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Abstract—In this paper, we focus on distributed file search
over a delay tolerant network (DTN) formed by mobile
devices that exhibit the characteristics of social networks.
Current file search methods in MANETs/DTNs are either
content-based or contact-based. The former builds routing
tables for node contents but is not resilient to high node
mobility, while the latter exploits node contact patterns in
the social networks but may lead to high latency. Recent
research also reveal the importance of interests in realizing
efficient file dissemination in DTNs. In this paper, we first
analyze node interest and mobility from real traces, which
confirms the shortcomings of a contact based method and
show the importance of considering both content/interest and
contact in file search. We then propose Cont2, a social-
aware file search method which leverages both node social
interests (content) and contact patterns to enhance search
efficiency. First, considering people with common interests
tend to share files and gather together, Cont2 virtually groups
common-interest nodes into a community to direct file search.
Second, considering human mobility follows a certain pattern,
Cont2 exploits nodes that have high contact frequency with
the queried content. Third, Cont2 also exploits active nodes
that have more connections to others as a complementary
approach to expedite file search. Trace-driven experimental
on the real-world GENI testbed and NS-2 simulator show
that Cont2 can significantly improve the search efficiency
compared to current methods.

Keywords-Social-Aware, File Search, Delay Tolerant Net-
works

I. INTRODUCTION

In this paper, we focus on distributed peer-to-peer file
search in a delay tolerant network (DTN) formed by mobile
devices, the holders of which exhibit certain social network
properties. Imagine students could easily acquire course
materials through mobile phones while walking on campus
and drivers could acquire weather and traffic conditions
while driving. This research is driven by the shortcomings
of the infrastructure-based wireless networks: 1) service is
not available everywhere (e.g., in rural area), and 2) its cen-
tralized model imposes high capacity stress on the central
server, which may lead to bottlenecks. Moreover, such a file
sharing model enables nodes (people) to exploit common
interest and movement pattern in a decentralized manner.
This may provide potential new social applications/services
that integrate both interests and locations.

File searching has been studies thoroughly in mobile ad
hoc networks (MANETs), which are similar to DTNs on
the distributed nature. One simple distributed file search
method in MANETs is broadcasting [1]–[3], in which
queries are flooded throughout all or a portion of nodes
to search for a requested file. Though this method can find

files quickly, it is burdened by huge amounts of traffic,
leading to low efficiency. In another group of content-based
file search methods [4]–[7], nodes disseminate their con-
tent synopses to certain other nodes, which build routing
tables (i.e., content tables) containing routes to the content
holders for query forwarding. However, node mobility can
make routing tables expire quickly, thereby degrading the
search reliability. SPOON [8] leverages social networks
for content search in MANETs where common-interest
nodes always stay together. However, it cannot be used
in DTNs where common-interest nodes, though meet often
compared to other nodes, do not necessarily always stay
together.

Recently, some methods [9], [10] have been proposed to
leverage node contacts for content dissemination or repli-
cation in DTNs. They group nodes with frequent contact
to realize efficient file service. For example, MOPS [9]
creates communities in which nodes have frequent contacts
for intra-community file sharing and selects nodes with
frequent contacts with other communities as brokers for
inter-community content distribution. However, only con-
sidering node contacts in DTNs may lead to low efficiency.
First, brokers in different communities are sometimes
disconnected to each other. Second, nodes in the same
community do not always stay together. Third, a node
usually has multiple interests, and few nodes share many
interests. This implies that contact based communities may
hold files from different interests, leading to frequent inter-
community search. Our study on a real trace obtained from
students and staff on a campus [11] also confirms these
drawbacks.

To overcome these shortcomings, we propose a social-
aware Content and Contact based file search method,
namely Cont2, for DTNs in a social network environment.
The cornerstone for the design of Cont2 comes from two
properties of social networks in our DTN scenario:
(P1) Common interest: every node has social interests and
nodes with a common interest, though may be seperated,
tend to meet more often with each other than with other
nodes [12];
(P2) Movement pattern: people usually visit the same
location periodically with skewed preferences [13].

By leveraging P1, we develop a social community cre-
ation algorithm that virtually classifies nodes into different
communities based on their interests. This helps to forward
a file query toward the destination community. By leverag-
ing P2, we develop a file searching algorithm that always
forwards requests to nodes that have high contact frequency



with the queried content (i.e., they have high possibility
to meet at the locations they visit periodically). If such a
node does not exist, the algorithm then utilizes active nodes
to expedite the search. Cont2 is particularly proposed for
the social network environment where file interests indicate
node mobility and file requests. Such a condition can be
found in many environments for the purpose of file sharing
such as campus, community and company, though it cannot
be guaranteed in all DTN scenarios.

II. RELATED WORK

A lot of works have been proposed to achieve distributed
file or content search in MANETs. One group of methods is
based on broadcasting [1]–[3]. 7DS [1] exploits the mobil-
ity of nodes within a geographic area to disseminate content
through neighbors. In Epidemic [3], two nodes exchange
messages they haven’t seen upon their encountering. Hayes
et al. [2] extended the Gnutella peer-to-peer data sharing
system [14] to a mobile environment, in which a node
broadcasts its initiated or received queries to its connected
nodes. Another group of file search methods is based on
file content. PDI [4] and ORION [5] create a content
table on each node along the reply path of broadcasted
queries, which directs future searches. Repantis et al. [6]
proposed to let each node disseminate its content synopses
to its neighbors one or several hops away to guide query
messages. GCLP [7] sends out node content and queries in
vertical directions to ensure the success of file searches.
Though these methods can find files in MANETs, they
suffer from a huge amount of broadcasted messages and
easily expired routing table caused by node mobility,
respectively, leading to degraded system efficiency.

