
Selective Data Replication for Online Social
Networks with Distributed Datacenters

Guoxin Liu, Haiying Shen, Harrison Chandler
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631, USA
{guoxinl, shenh, hchandl}@clemson.edu

Abstract—Though the new OSN model with many worldwide
distributed small datacenters helps reduce service latency, it
brings a problem of higher inter-datacenter communication load.
In Facebook, each datacenter has a full copy of all data and the
master datacenter updates all other datacenters, which obviously
generates tremendous load in this new model. Distributed data
storage that only stores a user’s data to his/her geographically-
closest datacenters mitigates the problem. However, frequent
interactions between far-away users lead to frequent inter-
datacenter communication and hence long service latency. In this
paper, we aim to reduce inter-datacenter communications while
still achieve low service latency. We first verify the benefits of the
new model and present OSN typical properties that lay the basis
of our design. We then propose Selective Data replication mech-
anism in Distributed Datacenters (SD3). In SD3, a datacenter
jointly considers update rate and visit rate to select user data for
replication, and further atomizes a user’s different types of data
(e.g., status update, friend post) for replication, making sure that
a replica always reduces inter-datacenter communication. The
results of trace-driven experiments on the real-world PlanetLab
testbed demonstrate the higher efficiency and effectiveness of
SD3 in comparison to other replication methods.

I. INTRODUCTION

In the past few years, Online Social Networks (OSNs)
have dramatically spread over the world. Facebook [1], one
of the largest worldwide OSNs, has 800 million users, 75%
of whom are outside the US [2]. Currently, all datacenters
of Facebook are located within the US, and each datacenter
stores complete replicas of all user data [3]. An entire user data
set is made up of several types of data, including wall posts,
personal info, photos, videos, and comments. Except photos
and videos, which are stored in Facebook’s content delivery
network (CDN) partners, all other data is stored in Facebook’s
datacenters, which is the focus of this paper. The browsing and
posting interactions between OSN users lead to user data reads
(visits) and writes (updates) in OSN datacenters. Facebook has
now become one of the top Internet traffic sources with more
than 2 billion posts per day [2]. It employs a single-master
replication protocol [3], in which a slave datacenter forwards
an update to the master datacenter, which then pushes the
update to all datacenters.

With all datacenters located in the US, two issues arise:
high latency and costly service to distant users, and a

978-1-4799-1270-4/13/$31.00 c©2013 IEEE

difficult scaling problem with a bottleneck of the limited
local resources [4]. This problem can be solved by shifting
the datacenter distribution from the centralized manner to
a globally distributed manner [5], in which many small
datacenters spread all over the world. By assigning the
geographically-closest datacenter to a user to serve the user
and store his/her master replica, this new OSN model helps
reduce service latency and cost. Indeed, Facebook now is
building a datacenter in Sweden to make Facebook faster
for Europeans [6]. However, the new model concurrently
brings a problem of higher inter-datacenter communication
load (i.e., network load, the resource consumption for data
transmission [3]). In this new model, Facebook’ single-master
replication protocol obviously would generate a tremendously
high load. Though the distributed data storage that stores a
user’s data to his/her geographically-closest datacenter miti-
gate the problem, the frequent interactions between far-away
users lead to frequent communication between datacenters.

Thus, in this paper, we study how to replicate data in the
OSN distributed datacenters to minimize the inter-datacenter
communication load while still achieve low service latency.
As far as we know, this is the first work that devotes to data
replication in distributed datacenters in the new OSN model in
order to achieve the aforementioned goal to benefit both users
and OSN owners.

