
Cooperative End-to-End Traffic Redundancy
Elimination for Reducing Cloud Bandwidth Cost

Lei Yu†, Karan Sapra†, Haiying Shen† and Lin Ye‡
†Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
‡Department of Computer Science and Technology, Harbin Institute of Technology, China

{leiy, ksapra shenh}@clemson.edu, yelin@nis.hit.edu.cn

Abstract—The pay-as-you-go service model impels cloud cus-
tomers to reduce the usage cost of bandwidth. Traffic Redundancy
Elimination (TRE) has been shown to be an effective solution
for reducing bandwidth costs, and has recently captured signif-
icant attention in the cloud environment. By studying the TRE
techniques with a trace driven approach, we found that solely
using either sender-based TRE or receiver-based TRE cannot
simultaneously capture traffic redundancy in both short-term
(time span of seconds) and long-term (time span of hours or
days) data redundancy, which concurrently appear in the traffic.
Additionally, the TRE efficiency of existing receiver-based TRE
solution is susceptible to data changes compared to historical
data in the cache. In this paper, we propose a sender and receiver
Cooperative end-to-end TRE solution (CoRE) for efficiently iden-
tifying and removing both short-term and long-term redundancy.
Through a two-layer redundancy detection design and one single
pass algorithm for chunking and fingerprinting, CoRE efficiently
carries out cooperative operations between the sender and the
receiver. By extensive evaluation with several real traces, we
show that CoRE is able to identify both short-term and long-
term redundancy with low additional cost, while ensuring TRE
efficiency from data changes.

I. Introduction
Cloud computing is an emerging IT paradigm that provides

utility computing by a pay-as-you-go service model [1]. More
and more organizations are moving their data and services
to the cloud, which accordingly drive increased bandwidth
demands and costs for data access. The cost of cloud hosting
services to these organizations can vastly increase due to
the usage-based bandwidth pricing. Thus, the bandwidth cost
became an essential concern in cloud and is receiving great
attentions [2], [3].

In order to reduce bandwidth cost of data transfer from
the cloud, Traffic Redundancy Elimination (TRE) technologies
have being exploited [4]. Since significant redundancy has
been found in the network traffic [5], [6], due to common
accesses to the same or similar data objects from the Internet
end-users, eliminating the transmission of duplicate informa-
tion can greatly reduce the bandwidth usage. A number of TRE
solutions have been proposed for WAN optimization, including
pair middlebox-based solution placed at either end of a WAN
link [7], [8], [9], and end-to-end solution EndRE [10] deployed
at client and server side. They maintain fully synchronized
caches at both sender and receiver sides. The sender detects
the duplicate contents by comparing the outgoing data with

978-1-4673-2447-2/12/$31.00 c©2012 IEEE

its local cache and sends the reference of duplicate data
to the receiver instead of raw data. However, it has been
shown that they are deficient for a cloud environment because
of the elasticity and usage-based pricing of the cloud [4].
First, the workload distribution and migration due to cloud
elasticity can lead to frequent changes of service points for the
clients. Both the pair middlebox-based solution and EndRE
require tight cache synchronization between two end sides,
which is difficult or costly to maintain in such dynamic
environment. Second, the deployment of TRE solution can
incur additional usage of computation and storage resources
at cloud servers. Without careful design and implementation,
the costs of running TRE maybe eradicate the bandwidth
cost savings provided by TRE. EndRE, a sender-based TRE
solution which offloads most processing effort and memory
cost to servers, suffers such risk [4].

Recently, a receiver-based TRE solution named PACK [4]
is proposed to address the above issues arising in cloud
environment. In PACK, once a client receives a data chunk
that already exists in its local cache, it is expected that
the future coming data are also matched with its cached
data. The client makes predictions for future coming data
chunks and notifies the cloud server. The server confirms the
correctly predicted chunks, which then do not need to be
transferred. Without maintaining client status at the servers,
PACK effectively handles cloud elasticity. By predicting future
traffic redundancy at clients, PACK offloads most computation
and storage cost from cloud to clients, and thus greatly reduce
the TRE cost in cloud.

Recent studies on network traffic redundancy [6] have
shown that vast majority of data matches with the cache are
for chunks of size less than 150 bytes and have high degree of
temporal locality such as 60% within 100 seconds, and popular
chunks can recur with the time difference as large as 24 hours.
Such results indeed indicate two types of traffic redundancy,
referred to as short-term traffic redundancy (repetition in
minutes) and long-term traffic redundancy (repetition in hours
or days) according to the time scale of repetition occurrence.
By studying real traces we collected, we demonstrate that
the short-term and long-term redundancy can concurrently
appear in the network traffic. PACK can effectively capture
long-term redundancy in traffic between a server and a client,
because it only requires data caching at clients which can be
on large-size persistent storage such as disks and kept for a

long term. In contrast, sender-based solution EndRE is not
suitable for exploiting long-term traffic redundancy. EndRE
needs to maintain a large-size cache at the server for each
client to capture the long-term traffic redundancy between
them. This is not feasible because the server often serves a
large amount of cloud users but it only has limited storage.
Nevertheless, PACK fails to capture short-term redundancy,
because it uses an average chunk size of 8KB and cannot de-
tect the short-term redundancy that appears at fine-granularity
(e.g., the 150 bytes). Since a large portion of redundancy is
found in short-term time scale, PACK cannot exploit the full
redundancy in the network traffic. By reducing chunk size,
PACK may detect fine-granularity short-term redundancy, but
it will greatly increase the number of chunks and result in
prohibitive prediction transmissions.

In this paper, we aim to design a TRE solution for the cloud
environment, with the goals to remove the traffic redundancy
as much as possible while still catering to the characteristics
of the cloud. By exploiting both short-term and long-term
redundancy, traffic redundancy can be eliminated to the highest
degree. However, it is challenging to simultaneously and
effectively remove short-term and long-term redundancy while
avoiding tight cache synchronization and accumulative TRE
cost for cloud application. To address this problem, we propose
a sender & receiver Cooperative end-to-end TRE solution,
namely CoRE, which involves two layers of TRE operations
at the sender and can adaptively distribute the TRE effort
between the sender and receiver. With efficient joint efforts
of sender and receiver, CoRE is able to ensure high TRE
efficiency with low additional cost at cloud servers and clients.