There are some methods for efficient data dissemi-
nation/publish in DTNs [9], [10], [15]–[20]. MOPS [9]
groups nodes with frequent contact into a community and
selects nodes having frequent contact with a neighboring
community as brokers for inter-community communica-
tion. The socio-aware overlay [10] builds brokers into an
overlay, in which brokers use unicast or direct commu-
nication protocols (e.g., WiFi access points) for commu-
nication. In [15], besides node mobility, the author also
considers users’ impatience in acquiring files in deciding
the optimal file caching in opportunistic network, However,
these methods only utilize node contacts to guide the
content publish and fail to further consider node interests
to enhance file availability.

Researchers also have proposed efficient content dissem-
ination algorithms in DTNs based on node interests [17]–
[20]. Lenders et al. [17] investigated realizing podcasting
in MANETs and discussed different content solicitation
strategies. Zhang et al. [18] defined friends as nodes
with similar interests and evaluated four data diffusion
strategies (i.e, diffusing similar or different data between
friends or strangers). They concluded that diffusing similar
data between friends and different data between strangers
lead to the best performance. In ContentPlace [19], nodes
collect files that are possibly interested by nodes in their
social communities. In addition to node interests, Gao et
al. [20] further considered social contact patterns in data
dissemination by forwarding data to nodes that are more

likely to meet nodes interested in it. These methods mainly
investigate how to disseminate contents to nodes, which is
different from the goal of file search in Cont2. Pitkäen
et al. [16] studied how to stop the content searching at
a suitable step in single-copy routing [21], Spray-and-
Wait [22] and epidemic routing so that the number of
discovered files and searching overhead can be balanced
in DTNs. Unlike this work, our work focuses on a content
search method to quickly and efficiently find requested
contents.

SPOON in our previous work [8] shares the same goal
of efficient file search as Cont2. However, SPOON was
developed for MANETs with strong node interest and
contact correlation, i.e., nodes with similar interests often
meet together, while Cont2 is developed for DTNs where
nodes with similar interests do not necessarily always stay
together. Due to this difference, SPOON and Cont2 have
different file search systems. SPOON focuses on identify-
ing common-interest nodes based on their stored files and
forming them into a cluster to facilitate file search, while
Cont2 focuses on file search among dispersed common-
interest node community members. Cont2 novelly builds
community contact tables and neighbor table on each node
to direct the file searching.

III. REAL-TRACE ANALYSIS

We analyzed the MIT Reality trace [11], which records
the encountering of 94 smart phones held by students and
staff at MIT, to verify the drawbacks of only considering
node contacts in file search in DTNs. Using the method in
MOPS, we classified nodes in the trace into 7 communities
(C1−7), in each of which nodes share frequent contacts. We
selected one pair of brokers for each community pair and
analyzed the data for one day (15 hours=54000s). A broker
in community C1 for community C2 refers to the node in
C1 that has the highest accumulated contact frequency with
nodes in C2.

A. Trace Analysis and Observation

1) Can brokers always connect to communities? We
measured the average ratio of connected/disconnected time
for each community pair when all nodes, denoted All-
nodes, and only brokers, denoted Broker, are capable of
establishing connections between two communities, respec-
tively. The results are given in Figure 1(a). In Broker, the
ratio is very small (less than 0.5) for many community
pairs. This means these community pairs cannot assure
stable connections due to broker disconnections. All-nodes
configuration produces much higher ratios than Broker. Its
ratios of five community pairs are even infinite (i.e., the
two communities are always connected). From the results,
we made an observation (O) below:
O1: Only relying on brokers for inter-community communi-
cation may lead to community disconnections and reduces
the chances of interactions between communities.
2) Can nodes in one community always connect to
brokers? A community’s ratio of connections to brokers
is the portion of community members that connect to at
least one broker. Figure 1(b) plots this metric for each
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(a) Ratio of connected/disconnected
time.
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(b) Ratio of connections to brokers.
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(c) Ratio of same community neigh-
bors.
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Figure 1. Real-trace analytical results.

community every 100s and shows that the ratio varies in
range [0.5,1]. Figure 1(d) plots the average value of all
communities, which shows that the average value is around
0.8. This means that at every moment, averagely 20% of
nodes cannot communicate with their brokers, and in some
communities, 50% of nodes cannot communicate with their
brokers.
O2: Due to node mobility, community nodes do not always
connect to their brokers.
From O1 and O2, we derived the following inference (I).
I1: Exploiting all nodes to forward requests in the direc-
tion of destination in both intra- and inter-community file
searching can enhance search efficiency and reliability.
3) Can nodes in one community always stay together?
A node’s ratio of same community neighbors is the portion
of a node’s neighbors that belong to the node’s community.
Figure 1(c) plots the average of the ratios of all nodes in
each community every 100s, and shows that the ratio varies
greatly in [0.1, 0.9]. Figure 1(d) plots the average value of
all communities and shows that the average value is around
0.5, which means that on average half of a node’s neighbors
are not from the same community.
O3: Due to node mobility, nodes in one community do not
always stay together.