It was observed that most interactions and friendships are
between local users while some interactions and friendships
are between distant users [3], [7], [8]. A user’s interaction
frequencies with his/her different friends vary widely [9],
[10]. Also, the visit/update rates of different types of user
data (e.g., posting, status update) differ greatly [9], [11], [12].
For example, wall posts usually have higher update rate than
photo/video comments. In this work, we first analyze our
crawled data to verify these OSN properties and the benefits
of the new OSN model that serve as the basis of our proposal.
We then propose Selective Data replication mechanism in
Distributed Datacenters (SD3) for OSNs that embrace the
aforementioned general features. SD3 is proposed for the new
OSN model that distributes smaller datacenters worldwide
and maps users to their geographically-closest datacenters.
SD3 mainly incorporates the two novel components below.
Selective user data replication. To achieve our goal, a
datacenter can replicate its frequently requested user data
from other datacenters, which however necessitates inter-

Facebook User Distribution

Num. of the OSN's users by country
260 150,498,840

Fig. 1: The OSN user distribution. Fig. 2: The OSN datacenters and one
community distribution.

101 102 103

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
u
s
e
rs

Fig. 3: OSN connection latencies.

0%

20%

40%

60%

80%

100%

60 120 180 240 300

C
D

F
 o

f
u

s
e

rs

Average servcie latency (ms)

5 datacenters

10 datacenters

15 datacenters

30 datacenters

Fig. 4: CDF of users vs. latency.

datacenter data updates. Thus, a datacenter jointly considers
visit rate and update rate in calculating network load
savings, and creates replicas that save more visit loads than
concurrently generated update loads.
Atomized user data replication. To further reduce inter-
datacenter traffic, SD3 atomizes a user’s data based on
different data types, and only replicates the atomized data
that saves inter-datacenter communication.

For data updates, SD3 can directly use Facebook’s single-
master replication protocol. It is worth nothing that we do
not endorse a complete removal of full data replication from
the system. Rather, we believe that some dedicated servers
periodically replicating all data still play an important role in
providing high data availability and reliability.

The rest of this paper is structured as follows. Section II
presents our analysis of OSN traces to support SD3 design.
Section III details the design of SD3. Section IV shows the
performance of SD3 with trace-driven experiments. Section V
presents a concise review of related works. Section VI
concludes this paper with remarks on our future work.

II. BASIS OF THE DESIGN OF SD3

In this section, we verify the benefits of the new OSN
model and analyze trace data from a major OSN to verify
general OSN properties. In order to obtain a representative
unbiased user sample, if a randomly generated id exists in the
OSN and the user with the id is publicly available, we crawled
the user’s data. We were informed by the Office of Research
Compliance in our university that as far as complying with
the Institutional Review Board (IRB) requirements, there
are not any ethical and privacy issues with accessing the
publically accessible data from the major OSN. Nevertheless,
we anonymized users’ ID and only recorded the time stamps
of events without crawling event contents. All datasets are
safeguarded and are not shared publicly. We crawled three
OSN datasets for different purposes in our data analysis.

For the first dataset, the number of statuses, friend posts,
photo comments and video comments during one month
period (May 31-June 30, 2011) were collected from 6,588
public available user profiles to study the update rates of
user data. In order to collect detailed information about to
whom and from whom posts were made, post timestamps
and friend distribution, in the second dataset, we crawled the
information from 748 users who are friends of students in
our lab for 90 days from March 18 to June 16, 2011. For the
third dataset, we collected publicly available location data

from 221 users out of users in the first set and their publicly
available friends’ location data (22,897 friend pairs) on June
23, 2011, in order to examine the effects of user locality. We
only use the datasets to confirm the previously observed OSN
properties in the literature.

A. Basis of Distributed Datacenters

Figure 1 shows the global distribution of the OSN users,
as reported in [13]. Of countries with the OSN presence, the
number of users ranges from 260 to over 150 million, which
are widely distributed all over the world. Figure 2 shows the
locations of the OSN’s current datacenters represented by stars.
The OSN constructed the datacenter in VA in order to reduce
the service latency of users in the eastern side of US. The
typical latency budget for the data store and retrieval portion
of a web request is only 50-100 milliseconds [14]. With rapid
increase of users worldwide, the OSN needs relief of the load
by increasing number of datacenters. In order to investigate
the effect of the new OSN model, we conducted experiments
on simulated users or datacenters by PlanetLab nodes [15].
Figure 3 shows the OSN connection latencies from 300
globally distributed PlanetLab nodes. The OSN connections
from 20% of PlanetLab nodes experience latencies greater
than 102 ms, all of which are from nodes outside the US and
4% of users even experience latencies over 1000 ms. Such
wide variability demonstrates the shortcomings of the OSN’s
centralized datacenters and the increased latencies associated
with user-datacenter distance. Thus, the new OSN model with
globally distributed datacenters and locality-aware mapping
(i.e., mapping users to their geographically close datacenters
for data storage and services) would reduce service latency.