In CoRE, the first-layer TRE performs prediction-based
Chunk-Match. To ensure prediction efficiency against data
changes, we improve prediction-based TRE compared with
PACK. Current prediction-based design in PACK requires that
the matched chunk exactly appears at the expected position
in TCP stream. Even a small offset of the outgoing data at
the sender, compared with the data cached at the receiver, can
invalidate the predictions and greatly degrade TRE efficiency.
Thus, the sender in CoRE divides the data into chunks and
compares the signatures of chunks with all recently received
predictions regardless of the predicted positions. In this way,
CoRE achieves resiliency against data offset and maximizes
the use of predictions from the receiver. The second-layer TRE
identifies maximal duplicate regions among chunks within a
temporary local cache, referred to as In-Chunk Max-Match.
Once the redundancy detection at the first-layer fails, CoRE
turns to the second-layer to identify finer-granularity redun-
dancy within chunks to gain as much bandwidth savings as
possible. In this way, both long-term traffic redundancy and
short-term traffic redundancy are detected.

In summary, the contributions of this paper are described as
follows:

1. By a real trace driven study, we identify the limitations
of existing end-to-end TRE solutions for simultaneously cap-
turing short-term and long-term redundancy of data traffic.

2. We propose a sender & receiver cooperative TRE scheme
(CoRE). To efficiently carry out cooperative operations, we

design a two-layer TRE scheme. We also propose an efficient
one pass fingerprinting and chunking algorithm.

3. We improve the design of prediction-based approach for
ensuring TRE efficiency from data changes.

4. We implement CoRE and quantify its benefits and costs
based on extensive experiments using several network traffic
traces.

The rest of the paper is organized as follows. Section II
describes existing TRE solutions. Section III discusses TRE
solution for cloud and its limitations. Section IV presents
our collaborative end-to-end TRE solution, CoRE, in detail.
Section V presents our implementation. In Section VI, we
evaluate CoRE and compare it with PACK by extensive
experiments using several traffic traces.

II. RELATED WORK
Recently, several TRE techniques have been proposed to

suppress duplicate data from the network transfers. A protocol-
independent packet-level TRE solution was first proposed in
[5]. The sender stores recently transferred packets, computes
the Rabin fingerprints [11] for each packet by applying a hash
function to each 64 byte sub-string of the packet content,
and selects a subset of representative fingerprints as to the
packet content. For an outgoing packet, the sender checks
whether its representative fingerprints have appeared in earlier
stored packets. If yes, the sender identifies the maximal overlap
region around every matched fingerprint and replaces the
region with a fixed-size pointer into the cache. To decode
compressed data, the receiver replaces the pointer by the
corresponding referred data in its local cache which stores
recently received packets. Several commercial vendors have
developed such protocol-independent TRE algorithms into
their “WAN optimization” middle-boxes [7], [8], [9]. The
successful deployment of TRE solutions in enterprise networks
motivated the exploration of TRE deployment at routers across
the entire Internet and redundancy-aware routing [12], [13].

Recent studies on traffic redundancy [6] found that over
75% of redundancy were from intra-host traffic, which implies
that an end to end solution is very feasible for redundan-
cy elimination. Accordingly a sender-based end-to-end TRE
named EndRE was proposed for enterprise networks [10].
By maintaining a fully synchronized cache for each client at
server, EndRE offloads most processing effort and memory
cost to servers and leave the client only simple pointer lookup
operations.

Most recently, a receiver-based end-to-end TRE PACK is
proposed for cloud environment [4]. The receiver divides
the incoming data stream into chunks, links and stores them
in sequence, referred to as a chain. The receiver compares
each incoming chunk to its local chunk store. Once finding a
matching chunk, it retrieves a number of subsequent chunks on
the chain where the matching chunk is located. The signatures
of these chunks and their expected offsets in the incoming
data stream are sent in a PRED message to the sender as a
prediction for the sender’s subsequent outgoing data. Figure 1
briefly describes the PACK algorithm. Once finding a match
with an incoming chunk [XYZA] in the chunk store, the
receiver sends to the sender the triples of signature, expected

A B C DAB C FH I J K

I J K B

Sender Receiver

Chunk3 Chunk2 Chunk1

Sign.1,n,4
Sign.3 Sign.2 Sign.1

5. Send ACK for
Prediction of Chunk1

Sign.2,n+4,4
Sign.3,n+8,4

Prediction
queue

S.1S.2

S.2 Sign.2

X Y Z A

X Y Z A
Matched Chunk

Chunk Store

2. m
atching

3.Prediction

4.
 m

at
ch

in
g

1. Chunking
incoming data

S.3

A B C DAC E FH

nn+4n+8

Fig. 1. A brief description for PACK algorithm. s.# and sign.# are chunk
signatures. n + # is the expected offset of a predicted chunk in TCP stream.

offset and length of following chunks [ABCD], [BCFA] and
[HIJK] in the same chain, i.e., (S ign.1, n, 4), (S ign.2, n+4, 4)
and (S ign.3, n + 8, 4). According to these predictions, the
sender computes SHA-1 over the outgoing data with the
expected offset and length, and compares the result with the
corresponding prediction. Upon a signature match, the sender
sends a PRED-ACK message to the receiver to tell it to
copy the matched data from its local storage. The data that
is obtained by the receivers from local cache instead of real
transmission is referred to as virtual data. PACK introduces
adaptive virtual window to limit the maximum total size of
chunks that can be predicted each time, thereby adjusting the
receiving rate of virtual data dynamically.

III. TRE SOLUTIONS FOR CLOUD AND LIMITATIONS

A. Impact of Short-term and Long-term Traffic Redundancy

In this section, we conduct trace-driven study to show the
impact of short-term and long-term traffic redundancy on the
efficiency of current end-to-end TRE solutions, and identify
their limitations.

1) Short-term redundancy: The real Internet traffic trace we
used is captured from an access link from a large university
to the backbone. The trace is 120 seconds long and con-
tains 1.9GB HTTP traffic between 8277 host pairs including
payloads. The detailed description is given in Table I. For
every host pair of sender and receiver, we detect redundancy
in the traffic from server to client by PACK and a sender-
based TRE similar to EndRE’s Max-Match [10] respectively.
The experimental results show that PACK has detected little
redundancy, totaling 1.4MB in 1.9GB traffic. By contrast, our
results show that the sender-based TRE using a small cache
size of 250KB has detected 5% redundancy, which amounts
to 114MB.