The above observations obtained from the trace on a
campus indicate that MOPS is not suitable for such a
campus social network environment, and a new file search
system is needed for this application scenario with the
observed features.
4) Do nodes with a common interest also share
many other interests? We crawled the data of 117 users
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Figure 2. Interest closeness of
common-interest user pairs.

from Facebook [23] and
examined their interest
closeness. These people
watched a video of a ran-
domly selected user in
Facebook. We identified
20 interests (e.g., sports,
gaming and pop music)
and found 86 users who
have at least one of these
interests. We found 1462 pairs of users that share at
least one common interest. We then calculated the interest
closeness between user i and j (cij) by: cij = m2

ij/sisj ,
where mij is the number of shared interests of the two
users, si and sj are the number of interests of user i and
user j, respectively. Figure 2 shows the interest closeness
of different pairs of users. We observe that the interest
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C1: Computer Science
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C3: Chemistry Dept. 
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Figure 3. Community creation of MOPS vs. Cont2.

closeness mainly varies in the range [0.1, 0.33] and few
exceed 0.4, and the average closeness is only 0.2143.
This result proves that though each pair of nodes share at
least one common interest, they rarely share most interests.
Although this result is obtained from Facebook, it reflects
users’ interests and matches our daily experience that
people usually do not share many common interests [12].
O4: In a social network, nodes usually have multiple
interests. Two nodes sharing one interest usually do not
necessarily share more other interests.
From O3 and O4, we infer:
I2: Forming frequently contacted nodes into a community
may not be able to limit most file searches within a
community due to nodes’ movements and diverse interests.

B. Why Combined Content and Contact Design

Figure 3 shows an example of the communities con-
structed with a contact-based method (MOPS) and a
content-based method (Cont2), respectively. In MOPS, each
community consists of nodes in a department since they
meet frequently. In Cont2, nodes are grouped according to
their interests (contents). In the figure, some students (gray
nodes) in different departments also attend a poetry class
and gather together regularly during the poetry class.

Obviously, MOPS is efficient if most queries can be
satisfied within its current community for its tight intra-
community connections. However, this does not hold
in practice (I2), leading to frequent inter-community
searchers. Also, since communities in MOPS do not rep-
resent content information, a forwarder needs to know the
content indexes of all other communities, which is costly
and inefficient. For example, in Figure 3(a), a requester in
community C1 queries a file in community C3. The broker
of C1 (b1) has to know the file index of C3 first. Otherwise,
the file request either waits on b1 or gets forwarded blindly.
Therefore, purely relying on node contacts for file search
may lead to low searching efficiency.

On the other side, nodes in interest (content) based
communities are not as tightly connected as in the con-
tact based communities. Therefore, a query reaching the
destination community cannot meet the file holder easily.
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For example, in Figure 3(b), when a poetry related request
arrives at community C4, it’s file holder may stay in other
communities at the moment, leading to a long waiting time.
In this case, social properties about node contacts (P2)
should be utilized to forward the request to the file holder
greedily, thereby overcoming the relatively loose structure
in interest (content) based communities and enhancing file
search efficiency.

In summary, both contents and contacts are necessary
for efficient file search in DTNs.

IV. THE DESIGN OF CONT2

Cont2 has three components: community creation, neigh-
bor table construction and update, and content and contact
based file search. We elaborate them in below.

A. Community Creation
Without loss of generality, we assume that the files stored

in a node can be reflected by the node’s interests. We
then define a community as a group of nodes sharing the
same interest to gear towards the purpose of file searching.
Thus, in Cont2, common-interest nodes virtually form into
a community. By virtually, we mean that nodes in one
community do not have to always stay together. However,
based on previous discussion, same interest nodes still tend
to have higher encountering possibility with each other
than with others, which connects our community definition
with node mobility for the purpose of file sharing. A node
with multiple interests belongs to multiple communities
and carries the IDs of these communities.

Cont2 has a server that functions as a bootstrap for
node (or interest) joining. The server maintains an interest
list containing all interests and associated keywords in
the system. This list is initially configured by the system
administrator and is updated when necessary. For exam-
ple, in a movie file sharing system, the interests include
action, comedy, and romance. The server can map a set
of keywords to an interest. Such automatic mapping can
be conducted through machine learning techniques, which
are beyond the discussion of this paper. A node needs
to register to the server when joining in the system. The
node derives its keywords from its files through a keyword
abstraction technique [24] and report that to the server
during the registration process. Based on the keywords,
the server identifies the node’s interests and community
IDs. If there is no community matching the interest, a
new community ID is created for the node. When a node
changes its interests, it reports its updated interests to the
server, which then assigns new community IDs to the
node. A node can manually connect to the server through
the Internet or 3G network for the registration, and then
switches to the P2P mode for file sharing. This does not
incur much extra cost or limitation since each node is only
required to report interests to the server.

Common-interest communities benefit efficient file
search from two aspects: (1) it increases the probability that
a node finds its interested files in its own community since
common-interest nodes tend to meet more frequently, as
introduced in Section I, and (2) it helps to forward queries
toward the destination community without detouring since
it can learn the destination community in advance.

B. Neighbor Table Construction and Update

Each node in Cont2 maintains a neighbor table (Ta-
ble I) that helps to select the next hop node in file
searching. It records the information of a node’s current
neighbors and previous same-community neighbors. The
information includes node ID, community ID, content
synopses, community contact table (CCT) and a connection
bit (CB). The content synopses of a neighbor shows its
contents, which are generated with the keywords of all
its files. Each keyword k is associated with a weight wk,
which is the portion of files that contain the keyword
on the node. Thus, a content synopses is represented by
<k1, wk1

; k2, wk2
; · · ·>. The content synopses is updated

when two nodes meet. CB is a boolean value indicating
whether the node is currently connected to the neighbor.