We then conducted experiments with different numbers of
simulated distributed datacenters. We first randomly chose 200
PlanetLab nodes as users in different continents according to
the distribution of the OSN users shown in Figure 1. We chose
5 PlanetLab nodes in the locations of the current datacenters
of the OSN to represent the datacenters. We then increased
the number of datacenters to 10, 15 and 30 by choosing nodes
uniformly distributed over the world. We measured each user’s
average local service latency for 10 requests from the user’s
nearest datacenter. Figure 4 shows the cumulative distribution
function (CDF) of percent of users versus the latency. The
result shows that more datacenters result in more users having
low latency. With 30 datacenters, 84% of users have latencies
within 30ms, compared to 73%, 56% and 24% respectively
with 15, 10 and 5 datacenters; more than 95% of all users

100 101 102 103 104

Distance [km]

0.2

0.4

0.6

0.8

1.0

CDF of interactions

CDF of friend pairs

C
D

F

Fig. 5: Distance of friend and interac-
tion.

10-3 10-2 10-1 100 101

Ave interaction rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
fr

ie
n
d
 p

a
ir

s

Fig. 6: Ave. interaction rates between
friends.

10-2 10-1 100 101

Interaction rate variance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
fr

ie
n
d
 p

a
ir

s

Fig. 7: Variance of interaction fre-
quency.

10-2 10-1 100 101 102

Overall update rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
u
se

rs

Fig. 8: User update rates.

10-2 10-1 100 101 1020.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
u
s
e
rs

Video comment

Status

Photo comment

Friend post

Update rates of different types of data
Fig. 9: Update rates of different types.

0 10 20 30 40 50 60 70 80 90

Time [days]
0
1
2
3
4
5

0 10 20 30 40 50 60 70 80 90
0.5

1.5

2.5

3.5

0 10 20 30 40 50 60 70 80 90

Time [days]
0.0

0.4

0.8

S
ta

tu
se

s
/

d
a
y

Fig. 10: Status updates over time.

0 10 20 30 40 50 60 70 80 90

Time [days]

1.0
3.0
5.0
7.0
9.0

0 10 20 30 40 50 60 70 80 90
10.0

30.0

50.0

70.0

F
ri

e
n
d
 p

o
s
ts

 /
 d

a
y

0 10 20 30 40 50 60 70 80 90

Time [days]
0.0
0.2
0.4
0.6
0.8
1.0

Fig. 11: Friend post updates over time.

0 10 20 30 40 50 60 70 80 90

10

30

50

70

0 10 20 30 40 50 60 70 80 90

1

3

5

0 10 20 30 40 50 60 70 80 90

Time [days]
0.0

0.5

1.0

1.5

2.0

7

P
h
o
to

s
/

d
a
y

Fig. 12: Photo updates over time.

have latencies within 120ms for 30, 15 and 10 datacenters,
compared to only 58% with 5 datacenters within the US.
Thus, adding 5 more datacenters would significantly reduce
the service latency of current OSN. The results confirm the
benefit of low service latency of the new OSN model and
suggest distributing small datacenters globally.