Figure 2 shows the length distribution of matched data found
by the sender-based TRE in our traffic trace. We can see that
about 70% of the matches have size no more 150 bytes. The
results indicate that data repetition occurs within short-term
time scale less than 120s and mostly with size at the order of
hundred bytes. The large difference on TRE efficiency between
PACK and the sender-based TRE is due to their different
ability of capturing short-term redundancy in the traffic; PACK
cannot capture short-term redundancy while sender-based TRE
can.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

150 300 450 600 750 900 1050 1200 1350 1460

M
at

ch
e

s(
%

)

Bytes
Fig. 2. Length distribution of matched data.

250KB 1MB 4MB 16MB 32MB

0

10

20

30

40

50

60

70

80

90

Cache Size

B
an

d
w

id
th

 S
av

in
gs

 (
%

)

(a) Temporary cache.

250KB 1MB 4MB 16MB 32MB

0

10

20

30

40

50

60

70

80

90

Cache Size

B
an

d
w

id
th

 S
av

in
gs

(%
)

(b) Persistent cache.

Fig. 3. Detected redundancy in Linux source traffic by sender-based TRE.

Since PACK uses a chunk size of 8KB, it is unable to
identify finer-granularity content repetitions and hence misses
the short-term redundancy. For example, in Figure 1, the
chunk [CEFA] will be sent without any compression due to
the false prediction. However, [CEFA] has a great overlap
with the previous sent chunk [ABCD]. PACK misses such
short-term repetition at fine-granularity. By reducing chunk
size, PACK may detect fine-granularity redundancy, but it will
greatly increase the number of chunks and result in prohibitive
prediction transmissions.

2) Long-term redundancy: Eyal et al. [4] have found signif-
icant long-term redundancy in YouTube traffic, online social
network service traffic and some real-life workloads, where
data repetition can occur over 24 hours or months. For the
sender-based TRE, a large persistent cache is necessary to
capture such long-term redundancy. To verify this point, we
investigate the TRE efficiency of two types of sender-based
TRE: temporary cache based and persistent cache based, with
the traffic generated by downloading 40 Linux source files one
by one in their release order, one of real-life workloads used
in [4].

In the persistent cache approach, each client is allocated
with a cache, which keeps past packets for the entire period
of workload downloading in order to detect data repetition
across successively downloaded files. In the temporary cache
approach, a cache is temporarily allocated with a cache which
serves for one file download, which can only capture the re-
dundancy within the file itself. When the download completes,
the cache is released and no historical information is stored.

Figure 3 presents the bandwidth savings, i.e., the percentage
of total redundancy in the workload traffic detected by the
sender-based TRE with various cache sizes. Figure 3(a) shows
the redundancy detected by the temporal cache approach with
a cache size of 250KB. We see the approach can detect
about 7% redundancy inside each file. Increasing cache size
yields diminishing returns. It means that most data repetitions
occur within the 250KB cache and they actually compose
the short-term traffic redundancy that is at the time scale of
250KB/bandwidth. Figure 3(b) shows the redundancy detected

by the persistent cache approach with a cache size of 32MB.
Comparing Figure 3(b) with Figure 3(a), we see a signif-

icant difference between the temporary cache and persistent
cache approaches. As opposed to 10% redundancy detected
by temporary cache, persistent cache can detect more than
80% redundancy, in which about 80% redundancy is found
in every file except the first downloaded one. We note that
the sizes of Linux source files are between 21MB and 31MB.
Therefore, the 32MB cache can store a whole file previously
downloaded, which enables to detect data repetition across
successive files, resulting in more detected redundancy. The
redundancy across different versions of Linux source shows
a long-term redundancy, because the source file download
most likely occurs when a new version is released. There-
fore, persistently keeping past transferred data is essential for
capturing long-term redundancy. Besides the persistency, the
steep rise of detected redundancy in Figure 3(b) also indicates
that the cache needs to be large enough to capture a long-term
redundancy in the traffic.

However, because the cloud server has limited resources and
usually serves a large number of users, it is not practical for the
server to maintain a large persistent cache for every client. As
a result, the sender-based TRE is unable to efficiently detect
long-term redundancy. By offload caching and computation
effort from the cloud server to clients, PACK can efficiently
capture the long-term redundancy. However, we have shown
that it fails to detect the short-term redundancy which is
significant in the network traffic in Section III-A1.

Besides, the efficiency of PACK for capturing the long-term
redundancy is susceptible to data changes, which can happen
frequently in various cloud applications involving frequent
data update such as collaborative development [14] and data
storage [15]. In PACK, the prediction is true only if the
predicted chunk exactly appears at the expected position in
the byte stream. Even a small position offset in the sender’s
outgoing data due to data insertion or deletion can invalidate
all the following predictions. For example, in Figure 1, ’E’
is inserted into the sender’s data. Both the second and third
predictions will fail due to this insertion, even though the
signature of [H, I, J,K] in sender’s data matches the third pre-
diction. Although a hybrid mode of sender-based and receiver-
based TRE is proposed for PACK [4] to address disperse
data changes, the deployment of two separate TRE schemes
causes cumulative costs and implementation complexity. The
switching between receiver-based approach and sender-based
approach also degrades the capability of either in capturing
long-term redundancy or short-term redundancy.

B. Design goals

Based on the above analysis, we conclude that solely using
either sender-based or receiver-based solution would fail to
eliminate a large amount of redundancy. With the advance of
various applications and services in clouds, significant short-
term and long-term redundancy can concurrently appear in
the network traffic, which calls for a new TRE solution to
efficiently capture redundancy at both short-term and long-
term time scale. Thus, we aim to design such a TRE scheme,

while ensuring the TRE efficiency against data changes and
low additional operation cost.

IV. CoRE DESIGN

In this section, we describe the design of CoRE in detail and
explain how it achieves redundancy detection in both short-
term and long-term time scales.

A. Overview

CoRE has two TRE modules each for capturing short-
term redundancy and long-term redundancy respectively. Two
TRE modules are integrated to form a two-layer redundancy
detection system. For any outbound traffic from the server,
CoRE first detects its long-term redundancy by the first-layer
TRE module. If no redundancy is found, it turns to the second-
layer TRE module to search for short-term redundancy at finer
granularity.