Table I
NEIGHBOR TABLE

Node ID Community ID Content synopses CCT CB
1 0x0001, 0x0010 < k1, wk1

; k2, wk2
; · · · > CCT1 1

2 0x0008 < k1, wk1
; k2, wk2

; · · · > CCT2 0
· · · · · · · · · · · · · · ·

Table II
COMMUNITY CONTACT TABLE (CCT)

Community ID 1-hop contact frequency 2-hop contact frequency
0x0001 0.7 2.9
0x0010 1.1 1.9
0x0011 0 0.5
0x0100 2.3 4.2
· · · · · · · · ·

In Table I, CCTi denotes the CCT (Table II) of neighbor
i, which records its n-hop (n = 1, 2, 3, · · · ) contact
frequency with each community. A node’s n-hop contact
frequency with a community represents its probability of
connecting to the community through n hops. A node’s
probability of connecting to a community equals to its
accumulated probabilities of meeting the members in the
community. We use this definition since CCT serves to
forward a file query to its matched community. Specifically,
node i’s 1-hop contact frequency with community C repre-
sents i’s direct contact probability with C; node i’s n-hop
(n > 1) contact frequency with community C refers to the
accumulated n−1 hop contact frequency of node i’s current
and past neighbors with C. CCT helps inter-community
search by selecting nodes with the highest probability of
meeting the destination community as the next relay node.
Although more information in the CCT would give better
direction on request forwarding, we confine n to 2 in
order to balance the routing performance and storage and
transmission cost.

We use FinCx (n ≥ 1) to denote node i’s n-hop
contact frequency with community Cx, which is initialized
to 0 at the beginning. Node i periodically updates its
FinCx

with each community after each unit time period T .
Specifically, when node i encounters a new neighbor j, they
exchange their neighbor tables for subsequent periodical
table updates. Suppose the accumulated time period that
nodes i and j connect with each other is tij during T and
node j belongs to community C1. Then, node i’s CCT is
updated by:
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{
FinC1

= FinC1
+

tij
T

; if n = 1

FinCx+ =
tij
T
∗ Fj(n−1)Cx

; if n > 1 & x 6= 1
(1)

Node i increases Fi1C1
by its contact frequency with node

j during period T since it belongs to community C1.
FinCx

(n > 1) refers to node i’s n-hop contact frequency
with each community Cx. Thus, node j’s (n-1)-hop contact
frequency with Cx is added to FinCx

because a message
from node i needs one more hop to reach Cx through node
j. In the end of each T , node i updates its contact frequency
to each community by

Fnew
inCx

= βF old
inCx

+ (1− β)FinCx (n ≥ 1), (2)

where β < 1 is a fading weight, F old
inCx

and Fnew
inCx

are
node i’s old and new contact frequency with community
Cx, respectively. The value of β is determined by the
weight of previous and most recent meeting frequency
on deciding FinCx

. Note the system administrator should
decide a suitable T based on the active level of nodes in
the system.

The community contact table reflects a node’s contact
frequencies with different communities and guides the file
searching algorithm, as explained later. Therefore, it should
be updated properly so that it can reflect both long term
meeting ability and short term changes. β is designed for
this purpose by controlling how fast the overall contact fre-
quency evolve along with the contact frequency measured
in current time unit. β should match the actual frequency
change rate, which is a complex problem. We leave how
to decide it to future research. In this paper, considering
meeting frequencies in daily social network usually present
both long term stability and short term changes, we set β
to a medium value of 0.5.

C. Content and Contact Based File Searching

The searching algorithm is developed based on the social
network property described in Section I. Since each node
knows the interest list in the system, a file requester can
map its request to an interest (destination community).
When a node receives a request, if it is the file holder,
it returns the file. Otherwise, if the node is located in
the destination community, it conducts intra-community
searching. If it is not in the destination community, it
conducts inter-community searching, which forwards the
request gradually to the destination community. When the
request arrives at the destination community, the intra-
community search is launched. Note that the definition
of community ensures that the requested file, if exists in
the system, is highly possible to be held by nodes in the
matched community (i.e., nodes with files in the interest
are classified into the corresponding community). Then, it
is not needed to query encountered nodes for the requested
file before arriving at the destination community, thereby
saving energy for file searching, which is a desired property
in the energy-constrained mobile scenario. Each request has
a Time To Live (TTL), after which it is dropped.

1) Intra-Community Searching: In this step, requests are
forwarded within the destination community to find the file
holder. In each forwarding, the request is forwarded to a
neighbor node that has more intra-community connections
toward the node having the highest similarity with the
queried file. Such a design comes from two reasons. First,
the node having high similarity with a query has high
probability of containing the requested file. Second, an
interest can usually be further classified into sub-interests,
and people in a sub-interest group have a higher probability
of meeting with each other than with other members in the
interest community. For example, lab members majoring
in computer systems tend to meet more often. Then,
even the high similarity node fails to satisfy the request,
it’s frequently met nodes may contain the requested file.
Therefore, the similarity works as an indication of the
probability of satisfying the request.

We denote the node with the highest similarity with the
queried file as the temporary destination node (TDN). The
similarity is calculated as following:

Sim(f, i) =
∑
k∈K

wk, (3)

where f is the queried file, K denotes the keyword group
in the request, and wk denotes the weight of keyword k
in node i’s content synopses. wk=0 if the synopses does
not contain k. The similarity here shows the percentage of
files on the node that matches the keywords in the query
and indicates the possibility that the requested file is on
the node. Therefore, the TDN should be the node with
max{Sim(f, i)} among all nodes that have been visited
by the request. That is

Sim(f, TDN) = max{Sim(f, i) (i ∈ AN(Rf )}, (4)

where Rf represents a request and AN(Rf ) represents
all nodes that Rf has already visited. When a request
arrives at a new node, the AN(Rf ) and TDN are updated
accordingly.