It was observed that the communities partitioned with
locality-awareness are tight based on both social graph and
activity network [7], [8]. Most interactions are between local
users while some interactions are between distant users [3].
Our analysis results shown in Figure 5 are consistent with
these observations. Figure 5 shows the CDF of friend pairs
and the CDF of interactions (i.e., a user posts or comments
on another user’s wall, video, or photo) between users versus
distance based on the locations of users. It shows that 50% of
friend pairs are within 100km and around 87% of friend pairs
are within 1,000km. This result implies that with the locality-
aware mapping algorithm, the data of most friend pairs is
stored in the same datacenter and the data of some friend pairs
is mapped to separate datacenters. Regarding the interaction
distance, 95% of interactions occur between users within
1,000km of each other, which means most of interactions
are between geographically close friends, whose data tends
to be stored within the same datacenter. This phenomenon is
confirmed by the distribution of all users in our lab and their
friends, represented by blue circles in Figure 2, where the
circle size stands for the number of users. This figure shows
that most users are within a small distance such as 1,000km
while there are still some friends located far away.

B. Basis for Selective Data Replication

It was observed that in OSNs, the ties of social links
decrease with age [16] and different user have different updates
for user data [9], [10]. Thus, friend relationships do not
necessarily mean high data visit/update rates between the
friends and the rates vary between different friend pairs and

over time. These features are confirmed by Figure 6 and
Figure 7 shown below. Figure 6 plots the CDF of friend pairs
versus the average interaction rate (i.e., average number of
explicit interactions per day including posts and comments)
for each pair of friends in the second dataset. Around 90%
of all friend pairs have an average interaction rate below 0.4,
and the average interaction rate of the remaining 10% ranges
from 0.4 to 1.8. This result implies that the data visit rate
between some friends is not high. Thus, replication based on
static friend communities will generate replicas with low visit
rates, wasting resources for storage and inter-datacenter data
updates. Therefore, we need to consider the visit rate of a
user’s data when determining the necessity of data replication.

Figure 7 shows the variance of interaction rate for each
friend pair. We see that around 10% of friend pairs have high
variance in the range of [0.444,29.66]. Thus, the interaction
rate between friend pairs is not always high; rather, it varies
greatly over time. This implies that the visit/update rate of data
replicas should be periodically checked and replicas with low
visit rates and high update rates should be discarded in order
to save inter-datacenter update load and resources for storage.

The network load for data updates is related to the update
rate and the write request size. We found that the average write
request size is around 1KB in the OSN. Thus, an update from
the OSN’s master datacenter to only one datacenter generates
around 2TB of transmission data per day given 2 billion posts
per day [2]. Next, we examine user data update rates in the
OSN. Figure 8 shows the distribution of users’ update rates
from the first dataset. We see that 75% have ≤0.742 updates
per day, 95% have ≤15.51 updates per day. Also, only 0.107%
have an update rate in the range [50,100]. The result verifies
that the update rates of user data vary greatly between different
users. Therefore, to save network load, user data should be
replicated only when its replica’s saved visit network load is
more than its update network load.

C. Basis for Atomized Data Replication

Previous studies [9], [11], [12] showed that different types
of user data (e.g., wall/friend posts, personal info, photos,
videos) have different visit/update rates. Indeed, in our daily
life, users always post in walls more frequently than for videos.
Figures 9 show the distribution of update rates for friend posts,
statuses, photo comments, and video comments respectively
from our second trace dataset. We see that different types
of data have different update rates. Specifically, the update
rate follows friend posts>statuses>photo comments>video
comments.

We calculated the average update rate of each user during
90 days for different data types. We then identified users
with the 99th, 50th, and 25th percentiles and plotted their
updates over time in Figures 10, 11, and 12 from the top
to the bottom, respectively. The figure for video comments
is not included due to few video comments. These figures
showcase the variation in update behaviors for different types
of data, where statuses tend to be updated relatively evenly
over time, while walls and photos tend to have sporadic bursts
of rapid activity. For example, a user receives many comments
on his/her birthday or a photo becomes popular and receives
many comments in a short time.

Thus, a replication strategy can exploit the different
visit/update rates of atomized data to further reduce inter-
datacenter communication. If we consider a user’s entire data
set as a single entity for replication, when part of the data
is visited frequently, say video comments, the entire data is
replicated. Then, although video comments are not updated
frequently, since friend posts are updated frequently, this
replica has to be updated frequently as well. Instead, if the
friend post data is not replicated, then the inter-datacenter
updates can be reduced. Thus, we can treat each type of
a user’s data as distinct and avoid replicating infrequently
visited and frequently updated atomized data to reduce inter-
datacenter updates.