The first-layer TRE module detects long-term redundancy
by a prediction-based Chunk-Match approach like PACK [4].
However, comparing with PACK, we propose an improved
prediction algorithm to efficiently handle data changes, so
that a small data change will not affect the TRE efficiency.
Specifically, the sender in CoRE performs the same chunking
algorithm as the receiver, to divide the outgoing data into
chunks. Then, for each chunk, the sender looks up its signature
in its prediction store that keeps all predictions recently
received from the receiver. If a matching signature is found, the
sender sends a prediction confirmation PRED-ACK message
to the receiver. In this way, our prediction matching does not
involves data offset, which makes CoRE resilient against data
changes.

In the second-layer TRE module, the server maintains a
temporary small local cache for each client, and detects short-
term redundancy by matching outgoing data with this local
cache at fine granularity. In particular, the sender stores its
recently transferred chunks in its chunk cache. It computes
a set of representative fingerprints for each chunk. Every
fingerprint, along with a pointer to the corresponding chunk
in the chunk cache, is stored in a fingerprint store. In this
layer, the sender performs In-Chunk Max-Match to identify
contiguous sub-strings that are repeated across chunks. It
checks each representative fingerprint of the chunk against
the fingerprint store to find whether the fingerprint already
exists there. For each matching fingerprint, the corresponding
chunk is retrieved from the chunk cache and the match region
is expanded byte-by-byte in both directions to obtain the
maximal region of redundant bytes. After that, the sender
encodes the matched region in the outgoing chunk with an in-
chunk shim which contains the signature of the corresponding
in-cache chunk, the offset and length of the matched region.

For any incoming packet, the receiver first decodes in-chunk
shims if any. If the packet is a PRED-ACK message, the
receiver checks the corresponding prediction in its prediction
store and finds the expected chunk in its chunk store. Then,
it copies the chunk to its TCP input buffer according to the
offset in TCP stream specified in PRED-ACK message. An
overview of CoRE is given in Figure 4.

Prediction Store Prediction Store

Fingerprint Store

Chunk Cache
………

meta-data

Sender Receiver

chain

Chunk Store

Chunk ChunkChunk

Fig. 4. Overview of CoRE

Below, we explain the details of each of the above compo-
nents of CoRE.

B. Chunking and Fingerprinting

CoRE performs prediction based Chunk-Match to detect
long-term redundancy and local cache based Max-Match to
detect short-term redundancy in chunks. In Chunk-Match, the
sender divides the data stream into chunks based on data
content. It checks the SHA-1 hash value of each outgoing
chunk against the prediction store holding the signatures of
predicted chunks. Each matched chunk is replaced with a
prediction confirmation in the outgoing stream. If an outgoing
chunk does not have a matched chunk in the prediction store,
the sender conducts Max-Match. In Max-Match, a subset
of fingerprints, which are hash values of data in fixed-size
windows in the chunk, are computed. The sender compare
these fingerprints with its fingerprint store. If a matching
fingerprint is found, this means that the data chunk has a
window of data that matches an in-cache chunk. The in-
cache chunk is retrieved and compared byte-by-byte around
the match window to identify the maximal overlap region.
Then, the identified region in the outgoing data is replaced
with a shim, which indicates its memory offset in cache and
its length. After the receiver receives the chunk, it reconstruct
the compressed region based on the prediction confirmation
and shim.

The prior works [6], [10], [4], [5], [16] use Chunk-Match
and Max-Match exclusively. CoRE coordinately uses them
to implement two-layer TRE in order to maximally detect
redundancy, while achieving prediction efficiency. By using a
chunk size at the order of several KB, Chunk-Match identifies
and removes redundancy at a large granularity while ensuring
the low additional cost at the clients. Only when no matching
chunk is found, In-Chunk Max-Match is invoked. By selecting
fingerprints with an average interval of 32-64 bytes for each
chunk, In-Chunk Max-Match is able to identify redundancy
inside chunks at a smaller granularity. In this way, CoRE
brought about two benefits. First, successful chunk matches
in Chunk-Match eliminate the need for byte-to-byte compar-
isons in Max-Match, thus saving the computation cost and
improving the compression rate at the servers. CoRE has larger
chunk size than the previous sender-based TRE, which help
to reduce the number of expensive SHA-1 operations and the
overhead of chunk-hash storage, and also reduce the number
of chunk-hash transmissions between servers and clients. Sec-
ond, In-Chunk Max-Match can capture the opportunities of

Data

Chunk boundary Fingerprint

Fig. 5. Chunking and fingerprinting

redundancy elimination missed by Chunk-Match and improve
bandwidth savings.

Current chunking algorithms determine chunk boundaries
based on either byte or fingerprint. Byte based algorithms, such
as MAXP [6] and Samplebyte [10], choose a byte that satisfies
a given condition as chunk boundary. The fingerprint-based
algorithms, such as Rabin fingerprint based [10] and PACK
chunking [4], compute fingerprints by applying a pseudo-
random hash function to sliding windows of w contiguous
bytes in a data stream and select a subset of fingerprints with
a given sampling frequency. The first byte in the window of
each chosen fingerprint forms the boundaries of the chunks. In
CoRE, the sender performs both chunking and fingerprinting
per chunk. For this purpose, a straight approach is to first use
a chunking algorithm to divide a data stream into chunks and
then computes the fingerprints within each chunk. However,
this approach needs scanning the byte string twice (chunking
and fingerprinting), thus increasing the computation cost of
the servers. To save the cost, we propose a one single-pass
scanning algorithm to generate chunks and fingerprints within
chunks, which is based on the chunking algorithm proposed
in PACK [4]. By running a fingerprinting algorithm, a set of
fingerprints are computed and a subset of them are chosen as
chunk boundaries, as shown in Figure 5.

In our algorithm, a XOR-based rolling hash function is
used to compute a 64-bit pseudo-random hash value over
each sliding window with a size denoted by w. As shown
in [4], the XOR-based rolling hash function achieves higher
speed than Rabin fingerprinting algorithm for the computation
of fingerprints. Therefore, we choose the XOR-based rolling
hash function to generate fingerprints and chunk boundaries.
Given k specified bit-positions in a 64 bit string, denoted
by P f = {b1, b2, ..., bk}, the 64-bit pseudo-random hash value
with all “1”s at these positions is chosen as a fingerprint.
Given a set of n specified bit-positions Pc in a 64-bit string
such that |Pc| = n and P f ⊂ Pc, 64-bit fingerprints with
all “1”s at Pc are chosen as chunk boundaries. As a result,
the average chunk size is 2n bytes and the average sampling
interval for fingerprints is 2k bytes. Algorithm 1 shows the
pseudo-code of this chunking and fingerprinting algorithm
with w = 48, n = 13, k = 6.