Specifically, suppose node Na receives the file request, if
it holds the requested file, it returns the file to the requester
and the file search is successful. Otherwise, it first checks
whether the file holder or the TDN currently is connected.
If yes, that node is the next relay node. If not, Na then
chooses the node (i.e., active node) that is lightly loaded
and has the highest Fi1C with its current community as
the next relay node by referring to the CCT in its neighbor
table. We consider node load status in routing because the
active node may become overloaded. A node measures
its overload status by the occupation of its buffer, and
piggybacks it on the “hello” messages used in neighbor
scanning process.

2) Inter-Community Searching: In inter-community
searching, node Na first checks its neighbor table to
see whether there is a current neighbor belonging to the
destination community (Cd), and takes it as the next relay
node if one exists. If more than one exists, Na chooses
the one that has the highest Fi1Cd

by referring to the CCT
in its neighbor table since it has more intra-community
connections. If no node from the destination community
can be found, Na chooses a node from itself and its
neighbors that has the highest Fi1Cd

as the next relay node.
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If multiple nodes have the same highest Fi1Cd
, the node

with the highest Fi2Cd
is chosen. In this way, the request

can be quickly forwarded to the destination community,
because FinC reflects a node’s probability of meeting nodes
in community C through n hops.

It is possible that all nodes in current community have
very few contacts with the destination community. To deal
with this problem, we pre-define a threshold for Fi1C and
Fi2C , denoted by Td. If no node in the neighbor table
has FinC > Td, the active node with the highest 1-hop
contact frequency with the current community is chosen.
The purpose of this strategy is to quickly move the request
out of current area. If the node itself is chosen as the next
relay node after these steps, it holds the request. While it is
moving, it updates its neighbors and repeats the above steps
until the request is forwarded to the destination community.

3) File Retrieval: Upon receiving a request, the desti-
nation node first tries to send the file back along the route
the request traversed, which is inserted into the request
during the forwarding process. If the reverse route is bro-
ken, the intra-community and inter-community searching
algorithms can be used to send the file back to the requester
according to the IDs of the requester and its community.

In current design, we only consider the scenario that
there is only one matched file for each query. This can
be extended to multiple matched queries by allowing each
query to continue searching after a successful hit.

Figure 4 shows an example of file searching between
two communities (C1 and C2). Two requests (R1 and R2)
are initiated in C1. R1’s destination community is C1.
Thus, the requester uses intra-community searching. It first
finds the temporary target N0 in its neighbor table and
forwards R1 to N0. N0 updates the temporary target with
D1, which has the closer similarity with the requested file.
Because D1 is not N0’s current neighbor, N0 forwards R1

to its neighbor N1, which has the highest 1-hop contact
frequency with C1. Since D1 is not N1’s current neighbor,
N1 holds the request, and delivers R1 to D1 when moving
close to it. D1 notices that its synopses match the request
exactly, so it replies the requested file to the requester.

The file requested by R2 belongs to community C2, since
the requester cannot find a current neighbor that belongs
to C2, it forwards R2 to its current neighbor N2 which has
the highest 1-hop contact frequency with C2. N2 forwards
R2 to N3. On the way moving to C2, N3 forwards R2 to
M1 of C2 and has a higher 1-hop contact frequency with
C2. Then, intra-community searching is used, in which M1

forwards R2 to destination D2 through M2.
We use a line with a solid arrow to stand for the file

retrieval process. Node D2 first sends the request for the
requested file (F ) back to the requester S2 along the
query route. However, when M1 receives the request, it

finds that node N2 on the reverse route is not available.
Node M1 then launches a search for requester S2. First,
inter-community searching is used to route F to node N4

in community C1 through node M3 in community C2.
Second, N4 starts intra-community searching. N4 finds
itself has the highest mobility among all neighbors, so it
carries the request until it moves close to S2.

V. PERFORMANCE EVALUATION

We first deployed the systems on the real-world GENI
Orbit testbed [25], [26]. We then conducted experiments
on NS-2 [27] using the converted one-day trace data since
the whole trace is too long for simulation. We also used a
community based mobility model [28] to further evaluate
the systems with different network sizes and node mobility.
Detailed introduction and configuration of the community
based model are given later in Section V-A4. Considering
the storage and energy constraint of mobile devices, we
expect the system size to be at most several hundreds of
nodes.

A. Experiment Settings

In order to better evaluate the file search, we determined
the community construction and file generation in advance.
We extracted interest groups and corresponding keywords
from the profiles we crawled from 117 Facebook users who
watched the same randomly selected video. We selected
the top seven mostly shared interests and mapped them to
the 7 communities identified from the real trace. For each
of a node’s interests, we randomly selected 40 keywords
from the keyword pool of the interest and generated about
20 files. A queried file of an interest is randomly picked
from the file pool of the interest, and each query matches
only one file in the system. Consider people would like
to query file in its interests, 70% of requested files have
the same interest of the originator. We run each test for 5
times and present the average of the results within the 95%
confidence interval of all the test results.

1) Comparison Methods: We used below comparison
methods in the experiments:

(1) MOPS [9]: MOPS leverages social networks to pro-
vide content-based service (e.g., publish/subscribe system)
in disruption-tolerant networks by grouping nodes that have
frequent contacts into a community. Each community uses
nodes that have frequent contact with other communities
as brokers for inter-community communication. We use 2
brokers for each community to balance the cost and search
efficiency. MOPS buffers requests on the current node if
no better routes can be discovered.

(2) PDI+DIS [6], [4]: PDI [4] uses 3-hop local broadcast
and content tables for file searching. A content table
contains content and corresponding routes to the content
owners and is built in nodes along the response path.
We complement PDI with the advertisement-based DIS-
semination method [6], in which each node disseminates
its content to its neighbors. In PDI+DIS, a request is
first broadcasted for 3 hops. During and after the 3-hop
broadcasting, if a node finds a route to the queried content
in its content table, it uses the route for routing. A node
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buffers a request if it cannot forward the request due to
expired routes or lack of routes.