III. THE DESIGN OF SD3

A. An Overview of SD3

SD3 deploys worldwide distributed smaller datacenters and
maps global users to their geographically closest datacenters
as their master datacenters. Thus, user i’s master datacenter ci
stores i’s user data (master replica) and responds to i’s read
and write requests on i’s own data and many of i’s friends’
data, achieving low service latency. If datacenter ci replicates
user j’s data from j’s master datacenter cj , ci is called j’s
slave datacenter holding a slave replica. ci’s slave replica
serves read requests by ci’s mapped users. When user i reads
user j’s data, if ci does not have slave replica of user j, it
redirects the request to j’s master datacenter cj . If user i writes
to user j’s data, ci notifies j’s master datacenter cj the update,
and cj pushes the update to all slave datacenters of user j.

Based on the guidance in Section II, in SD3, a datacenter
replicates the data of its mapped user’s distant friends only
when the replica saves network load by considering both visit

rate and update rate. Also, SD3 atomizes a user’s data based
on different types and avoids replicating infrequently visited
and frequently updated atomized data in order to reduce inter-
datacenter communications.

B. Selective User Data Replication

Inter-datacenter communication occurs when a user mapped
to a datacenter reads or writes a friend’s data in another
datacenter or when a master datacenter pushes an update to
slave datacenters. The inter-datacenter communications can
be reduced by local replicas of these outside friends, but
replicas also generate data update load. This work aims to
create replicas for reducing visit latency and constraining inter-
datacenter communications.

We adopt a measure used in [3] for the network load of
inter-datacenter communications. It represents the resource
consumption or cost in data transmission. That is, the network
load of an inter-datacenter communication, say the kth visit of
datacenter c on a remote user j in datacenter cj , is measured
by Sk,j ∗ Dc,cj MBkm (Mega-Byte-kilometers), where Sk,j

denotes the size of the response of the kth query on user j
and Dc,cj denotes the distance between datacenters c and cj .

We use Uout(c) to denote the set of outside users visited by
datacenter c, and use R(Uout(c)) to denote the set of outside
users replicated in datacenter c. Then, the total network load
of inter-datacenter communications saved by all replicas in the
system (denoted by Os) equals:

Os =
∑
c∈C

∑
j∈R(Uout(c))

∑
k

Sk,j ∗Dc,cj

=
∑
c∈C

∑
j∈R(Uout(c))

Vc,jSj ∗Dc,cj ,
(1)

where C denotes the set of all datacenters of an OSN, and
Vc,j denotes the visit rate of datacenter c on remote user j. Vc,j

is calculated as Nc,j/T , where Nc,j is the number of visits
to user j and T is the time of last checking period. Similarly,
we can calculate the update rate and average update message
size of remote user j, denoted by Uj and Su respectively. If
each datacenter c replicates user data for each visited remote
user j ∈ Uout(c), Os reaches the maximum value. However,
the replicas bring about extra update load (denoted by Ou),
which equals:

Ou =
∑
c∈C

∑
j∈R(Uout(c))

UjSu ∗Dc,cj , (2)

For higher accuracy of network load calculation, other
consideration factors such as data replication overhead can be
included into Equ. (2). Exploring an accurate measure remains
as our future work.