C. CoRE Sender Algorithm
The sender uses a prediction store to cache predictions from

the receiver for a certain time period. Each prediction includes
the SHA-1 signature of a predicted chunk and its expected
offset, i.e., TCP sequence number in the TCP byte stream. The
sender also has a chunk cache to store chunks recently sent. A
fingerprint store holds meta-data for representative fingerprints
of each cached chunk, which includes the fingerprint value,
the position of the chunk referred by the fingerprint, and the

Algorithm 1 Chunking and Fingerprinting
1: cmask ← 0x00008A3110583080; //13 1-bits, 8KB chunks
2: f mask ← 0x0000000000383080; //6 1-bits, 64B fingerprint

sampling interval
3: longval← 0; //64-bit
4: for all byte∈ stream do
5: shift left longval by 1 bit;
6: longval← longval XOR byte;
7: if processed at least 48 bytes and (longval AND f mask) ==

f mask then
8: found a fingerprint f ;
9: if (longval AND cmask) == cmask then

10: f is a chunk boundary;
11: end if
12: end if
13: end for

byte offset in the chunk where the region represented by the
fingerprint starts.

When receiving new data from the upper layer application,
the sender performs the chunking and fingerprinting algorithm.
For each chunk, if the prediction store is not empty, the sender
first computes the SHA-1 signature of the chunk and then
looks up it in the prediction store. If a matching signature
is found in a prediction p, the sender replaces the outgoing
chunk with a PRED-ACK confirmation message which carries
a tuple < o f f setp, o f f sets > where o f f setp is the expected
offset in prediction p and o f f sets is the actual offset of the
outgoing chunk in the TCP stream.

In PACK, the sender only stores the current prediction and
discards its previously received predictions. Each prediction is
compared with current outgoing data over the TCP sequence
interval uniquely specified in the prediction. However, the
predicted chunks may be very likely to appear in the near
future, and the outgoing chunks may not appear at the same
position in the chain as predicted at the receiver considering
possible disperse insertions, deletions and modifications of
chunks. PACK cannot detect the redundancy in these cases.
Therefore, we improve the algorithm in PACK by enabling
the sender to hold not only recently received predictions but
also the previously received predictions. The CoRE sender
divides the outgoing data into chunks before matching against
predictions in order not to miss redundant chunks in changed
data. Each outgoing chunk is compared with all entries in the
prediction store regardless of their expected offsets (i.e., TCP
sequence).

An outgoing chunk can even match a prediction with an
inconsistent TCP sequence. In this way, CoRE can achieve
resiliency against data changes and leverage useful predictions
as much as possible. For example, in Figure 1, CoRE would
divide the outgoing data at the sender into chunks [ABCD]
[BCEFA] [HIJK], given the chunking algorithm that deter-
mines chunk boundaries based on data content. The signature
of chunk [HIJK] is already received as a prediction form the
receiver. Then, CoRE finds a match and obtains an opportunity
to compress this chunk but PACK misses it.

If the prediction store is empty or the above prediction-
based Chunk-Match operation does not find a matching chunk,

the sender then performs In-Chunk Max-Match. It checks the
fingerprints of the outgoing chunk against the fingerprint store.
If a matching fingerprint is found, the corresponding chunk is
retrieved from the chunk cache. The data in different windows
may generate the same fingerprints. To avoid such possible col-
lision in the fingerprint namespace, the corresponding matched
window in the chunk is compared with the outgoing chunk
byte-by-byte. Then, the matched window is expanded byte
by byte in both directions to obtain the maximal overlapped
region. Each matching region in the outgoing chunk is encoded
with a shim <signc, o f f setc, length, o f f sets> where signc
is the signature of the matched chunk in the chunk cache,
o f f setc is the offset of the matching region in the matching
chunk, and length and o f f sets are the length and the offset
of the matching region in the TCP stream, respectively. If the
matching chunk has multiple matching regions, corresponding
shims can be compressed together such as <signc, o f f setc1,
length1, o f f sets1,o f f setc2, length2, o f f sets2, . . .>.

After the sender sends out the chunk, the sender updates the
chunk cache and the fingerprint store with this chunk. Figure
6 describes the sender algorithm for processing outgoing data
by sate machines. The details of the maintenance of local data
structures at the sender are described as follows.
Chunk Cache. The chunk cache is a fixed-size circular FIFO
buffer. The server maintains a chunk cache associated with
a timer for every client. When the timer expires, the cache
is released. Once a new request arrives, a chunk cache is
allocated for the corresponding client. The chunk cache stores
recently transferred chunks from the server to the client, via
either one TCP connection or multiple TCP connections. Once
the chunk cache is full, the earliest chunk is evicted and the
fingerprints pointing to it are invalidated. Each entry in the
chunk cache is a tuple < data, signature >, where data field is
the chunk data and signature field is its SHA-1 hash. Note that
the signature is not always computed for all chunks. This field
is filled for a chunk in two situations. First, when the prediction
store is not empty, the outgoing chunk’s signature is computed
for prediction matching. Second, during the In-Chunk Max-
Match, if the signature field of a chunk for obtaining the
maximal matching region is empty, its signature is computed
and filled in the chunk cache. In this way, the expensive
signature computation is only performed on-demand, which
avoids unnecessary SHA-1 operations and reduces the server’s
computation cost.
Prediction Store. The server maintains a prediction store
for each TCP connection with the client. Once receiving a
new prediction from the receiver, the sender inserts it into its
prediction store associated with corresponding TCP connec-
tion. The prediction store holds the most recent predictions.
Outdated predictions need to be identified and evicted to limit
the size of the prediction store. For this purpose, in CoRE, we
define the elapsed time of a prediction p in the store as:

Ep =

{
0, S eqc ≤seq S eqp
(S eqc − S eqp) mod 232, S eqc >seq S eqp

(1)

where S eqc is the TCP sequence number of the chunk cur-
rently to be sent, and S eqp is the expected TCP sequence

Wait
application

data

Check
prediction

store

miss
In-Chunk

Max-
Match

Send
encoded
message

match match

Send raw
data

miss

Chunking
and

Fingerprint
ing

Data
Received

Send
PRED-ACK

Update
local data
structure

Fig. 6. Sender algorithm

number in the prediction. ≤seq and >seq are comparisons of
TCP sequence number with modulo 232 [17]. We use TT Lpred
to denote the system parameter for the maximum elapsed
time of a prediction. At the time when CoRE compares
the outgoing chunk with the TCP sequence number S eqc
against the prediction store, it removes predictions satisfying
Ep > TT Lpred from the prediction store.

