algorithm performs the
selection of an edge/vertex in a greedy manner. Specifically,
in each step of constructing the matching, it selects edge AB
from all the candidates with the minimum bring-in cost calcu-
lated by cost(AB) +

∑
C∈H cost(AC) +

∑
D 6∈H cost(AD) +∑

E∈H cost(BE)+
∑
F 6∈H cost(BF ). Similarly, it selects ver-

tex A from all the candidates with the minimum bring-in cost
computed by

∑
B∈HAB +

∑
C 6∈HAC.

The pseudo code of the SDRG algorithm is shown in
Algorithm 4, which initiates H and Cost, and computes the
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communication costs on each edge as Algorithm 3 does. Then
in line 4-8, it computes a maximal matching of the graph by
greedy selections, and adds the vertices in the matching into
H. If |H| < m, it selects m− |H| vertices and put them into
H, as shown in line 9-13. The algorithm then computes Cost
according to H, and returns H and Cost.

VIII. PERFORMANCE EVALUATION

We conduct extensive simulation experiments to evaluate
the performance of the proposed algorithms. In this section,
we first briefly introduce the experiment setup, and then reveal
the results in terms of the number of the deployed sensors and
the communication cost.

A. Experiment Setup

The topologies of the underlying environment, either trees
or graphs, are randomly generated, which are also guaranteed
to be connected. For graph generation, a parameter p is
given as the probability of any pair of intersections having
an edge, which is used to control the density of the edges.
The length of each edge is randomly generated within a
given range, measured by meters. We consider the instances
with the coverage degree k = 1 in our experiments for the
Sensor Deployment problem, because the answer given by
our algorithms to an instance with k > 1 is k times the
answer to that instance with k = 1. In the communication
cost model, we assume α = 1.0, β = 2.0, and γ = 0.0.
We run each algorithm for every parameter setting on 10
different topologies with different edge lengths, and show the
average/max/min experiment results.

B. Number of Deployed Sensors

The number of the sensors deployed to ensure network cov-
erage is the primary measurement to evaluate the performance
of Algorithm 1 and Algorithm 2. For comparison, we also
implement a naive algorithm referred to as the baseline, which
deploys dl/(2d)e sensors on an edge of length l when given
distance threshold d, and the distance between any adjacent
sensors is 2d. The results under variant number of intersections
and distance threshold are shown in Figure 5-8.

When d = 10, p = 0.5 for graph topologies, and the length
of the edges is in the range of [10, 100], the required numbers
of sensors obtained by the algorithms keep linear growth as
the number of intersections increases both in tree topologies
(Figure 5) and in graph topologies (Figure 6). This result
meets our intuition that the required number of sensors is
linear to the scale of the monitored environment. Furthermore,
Algorithm 1 outperforms the baseline algorithm by about 15%
as |V | increases from 200 to 1000, while Algorithm 2 obtains
less sensors than the baseline algorithm by about 30% as |V |
raises from 100 to 200.

To further evaluate the performance of Algorithm 1 and
Algorithm 2, we fix |V| = 500, let the length of the edges be
in [10, 100] and p = 0.5, and let the distance threshold d vary
from 10 to 50. The result in Figure 7 implies that compared
with the naive algorithm, the advantage of Algorithm 1 is more
obvious as d increases in tree topologies, since the ratio of
the answer returned by Algorithm 1 to that returned by the

naive algorithm keeps decreasing from about 85% to about
55%. In graphs, the performance gap between Algorithm 2
and the baseline algorithm is even larger than that between
Algorithm 1 and the baseline algorithm in trees. As illustrated
in Figure 8, when d = 50, the baseline algorithm returns 615.6
number of sensors on average, which is about 12 times lager
than the answer provided by Algorithm 2.

C. Communication Cost

In the experiments, the sensor deployment input of the
two algorithms are computed by Algorithm 1 and 2, resp.
The communication costs in data collection are computed by
Algorithm 3 and 4. The results with variant number of sinks
and distance threshold are shown in Figure 9-12.

The relation between the communication cost and the num-
ber of sinks in tree topologies is shown in Figure 9. We let
n = 50, d = 10, and the length of the edges be in [10, 100].
Algorithm 3 is performed on ten generated networks, in each
of which at least 21 sinks are required to cover all the edges.
From the figure we can see that the optimal communication
cost derived by Algorithm 3 decreases as the number of sinks
increases from 21 to 50, and the decreasing speed becomes
lower with more sinks. In graph topologies with n = 100,
d = 10, p = 0.01 and the length of the edges in [10, 50], the
communication cost computed by Algorithm 4 also decreases
as the number of sink raises. However, the decreasing speed
is higher when there are more sinks, as shown in Figure 10.
Algorithm 4 runs on ten graphs with m = 81 sinks deployed
on vertices of their maximal matchings, and it derives a cost
no more than 149% of the lower bound with m = 100.

Finally, the experiment reveals the relation between the
communication cost and the distance threshold d (Figure11-
12). In trees with n = 100, d = 10, and the length of the edges
in [10, 100], and let m be the size of a minimum vertex cover,
the communication cost derived by Algorithm 1 keeps linear
decreasing as d increases, which is also in accordance with the
decreasing of the number of sensors in Figure 7. The result for
graph topologies is illustrated in Figure 12, where n = 100,
d = 10, the length of edges is in [10, 100], p = 0.01, and m is
the size of a maximal matching. The communication cost with
all the intersections having sinks is also computed and used as
a lower bound for comparison, since the communication cost
is minimized when a sink is deployed on every intersection.
Figure 12 shows that the cost computed by Algorithm 4 does
not exceed 51.3% of the lower bound.

IX. CONCLUSION

In this paper, we investigate sensor deployment problem in
network-structure environments. Specifically, we address the
problem of sensor deployment to achieve k-coverage of the
network structure while minimizing the number of sensors. We
also study the joint optimization problem of sink deployment
and routing strategies with the goal to minimize the total
communication cost of data collection. We show the hardness
of the problems and propose polynomial-time algorithms to
obtain optimal solutions in the network structure of tree
topology as well as approximation algorithms for the general
network structure. The performance of proposed algorithms
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Fig. 5. Number of deployed sensors
with different number of intersec-
tions in tree topologies.
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Fig. 6. Number of deployed sensors
with different number of intersec-
tions in graph topologies.
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Fig. 7. Number of deployed sensors
with different distance threshold in
tree topologies.
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Fig. 8. Number of deployed sensors
with different distance threshold in
graph topologies.
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Fig. 9. Communication cost with
different number of sinks in tree
topologies.
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Fig. 10. Communication cost with
different number of sinks in graph
topologies.
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Fig. 11. Communication cost with
different distance threshold in tree
topologies.
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Fig. 12. Communication cost with
different distance threshold in graph
topologies.

are analyzed. Extensive simulations show that the number of
sensors can be significantly reduced, and the communication
cost does not exceed the lower bound too much.
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