(3) Epidemic [3]: Epidemic is a buffering based broad-
casting mechanism. It tries to disseminate requests to all
nodes in the system by letting two nodes exchange requests
they haven’t seen upon their encountering.

2) Test Metrics: Since the routing process of file re-
trieval is similar as the file searching process, we only test
the performance of file searching. We used the number of
generated messages to represent costs. We define that one
message only contains the information of one node.

(1) Hit rate: the percentage of requests that are suc-
cessfully delivered to the file holders. It represents the
reliability of a file search method to discover queried files.

(2) Average delay: the average delay time of all suc-
cessful requests. The delay of a request is the time elapsed
after the request is initiated and before it arrives at the file
holder. It represents the efficiency of a file search method.

(3) Maintenance cost: the total number of all mes-
sages except the requests. These messages are for routing
information establishment and update (i.e., node content
exchange in all the four methods, request exchange in Epi-
demic and routing table establishment in PDI+DIS). This
metric represents the cost for supporting file searching.

(4) Total cost: the total number of messages generated
during the simulation including request messages. This
metric represents the total cost of file searching.

3) GENI Experiment Parameters: To demonstrate the
effect of Cont2 in scenario with real communication inter-
faces, we first tested it on the GENI Orbit testbed, which
consists of 400 nodes that can connect with each other
through wireless connections. We use it to simulate DTNs
and adopt the MIT Reality project trace to drive node
mobility, which lasts for about 2.56 million seconds. We
set the first 0.3 million seconds as the initialization period
so that nodes can collect enough records to reflect their
meeting probabilities with others. After that, we randomly
picked one node to generate one query every 100 seconds
for 1 million seconds. The watching period (or TTL) of
each query was set to 1.2 million seconds. To be practical,
each node can hold at most 2000 queries in its buffer. When
the buffer is full, the oldest packet is dropped.

Table III
PARAMETERS IN SIMULATION

Real trace Synthesized
Environment Parameters Value Default Value
Simulation area 2.5km × 2.5km 2.5km × 2.5km
Number of caves - 25
Cave size - 500m × 500m
Number of communities 7 7
Node Parameters Value Default Value
Number of nodes 45 100
Communication range 250m 250m
Average node speed − 1.5m/s
Re-wiring probability − 0.1
Number of travelers/cave − 2
Traveler speed − 2*(average speed)
Number of keywords 40 40
Querying Parameters Value Default Value
Querying rate 8/s 8/s
Intra-query percentage 70% 70%
Initialization period 1000s 1000s
Querying period 2000s 2000s
Waiting period 51000s 51000s

4) Simulation Parameters: According to the settings
in the GENI experiment and the works in [29]–[31], we
determined the parameters shown in Table III for the
simulation on NS-2. We recorded the experimental metrics
every 100s after the initialization period. In the community
based mobility model [28], the test area is divided into
many caves, each of which represents one community area.
Nodes move within its home community randomly in most
of the time. We map each interest community defined
in Cont2 to a randomly selected cave in the mobility
model [28]. The model also allows setting travelers that
frequently commute between two communities with high
speed. Considering that travelers are more active, we set
a normal node’s speed to a value randomly selected from
the range [2v/3, 4v/3] (v denotes the average speed) and
a traveler’s speed to 2v. In the tests with different node
mobility, we varied the average speed (v) from the medium
walking speed of human beings (1.5m/s) to the medium
vehicle speed (15m/s).

B. Performance in GENI Experiment

Table IV shows the GENI experiment results. We see that
Epidemic generates the highest hit rate but also the highest
cost since it tries to replicate each request to all nodes.
PDI+DIS generates the lowest hit rate because the routes in
content tables often expire due to node mobility and many
requests wait passively for the file holders. Therefore most
successful queries in PDI+DIS are resolved locally within
3 hops, leading to a low average delay. Cont2 achieves
the second highest hit rate but significantly lower cost
than Epidemic. Cont2 also generates higher hit rate than
PDI+DIS, which shows Cont2’s higher mobility-resilience.
Comparing Cont2 and MOPS, we see that Cont2 is superior
over MOPS in terms of hit rate, delay and cost. This is
because Cont2 utilizes all possible forwarding opportunities
around a node while MOPS relies heavily on brokers. Also,
MOPS only considers node contact, while Cont2 considers
both content and contact.

We also evaluated the memory usage of the four meth-
ods, measured by the average number of queries in the
buffer and the average size (i.e., number of entries) of
the neighbor table. Table V shows the average values of
all nodes. We find that PDI+DIS has the smallest average
number of queries in the buffer. This is because most
queries are quickly resolved in the 3-hop local broadcasting
without further buffering. In Cont2 and MOPS, queries
are buffered until meeting better forwarding nodes. Cont2

generates fewer queries in the buffer than MOPS since it
can deliver request more quickly as shown in Table IV.
Epidemic produces the largest result as it tries to distribute
each query to all nodes.

Each node in all methods except the Epidemic also
stores the content synopses of nodes it has met. Cont2 and
MOPS need content synopses for both intra- and inter-
community searches. PDI+DIS uses it to build content
tables. From Table V, we find that Cont2 stores fewer
content synopses than the other two methods because it
only stores the information of same community nodes and
currently connected neighbors. For MOPS, brokers store
that of all communities they have known, and normal
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nodes store that of the nodes in their own communities.
Therefore, MOPS has the largest average number of stored
content synopses. In PDI+DIS, a node disseminates its
contents to its neighbors. Thus, each node stores the content
synopses of all nodes it has met, leading to higher memory
consumption than Cont2.