Here, we assume that a larger TCP sequence number
difference implies that such prediction has a less relevance
with the future outgoing data and vice versa, without the loss
of generality. Thus, we use the difference of TCP sequence
numbers between a prediction and current outgoing data to
measure the timeliness of the prediction. CoRE maintains the
predictions within TT Lpred rather than only one prediction as
in PACK because predictions may appear again in the future
due to the repetitive appearance feature of traffic.

D. CoRE Receiver Algorithm
The receiver processes incoming TCP segments according

to their different types. There are three types of TCP segments
from the sender to the receiver: PRED-ACK message, encoded
message with shims and raw data. Upon receiving an PRED-
ACK message containing < o f f setp, o f f sets >, the receiver
first checks its local prediction store to find the corresponding
prediction p which contains the expected offset o f f setp. Then,
it retrieves the chunk expected by prediction p from the chunk
store and place the chunk to its TCP input buffer according
to the offset o f f sets in TCP stream specified by the sender.
When receiving the encoded message containing shim <signc,
o f f setc, length, o f f sets>, the receiver finds the chunk with
signature signc from its chunk store. The matching region in
the chunk indicated by o f f setc and length is copied to the
receiver’s TCP input buffer according to the position o f f sets
in TCP stream.

After decoding the shims or receiving raw data, the receiver
performs the chunking operation on the buffered data. The
chunking algorithm at the receiver is the same as Algorithm 1
except for fingerprint identification with f mask. The chunks
from one TCP stream are linked together in the order they
are received and cached in the chunk store. If the signature of
an incoming chunk is found in the chunk store, the receiver
sends to the sender predictions for several subsequent expected

Wait TCP
segment

Process
PRED-ACK

Check
chunk
Store

Make
Prediction

Match

Decode
shims

Encoded
Message

Chunking

PRED-ACK

Store
Chunk

Miss

Raw
Data

Fig. 7. Receiver algorithm

chunks. One or multiple predictions are sent in a PRED mes-
sage. Each prediction consists of the signature of a predicted
chunk and its expected offset in TCP stream from the sender to
the receiver. Before sending any prediction, the receiver checks
whether the TCP sequence range for its predicted chunk has
any overlap with anyone in the prediction store. If does, the
prediction is discarded. Thus, all sent predictions have no
overlap in their TCP sequence range. They are sent in the
order of their expected offsets, i.e., TCP sequence numbers.
Figure 7 shows the receiver algorithm, in which the receiver
enters different processing procedures according to the types
of incoming messages.
Prediction Store. The prediction store at the receiver keeps
the predictions sent recently. Each entry consists of an ex-
pected TCP sequence number in a prediction and a pointer
to the corresponding predicted chunk. The chunk signatures
in predictions are not stored, since every prediction can be
uniquely identified by its expected sequence number. The pre-
diction store is maintained in the similar way as at the sender.
When receiving a chunk with TCP sequence number S eqc
either actually received or reconstructed from an incoming
PRED-ACK message, the receiver removes any prediction p
with Ep > TT Lpred from the prediction store before trying to
make any new predictions.

V. IMPLEMENTATION
We implemented CoRE in JAVA based on PACK imple-

mentation [18]. The protocol is embedded in the TCP options
field. The prototype runs on Linux with Netfilter Queue [19].

The implementation of sender component largely follows
the discussion in Section IV-C. The implementation of the
prediction store at the sender must support quick identifi-
cation of matching predictions, and efficient identification
and deletion of outdated predictions. Considering that the
arrivals of predictions are in the increasing order of the
expected offset, we use LinkedHashMap because its iteration
ordering is normally the order in which keys are inserted.
The chunk cache is implemented as a circular FIFO with a
maximum of M fixed-size entries. The fingerprint store is
implemented as HashMap. When the old chunk is evicted
from the chunk cache, the associated fingerprints should be
invalidated. To efficiently perform this task, we adopted the

method in [12]. We maintain a counter MaxChunkID (4 bytes)
that increases by one before a new chunk is stored. Each
chunk has an unique identifier ChunkID which is set to the
value of MaxChunkID when it is stored. The position of a
chunk in the store is computed by ChunkID%M, thus we
store ChunkID instead of the position of the chunk in meta-
data of the fingerprint store. For each entry in the fingerprint
store, if ChunkID < MaxChunkID − T , the corresponding
chunk has been evicted and thus the fingerprint is invalid.
For the implementation of receiver component, we add the
in-chunk shim decoding algorithm, and the prediction store is
also implemented as LinkedHashMap.
Parameter Settings. In default, we use an average chunk size
of 8KB and fingerprint sampling interval of 64B by setting n =

13 and k = 6 for the chunking and fingerprinting algorithm.
We set TT Lpred = 221, M = 29 for the chunk store at the
receiver.
Cache Synchronization. To decode the in-chunk shim, the
chunk cache at the sender needs to be synchronized with
that at the receiver. Nevertheless, CoRE doesn’t require strict
synchronization between sender and receiver due to three
reasons. First, CoRE operates in TCP stream such that packet
loss and disorder can be handled by the TCP protocol. Second,
CoRE suppresses the redundancy based on chunks. The drop
of a whole 8KB chunk can be easily and early detected by the
TCP protocol. Third, as opposed to EndRE [10], the in-chunk
shim in CoRE contains the signature of the matching chunk
as an index to locate it rather than an address in the cache.

VI. EVALUATION
In this section, we evaluate CoRE and compare it with

PACK and the sender-based scheme by both trace-based and
testbed approach. Our trace-based evaluation is based on
two genuine data set of real-life workloads and two Internet
HTTP traffic traces. We deploy CoRE implementation onto
our testbed consisting of a server and client(s). Our server is
2 Ghz Dual-Core with 2 GB RAM running Ubuntu, and clients
have 2.67GHz Intel Core i5 with 4 GB RAM.

A. Traffic Traces
Our evaluation uses the following trace data sets:
Linux Source Workload (2.0.x): Forty tar files of Linux

kernel source code. These files sum up to 1 GB and were
released over a period of two year. The traffic is generated by
downloading all these tar files in their release order from 2.0.1
to 2.0.40.