Our objective is to minimize the inter-datacenter com-
munication by maximizing the benefits (denoted by B) of
replicating data:

Btotal = Os −Ou. (3)

To achieve this objective in a distributed manner, each
datacenter tries to maximize the benefit of its replicas

by choosing a subset of remote visited users to replicate.
Accordingly, it only replicates remote visited users whose
replica benefits are higher than a pre-defined threshold,
denoted by TMax. Each datacenter c keeps track of the
visit rate of each visited outside user j (Vc,j) and obtains
j’s update rate from j’s master datacenter, and periodically
calculates the benefit of replicating j’s data:

Bc,j = Os,j −Ou,j = (Vc,jSj − UjSu) ∗Dc,cj , (4)

where Os,j and Ou,j are the saved visit network load and
update network load of replica j. If Bc,j > TMax, datacenter
c replicates user j. As previously indicated, the interaction
rate between friends varies. Thus, each datacenter periodically
checks the Bc,j of each replica, and removes those with low
Bc,j . In order to avoid frequent creation and deletion of the
same replica, SD3 sets another threshold Tmin that is less
than TMax. When Bc,j < Tmin, datacenter c removes replica
j. As a result,

R(Uout(c)) ={j|j ∈ Uout(c)

∧ ((Bc,j > TMax ∧ ¬ j ∈ R(Uout(c)))

∨ (Bc,j > TMin ∧ j ∈ R(Uout(c))))}.
(5)

There exists a tradeoff between service latency and update
load. More replicas generate lower service latency, but increase
update load and vice versa. SD3 uses the benefit metric and
two thresholds to break the tie in order to achieve an optimal
tradeoff. TMax and TMin in Equ. (5) can be determined based
on the multi-factors such as user service latency constraint,
saved network load, user data replication overhead and
replicas management overhead and so on. We can also easily
derive that the time complexity of the selective data replication
algorithm is O(N), where N is the total number of users
in OSN. Thus, we can set a small checking period as T , in
order to be sensitive to the varying of visit and update rates.

After a datacenter creates or removes a replica of user
j, it notifies j’s master datacenter. Each master datacenter
maintains an index that records the slave datacenters of its
user’s data for data updates. When user i writes to user j, if
ci does not have j’s master replica, ci sends write request to
cj . When cj receives a write request from ci or a user in cj
writes to j, cj invokes instant update to all slave datacenters.
A datacenter responds to a read request for a remote user j’s
data if the datacenter locally has a replica of j; otherwise, it
redirects the read request to cj .

Comparison Analysis. SPAR [17] addresses the user data
replication among servers within one datacenter in order to
reduce inter-server communications. Since user interactions
are mainly between friends, SPAR stores a user’s master
replica with the data (master or slave replicas) of all the user’s
friends and meanwhile minimizes the total number of created
replicas. Consequently, a user’s server always has the data fre-
quently visited by the user locally. We can apply SPAR to the
problem of data replication among datacenters by regarding
servers in SPAR as datacenters. However, based on SPAR,

A

B C

D E

F G

V=25 U=20 V
 = 30 U

=25

V=23 U=5

V=50 U=45

D B

C
A’

E

G

A

F

D’

B’

V=0 U=90

D B

C G

E

F

E’

F’ A
A’ V=0 U=90 G’

D B

C G

E

F

E’

F’ A
A’ V=1 U=75

(a) Without replication

(b) SPAR [18]

(c) RS [3]

(d) SD3

1

1

2

2

2

2

1

1

Fig. 13: Comparison of replication methods.

a user’s master replica may be migrated to a geographically
distant datacenter to reduce the total number of replicas in
all datacenters, which generates long user service latency and
increases user-datacenter service cost. Also, because users with
static friend relationships do not necessarily have frequent
interactions, data replication according to static relationships
may generate replicas rarely visited and many updates. Further,
SPAR needs a centralized server to build and maintain the
complete social graph. Wittie et al. [3] proposed using regional
servers (RS) as proxies for Facebook’s distant datacenters to
serve local users by replicating all their previously visited
data. However, replicating infrequently visited data leads to
unnecessary updates.