In summary, Table IV and Table V show that Cont2

has superior performance over other methods considering
overall efficiency, delay, cost and memory-efficiency.

Table IV
EFFICIENCY AND COST IN THE EXPERIMENTS ON GENI

Method Hit Rate Average Delay (s) Maintenance Cost Total Cost
Cont2 0.696 142892.8 231918 269917
MOPS 0.625 161070.0 311302 328266
PDI+DIS 0.508 7562.5 301918 361506
Epidemic 0.8745 15230.1 676685 867939

Table V
MEMORY USAGE IN THE EXPERIMENTS ON GENI

Metric Cont2 MOPS PDI+DIS Epidemic
Ave. # of queries in buffer 33.5 43.5 12.3 1998.6
Ave. size of a neighbor table 7.9 17.5 15.7 0

C. Performance in Trace-drive Simulations

1) Hit Rate: Figure 5(a) shows the hit rates of different
methods over time. We see that the hit rates of Epidemic
and Cont2 reach 99%, that of MOPS is about 95% and that
of PDI+DIS is below 90%. Epidemic tries to disseminate
each request to all nodes in the system, thereby resulting
in a high hit rate. In Cont2, request forwarders fully utilize
nearby nodes to forward the request in the direction of
the destination, leading to efficient file search.

MOPS only relies on brokers for inter-community search
and direct encountering of community members for intra-
community search. As previously introduced, due to the
diversity of node interests, inter-community search is al-
ways needed in MOPS. However, without the guidance of
content, MOPS has to rely on the information exchange
between brokers for inter-community search, which may
miss some forwarding opportunities. Moreover, the passive
waiting in the intra-community search also takes a long
time. Consequently, MOPS cannot resolve some queries be-
fore they expire, resulting in a lower hit rate. PDI+DIS only
completes about 74% of requests, and its hit rate remains
nearly constant throughout the test. This is because many
requests cannot be resolved in the test since the routes in
a content table expire quickly due to node mobility. After
the local broadcast, requests just wait passively, leading to
almost no increase in the hit rate.

We also find that the hit rates of Epidemic, Cont2,
and MOPS exhibit sharp rises at the initial stage and
increase slightly afterwards, while PDI+DIS remains nearly
constant throughout the test. In Epidemic, Cont2, and
MOPS, requests that cannot be immediately resolved stay
in current nodes and gradually arrive at file holders using
query forwarding algorithms. Therefore, the hit rate grad-
ually increases as time goes on. In PDI+DIS, after 3-hop
broadcasting, buffered requests passively wait for routes
to file holders, generating much fewer successful searches.
Therefore, its hit rate remains almost stable.

2) Average Delay: Figure 5(b) shows that the aver-
age delays of the four methods follow MOPS>Cont2

>Epidemic>PDI+DIS. Recall that we only measure the

delay of successful requests. So PDI+DIS has the least
average delay since most successful requests are resolved
in the initial 3-hop broadcasting stage. Cont2 reduces
the delay of MOPS by half for the same reasons as in
Figure 5(a). This result confirms that only considering
contacts for file search cannot provide high efficiency.
Epidemic results in relatively lower average delay than
Cont2 due to its broadcasting nature. It is reasonable that
Cont2 generates higher delay than Epidemic since Cont2

only maintains one copy for each request.
It is interesting to observe that the delay of MOPS

increases rapidly at around 40000s while that of Cont2

increases steadily. In MOPS, a broker may need to buffer
inter-community requests for a long period before being
able to contact brokers in a neighboring community. Then,
the encountering of two brokers with many unresolved
requests may lead to a rapid increase in hit rate and
average delay, as occurred at 40000s. Without relying on
fixed brokers, Cont2 utilizes every forwarding opportunity,
leading to a steady increase in hit rate and average delay.
This result confirms the drawback of depending only on
brokers and the advantage of utilizing all available nodes
in request forwarding.

3) Maintenance Cost: Figure 5(c) plots the maintenance
costs of different methods over time. After 31200s, the
costs follow Epidemic>MOPS>PDI+DIS>Cont2. In all
methods, node content is exchanged among encountered
nodes, which contributes to the linear growth of mainte-
nance cost over time. Except Cont2, nodes in the other three
methods need to exchange other information in addition to
their own contents. PDI+DIS builds routes in nodes along
the response paths of successful queries. Thus, PDI+DIS
generates higher maintenance cost than Cont2. In MOPS,
brokers exchange contents of all nodes from their home
communities, leading to an even higher maintenance cost.
In Epidemic, two nodes exchange information about all
known requests to decide unseen requests, resulting in the
highest maintenance cost.

4) Total Cost: Figure 5(d) shows the total cost of each
method over time. We observe that Epidemic>PDI+DIS
>MOPS>Cont2. Epidemic has very high cost since it tries
to disseminate a request to all nodes in the system. Each
message has only one copy in MOPS and Cont2. PDI+DIS
has a local broadcast, which generates many query copies,
leading to higher total cost than MOPS and Cont2.

D. Performance With Different Network Sizes in Simula-
tion

In this test, we examined the performance of the methods
when the total number of nodes varied from 40 to 220.

1) Hit Rate: Figure 6(a) plots the hit rates of the four
methods. We find that the hit rates of Epidemic, Cont2

and MOPS reach over 95% (MOPS<Cont2<Epidemic)
while PDI+DIS resolves only 60% of requests. Epidemic
achieves high hit rate due to its system-wide message dis-
semination. The reasons for MOPS<Cont2 and the low hit
rate of PDI+DIS are the same as explained in Figure 5(a).
Also, the hit rates of Cont2, MOPS, and Epidemic remain
relatively stable while that of PDI+DIS increases as the
network size increases. The former three methods actively
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Figure 5. Performance in trace-driven simulation.