IMAP trace: 710MB of IMAP Gmail for past 1 year
containing 7500 email messages. These emails consist of
personal emails as well as regular mail subscriptions.

Internet traffic traces: We monitored one of the access links
from a large university. The link has a 1Gbps full-duplex
connection to the backbone and serves roughly 30,000 users.
We captured entire packets (including payloads) going in either
direction on the link. Due to limited disk volume compared
with huge traffic in our measurement architecture, we could not
store all kinds of traffic. Thus, without loss of generality, we
decided to focus on the web applications as the target traffic by
using port 80 to filter them out. However, the HTTP traffic still

consume about 1.6GB-2.9GB per minute, which is not suitable
for long-term monitoring. In order to study the redundancy in
traffic in a long-term period, we adapted our capturing rules
for one of the most popular social network (SN) website. As
a result, our real Internet traffic traces include one full HTTP
trace (1.9GB in 120 seconds) and one SN trace (1.3GB in 2
hours). The detailed information is shown in Table I.

B. TRE efficiency of CoRE
In this section, we first evaluate TRE efficiency of CoRE

with the traffics of Linux source files and Gmail messages as
in PACK [4], and then compare bandwidth savings of CoRE
compared with PACK and sender-based solution. The traffic
of Linux source files are resulted from the downloads of these
files in the their release order. For the traffic of Gmail, all the
email messages are grouped by month, and downloaded by
their issue dates. The CoRE sender uses a 4MB chunk cache,
a size of the maximum capacity of 512 chunks with an 8KB
average chunk size.

Figure 8(a) and 8(b) show the redundancy detected by the
prediction-based Chunk-Match and In-Chunk Max-Match of
CoRE, respectively. In Figure 8(a), 29 files have more than
70% redundancy and the remaining files have at least 38%
redundancy. Total redundancy amounts to 68% in the whole
traffic volume of 40 Linux source files, about 664MB. Such a
large amount of redundancy is resulted from the high similarity
between an earlier version and a subsequent version. When the
file “Linux-2.0.1.tar” is downloaded for the first time, there is
no similar data that is cached, so that there are no successful
predictions and CoRE only found a small redundancy inside
the file itself by In-Chunk Max-Match. As we can see, each file
contains a little redundancy inside itself and a large amount of
redundancy exists across files. This suggests that in such real-
world workload, long-term redundancy is significantly more
than short-term redundancy. Because a download happens only
after the release of a new version and the cache required to
detect long-term redundancy has at least the size of a file, the
sender-based TRE with small temporary cache cannot obtain
bandwidth savings.

In Figure 8(b), the email traffic in each month has much less
redundancy than the Linux source files. The reason is that most
of emails are distinct and have much less duplicate contents.
The total redundancy detected by CoRE amounts to 11% in
our Gmail traffic volume of 12 months, about 71MB, which is
less than 31.6% redundancy shown in the Gmail traffic used
by PACK [4]. The authors of PACK found that the redundancy
arises from large attachments from multiple sources in their
Gmail messages. However, our Gmail messages contain few
attachments, which causes its less redundancy than PACK’s
Gmail trace. Little redundancy is detected by prediction in
the Gmail traffic of several months from April to August
and from October to December, which indicates little long-
term redundancy in these Gmail traffics and confirms the
distinction of our Gmail messages. We also find that in our
detected redundancy, 5% is contributed by prediction and the
remaining 6% is contributed by In-Chunk Max-Match. As we
can see, the redundancy detected by In-Chunk Max-Match is
significant compared to the redundancy detected by prediction,

Trace
Name Description Dates/

Start Times Duration Total
Volume(MB) IP Pairs Servers(IP) Clients(IP)

Univ-HTTP Inbound/outbound
http

10am on
11/05/11 120s 1900 8277 3183 1931

Univ-SN Inbound/outbound
for SN

3pm on
11/08/11 2h 1300 3237 6 894

TABLE I
Characteristics of Internet traffic traces

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Tr
af

fi
c

V
o

lu
m

e
 P

e
r

Fi
le

 (
M

B
)

File Linux-2.0.X.tar

Predicted Data

In-Chunk Max-Match

Non Redundant

(a) Detected redundancy of 40 different Linux
Kernel versions

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12

B
an

d
w

id
th

 S
av

in
gs

 (
M

B
)

Month

In-Chunk Max-Match

Predicted Data

Non Redundant

(b) Detected redundancy of 1-year Gmail ac-
count by month

Fig. 8. Detected Redundancy by CoRE

Data traffic
Name

CoRE PACK
% savings

Linux source 68 54
Email 11 3.6

Univ-HTTP 4.8 0
Univ-SN 8.3 0.3

TABLE II
Percentage bandwidth savings of CoRE and other solutions

which is sharp contrast to the results of Linux source files.
This indicates that Gmail traffics have significant short-term
redundancy, and the receiver-based TRE only obtains less than
half of bandwidth savings in our Gmail traffics compared to
CoRE. The results verify the necessity of a sender & receiver
cooperative TRE.

Table II compares the bandwidth savings for CoRE, PACK
and sender-based TRE with different cache sizes. Each entry
shows the percentage of bandwidth savings in the total volume
of the corresponding traffic trace. From this table, we see
that CoRE performs better than PACK because CoRE captures
short-term redundancy and is also resilient to data changes.

C. Performance Of CoRE Prediction
The difference of the prediction designs between CoRE and

PACK is that the CoRE sender performs the same chunking
operation as the receiver so that it is able to compare chunks
with predictions regardless of predicted data offsets in the data

stream. As a result, CoRE can ensure TRE efficiency from
the changes of outgoing data compared with the original data
cached at the receiver. To verify this, we disabled the low
layer of In-Chunk Max-Match in CoRE and only measured
the redundancy detected by its prediction. We compared the
CoRE’s prediction solution with PACK’s by using Linux
source and Gmail traffics, with an average chunk size 8KB
for both CoRE and PACK.