Below, we adapt the ideas in SPAR [17] and RS [3]
for data replication between datacenters, and compare their
performance with SD3. In the example shown in Figure 13(a),
users A, B, C and D are in one location, users E, F and G
are in another location, and each location has one datacenter.
A link (marked with V and U) connecting two users means
they have interactions and each node contributes to V/2 visit
rate and U/2 update rate in their interactions. A’ denote a
slave replica of user A. If there is no replication algorithm,
the inter-datacenter communication has V = 50 and U = 45.
With SPAR, as Figure 13(b) shows, user A is mapped to the
same datacenter with users E, F and G. However, mapping
user A to the remote datacenter leads to a long service latency
for A. The only inter-datacenter communication is caused
by data writing between A and B, and A and D. When B
writes to A, the update package is forwarded to the master
datacenter of A, which pushes the update to A’. This generates
two inter-datacenter communications. Therefore, the inter-
datacenter update rate equals 2 ∗ (UA,B +UA,D) = 90, where
UA,B stands for update rate between users A and B. RS [3]
replicates previously queried user data and creates four replicas
as shown in Figure 13(c). Then, the inter-datacenter update
rate equals 2 ∗ (UA,G +UA,E +UA,F) = 90. Both SPAR and
RS decrease the number of inter-datacenter interactions by 5.

SD3 maps users to their geographically closest datacenters.
Each datacenter calculates the benefit of replicating
each contacted remote user as B1,E = Os,E − Ou,E =
VE,A/2−UE,A/2 = 9, and similarly B1,F = 7.5, B1,G = 14
and B2,A = 2.5. If TMax = 0, then SD3 only creates replicas
of A, E and F, and hence reduces the inter-datacenter commu-
nication rate of SPAR and RS by 14. Though SD3 generates
1 more visit rate and does not reduce the service latency
of read requests from A on G, such reads between remote
users occur infrequently [3], [7], [8]. Thus, SD3 significantly
outperforms SPAR and RS in reducing inter-datacenter
network load while still achieving low service latency.

Next, we analyze the time complexity of the selective data
replication algorithm of a datacenter. We partition all users
to two groups; one group G1 is formed by the users in one
datacenter c and the other group G2 is formed by all other
users in the OSN. We draw an edge between c and each of its
visited user j in G2, and an edge’s weight equals the benefit
value Bc,j . Then, the problem of benefit maximization is
equivalent to the problem of maximizing the total weights
of edges in this bipartite graph. Our method is a greedy
algorithm, which predicts the future benefits by maximizing
the previous benefits. We use N2 to denote the total number of
all c’s outside users in G2, and N to denote the total number
of users in OSN. Then, the time complexity of the selective
data replication algorithm is O(N2) = O(N). Thus, this
selective replication algorithm is cost-effective. SPAR uses a
complete social graph of all users for partitioning, and then
decides data replications, which is a NP-Hard problem [17].

C. Atomized User Data Replication

In OSNs, a user’s data can be classified into different
types of data such as photo comments, video comments,
friend posts, statuses and personal information. As shown in
Section II, these different types of data have different update
rates. If SD3 replicates a user’s entire data, it wastes storage
and bandwidth resources for storing, replicating and updating
the atomized data that is infrequently visited but frequently
updated. Therefore, rather than regarding a user’s data set as
a whole replication entity, SD3 atomizes a user’s data based
on different types and regards atomized data as an entity for
replication. Accordingly, each datacenter keeps track of the
visit rate and update rate of each atomized data in a user’s
data set. By replacing user j’s data in Equ. (4) with user j’s
atomized data, denoted by dj , we get:

Bc,dj
= Os,dj

−Ou,dj
= (Vc,dj

Sdj
− Udj

Su) ∗Dc,cj . (6)

Based on Equ. (6), datacenters decide whether to create or
maintain an atomized data of a user using the same method
introduced in Section III-B. A datacenter can directly respond
to the local requests for frequently visited atomized data of
remote user j, and directs the requests for infrequently visited
atomized data to the master datacenter of j. Each master
datacenter maintains a record of replicas of atomized data of
its users for updating the replicas of the atomized data.