(a) Hit rate. (b) Average delay. (c) Maintenance cost. (d) Total cost.
Figure 6. Performance with different network sizes in simulation.

forward messages to file holders by broadcasting or routing
algorithms, which ultimately forwards most requests to
their destinations, even in a sparse network. In contrast,
unsolved requests after the 3-hop broadcasting stage in
PDI+DIS passively wait for routes to the file holders.
Hence, higher node density enables more forwarding op-
portunities, thus increasing the hit rate of PDI+DIS.

2) Average Delay: Figure 6(b) shows the average delay
of each method. The result matches what was obtained
in Figure 5(b), i.e., MOPS>Cont2>Epidemic>PDI+DIS
and Cont2 reduces the delay of MOPS by about 20% on
average. We also find the delay of MOPS remains relatively
stable while those of Epidemic and Cont2 exhibit a slight
decrease as network size increases. This is because higher
node density means more forwarding opportunities, thereby
reducing the delay. MOPS only relies on brokers for inter-
community communication. Though the number of nodes
increases, the probability that two brokers meet does not
change. Therefore, the average delay of MOPS remains
stable though the network size increases.

3) Maintenance Cost: Figure 6(c) illustrates
the maintenance cost of each method. It can
be observed that the maintenance costs follow
Epidemic>MOPS>PDI+DIS>Cont2. Generally, Epidemic
produces much higher maintenance cost than Cont2, the
maintenance cost of MOPS is approximately 40% higher
than that of Cont2, and PDI+DIS generates a 5% higher
maintenance cost than Cont2 in dense networks. The
reasons for this result remain the same as in Figure 5(c).
Also, the costs of all the methods grow quickly as network
size increases. This is because with more nodes in the
network, the amount of exchanged messages increases.

4) Total Cost: Figure 6(d) demonstrates that Epidemic
generates the highest total cost. PDI+DIS and MOPS show
moderate total costs while Cont2 has the lowest total cost.
Epidemic has the highest total cost since it generates a
high maintenance cost (Figure 6(c)) and a large amount

of requests in the test. The number of request messages
in PDI+DIS increases quickly as the number of nodes
increases due to the local broadcasting, resulting in a high
total cost. MOPS incurs approximately the same number of
request messages as Cont2, but renders higher maintenance
cost (Figure 6(c)), leading to higher total cost than Cont2.
The results in Figure 6 show the superior performance of
Cont2 and its efficiency in networks with different sizes.

E. Performance With Different Node Mobility in Simula-
tion

We also evaluated the performance of the methods when
the average movement speed varied from walking speed
(1.5m/s) to medium vehicle speed (15m/s).

1) Hit Rate: Figure 7(a) shows the hit rate of each
method. Epidemic, Cont2, and MOPS have hit rates close
to 100% at all speeds while PDI+DIS exhibits a low hit
rate. The results show the same relative performance of
the four methods as in Figure 5(a) and Figure 6(a) with
the same reasons.

2) Average Delay: In Figure 7(b), the average delays
of the methods follow MOPS>Cont2>Epidemic with
PDI+DIS having almost no delay at all node movement
speeds. This matches the results in Figure 5(b) and
Figure 6(b) due to the same reasons. Moreover, we find
that Cont2 has a 20% lower delay than MOPS at all
movement speeds, which confirms the high efficiency of
Cont2 in file searching. Also, we see that the delays of
MOPS, Cont2 and Epidemic decrease as node movement
speed increases. This is because fast node movement
increases the frequency of node encountering and reduces
the waiting time of requests in the buffers, hence
shortening the average delay.

3) Maintenance Cost: Figure 7(c) shows that the main-
tenance costs of the four methods follow Epidemic>MOPS
>PDI+DIS>Cont2 for the same reasons as in Figure 5(c)
and Figure 6(c). We also find that the maintenance costs
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(a) Hit rate. (b) Average delay. (c) Maintenance cost. (d) Total cost.
Figure 7. Performance with different node mobility in simulation.

of Epidemic, PDI+DIS, MOPS and Cont2 increase linearly
when nodes move faster. This is because with faster move-
ment, nodes meet frequently and exchange more contents,
leading to a higher maintenance cost.

4) Total Cost: Figure 7(d) shows that the total
costs of the four methods follow Epidemic>PDI+DIS
>MOPS>Cont2. The reasons are the same as in Fig-
ure 5(d) and Figure 6(d). The total costs of the four meth-
ods increase as the average speed increases because nodes
generate higher maintenance costs with faster movement
(Figure 7(c)). The total cost of Cont2 still remains lower
than other methods, which verifies Cont2’s low cost in
different mobility rates.

VI. CONCLUSION

This paper presents a content and contact based file
search method for DTNs in a social network environment,
namely Cont2. It exploits the properties of social networks
to enhance file searching efficiency. Through the study of
a real trace, we found that the interests (content) of each
node can help guide file searching and that the movement
patterns of mobile nodes based on interests can more
accurately predict the encountering of nodes holding the in-
terested files. Node mobility can also be utilized to further
enhance searching efficiency. Thus, Cont2 virtually builds
common-interest nodes into a community and forwards a
file request to nodes with higher meeting frequency with
the interest community or the node that has the most similar
content with the requested file. We compared Cont2 with
other file search methods using mobility from both real-
trace and a community based mobility model on the real-
world GENI testbed and NS-2 simulator. Cont2 shows
superior performance in hit rate, delay and overall cost.
In the future, we plan to investigate how the influence of a
node’s interest weights on its movement patterns and how
to leverage it to enhance file search efficiency.
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