Figure 9(a) shows the bandwidth savings, i.e., redundancy in
each of the downloaded versions detected by CoRE prediction
and PACK prediction, respectively. Figure 9(b) shows the
redundancy in each month of the email messages. The exper-
imental results show that CoRE prediction scheme can detect
and eliminate more redundancy than PACK. The amount of
redundancy detected by CoRE prediction is 21% higher than
that detected by PACK in the traffic of Linux source files,
and 22% higher in Gmail traffic. The reason for the higher
performance of CoRE prediction is that it is common that
the update of the Linux source code involves the new code
insertion and old code deletion. In the Gmail traffic, the emails
usually contain short-term data repetition because when people
reply to an email, the content of this email is usually included
to the outgoing message.
Resiliency against data changes To further verify the re-
siliency of CoRE prediction against data changes, we chose
a 31.5MB Linux tar file and inserted one random byte to
the random positions into the file. By changing the average
distance between two successive inserting positions in the file,
we changed the degree of data changes on the original file.
We downloaded the original file first, and then downloaded
the modified file to measure its redundancy that CoRE and
PACK can detect given the cache of the original file at the
receiver. Figure 10 shows that CoRE prediction detects more
redundancy than PACK under various degrees of data changes.
“No changes” in the x-axis means that the second file we
downloaded is the same as the original file. In this case, CoRE
and PACK detect the same amount of redundancy. As we can
see, PACK is very susceptible to data changes. It decreases
exponentially as the insertion intensity increases. In contrast,
CoRE is much more resilient against data changes. It decreases
linearly as the insertion intensity increases. The results confirm
the resiliency of CoRE prediction to data changes due to
the data chunking at the sender and the matching with the
historical predictions.

D. Cost Evaluation

To measure the operation cost of CoRE at the sender and
receiver, we monitored CPU utilization on the server and the
client at an interval of one second. Since higher redundancy

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Tr
af

fi
c

V
o

lu
m

e
 P

e
r

Fi
le

 (
M

B
)

File Linux Source Files -2.0.X.tar

PACK CoRE-prediction

(a) Bandwidth savings of 40 different Linux Kernel ver-
sions

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

B
an

d
w

id
th

 S
av

in
gs

(K
B

)

Month

PACK CoRE-prediction

(b) Bandwidth savings of 1-year Gmail account by month

Fig. 9. Comparison of CoRE prediction and PACK

0

5000

10000

15000

20000

25000

30000

35000

4KB 8KB 16KB 32KB 64KB No
changes

B
an

d
w

id
th

 S
av

in
gs

(K
B

)

Average Distance of Insertion

PACK

CoRE prediction

Fig. 10. Detected redundancy VS Insertion intensity

could cause more prediction and elimination cost, we use the
Linux source workload to measure the TRE operation cost.
Table III compares CoRE’s server CPU utilization ratio with
PACK and sender-based approach As we can see, CoRE has a
little higher CPU utilization ratio than PACK, and both of them
are less than sender-based solution. Such results indicate that
chunking and fingerprinting in CoRE incur a low additional
cost compared to PACK. Therefore, CoRE can still efficiently
obtain overall gain savings when used in cloud environment.

VII. CONCLUSION

By the real trace driven study on existing end-to-end sender-
side and receiver-side TRE solutions, we identify their limi-
tations for capturing redundancy in short-term and long-term
data redundancy. Thus, we propose an Cooperative end-to-end
TRE CoRE, which integrates both sender-side and receiver-
side efforts. Through extensive trace-driven experiments, we

Scheme
Name

Server
CPU Utilization %

Client
CPU Utilization %

CoRE 3.41 2.75
PACK 2.92 2.29

Sender-based 5.28 -

TABLE III
CPU cost

show that CoRE is able to capture both short-term and long-
term redundancy, and can eliminate much more redundancy
than PACK while incurring a low additional operation cost.

Acknowledgements
This research was supported in part by U.S. NSF

grants CNS-1249603, OCI-1064230, CNS-1049947, CNS-
1156875, CNS-0917056 and CNS-1057530, CNS-1025652,
CNS-0938189, CSR-2008826, CSR-2008827, Microsoft Re-
search Faculty Fellowship 8300751, and U.S. Department
of Energy’s Oak Ridge National Laboratory including the
Extreme Scale Systems Center located at ORNL and DoD
4000111689.

References
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.

[2] “The hidden cost of the cloud: Bandwidth charges,”
http://gigaom.com/2009/07/17/the-hidden-cost-of-the-cloud-bandwidth-
charges/.

[3] “Cloud bandwidth costs & the true cost of cloud hosting,”
http://www.earthlinkcloud.com/2011/09/cloud-bandwidth-costs-the-
true-cost-of-cloud-hosting/.

[4] E. Zohar, I. Cidon, and O. O. Mokryn, “The power of prediction: cloud
bandwidth and cost reduction,” in ACM SIGCOMM, 2011, pp. 86–97.

[5] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in ACM SIGCOMM, 2000, pp.
87–95.

[6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redun-
dancy in network traffic: findings and implications,” in SIGMETRIC-
S/Performance, 2009, pp. 37–48.

[7] “Riverbed networks : Wan optimization.”
http://www.riverbed.com/solutions/optimize.

[8] “Juniper networks: Application acceleration.”
http://www.juniper.net/us/en/products-services/application-acceleration/,
1996.

[9] “Cisco wide are application acceleration services,”
http://www.cisco.com/en/US/products/ps5680/
Products Sub Category Home.html.

[10] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “Endre: An end-system
redundancy elimination service for enterprises,” in NSDI, 2010, pp. 419–
432.

[11] M.Rabin, “Fingerprinting by random polynomials,” Technical report
Harvard University, vol. TR-15-81, 1981.

[12] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic elimi-
nation,” in ACM SIGCOMM. ACM, 2008, pp. 219–230.

[13] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for
coordinated network-wide redundancy elimination,” in ACM SIGCOMM.
ACM, 2009, pp. 87–98.

[14] “Paas.” [Online]. Available: http://www.ibm.com/cloud-
computing/us/en/paas.html

[15] “Dropbox.” [Online]. Available: www.dropbox.com
[16] S. Ihm, K. Park, and V. S. Pai, “Wide-area network acceleration for the

developing world,” in USENIX annual technical conference. USENIX
Association, 2010, pp. 18–18.

[17] G. Wright and W. Stevens., TCP/IP Illustrated, Volume2: The Imple-
mentation. Addison-Wesley,Massachusetts, 1995.

[18] “Pack source code,” http://www.venus-c.eu/pages/partner.aspx?id=10.
[19] “netfilter/iptables:libnetfilter queue,”

http://www.netfilter.org/projects/libnetfilter queue, Oct 2005.