IV. PERFORMANCE EVALUATION

To evaluate the design of SD3, we implemented a prototype
on PlanetLab and conducted trace-driven experiments. We
used the first dataset for users’ update rates of three data types
including wall, status, and photo comments. For post activities
of each update rate of each data type, we used the trace of
the second dataset of 90 days. Unless otherwise indicated, the
number of users was set to 36,000 by randomly selecting user
data in the trace. We distributed the users according to the user
distribution in Figure 1. We chose 200 globally distributed
nodes from PlanetLab. For each user, we randomly chose one
from the PlanetLab nodes in the user’s country to virtually
function as the user. From the PlanetLab nodes that always
have relatively low query latency, we chose 13 PlanetLab
nodes to serve as globally distributed datacenters; 4 nodes
are randomly from America, Europe and Asia respectively
and 1 node is randomly chosen from Australia, according
to the distribution of the physical servers of the DNS root
name servers. The distribution of friends of each user follows
the trend in Figure 5; to determine the friends of a user, we
randomly chose a certain number of users from all users within
different distance ranges.

Since 92% of all activities in OSNs are transparent (e.g.,
navigation) [11], we calculated a user j’s visit rate (Vj) by
his/her update rate (Uj): Vj = 0.92

0.08Uj . The distribution of
read requests on a user among the user’s friends follows
the interactions’ distribution in Figure 5, which indicates the
update rate over distance. All users read and write on different
types of data over time at the rate in the trace data.

Based on the real sizes of update (write request) and visit
(read) response packets on the OSN, we set the size of each
update and visit response packet size to 1KB and 10KB,
respectively. We ignored the size for visit requests since
it is negligibly small. We set each datacenter’s TMax with
datacenter i to the visit load of a visit packet transmission
between this datacenter and datacenter i and set TMin,i to
−TMax,i. We set the replica checking time period to 1 hour,
during which a datacenter determines whether to keep or
discard replicas based on their update and visit rates.

We use LocMap to denote the method mapping global users
to their geographically closest datacenters in the new OSN
model with many worldwide distributed small datacenters. As
there are no existing replication methods specifically for this
new OSN model, we adapt SPAR [17] and RS [3] in this
environment for comparison evaluation. Based upon LocMap,
we implemented SPAR [17], RS [3] and SD3. We use RS S
and RS L to denote RS with 1-day cache timeout and all 90-
day cache timeout, respectively.

A. Effect of Selective User Data Replication

First, we did not apply the atomized user data replication
algorithm in order to see the sole effect of the selective data
replication algorithm. Figure 14 shows the median, 1st and
99th percentiles of the number of total replicas in all datacen-
ters each day during the 90 days versus the number of users.
Note that the Y axis is in the log scale. We see that the median

1

10

100

1000

10000

100000

1000000

6000 12000 18000 24000 30000

N
u

m
b

e
r
 o

f
to

ta
l

r
e

p
li

c
a

s

Number of users

SPAR
RS_L
SD3
RS_S

Fig. 14: Num of total replicas.

1000

10000

100000

1000000

1 11 21 31 41 51 61 71 81

N
u

m
b

e
r
 o

f
r
e

p
li

c
a

s

Day index in trace data

SPAR RS_L SD3 RS_S

SPAR RS_L SD3 RS_S

Fig. 15: Num. of replicas.

5000

5500

6000

6500

7000

7500

8000

8500

1 11 21 31 41 51 61 71 81

A
v
e

.
r
e

p
li

c
a

t
io

n

d
is

ta
n

c
e

 (
k

m
)

Day index in trace data

SPAR RS_L SD3 RS_S

RS_L SPAR SD3 RS_S

Fig. 16: Ave. replication distance.

-10%

0%

10%

20%

30%

40%

50%

1 11 21 31 41 51 61 71 81

P
e

r
c
e

n
t
 o

f
r
e

d
u

c
e

d

n
e

t
w

o
r
k

 l
o

a
d

 o
v
e

r
 L

o
c
M

a
p

Day index in trace data

SPAR RS_L SD3 RS_S
SD3

RS_L

RS_S
SPAR

Fig. 17: Network load savings.

24
29
34
39
44
49
54

1 11 21 31 41 51 61 71 81

A
v
e

.
s
e

r
v

ic
e

 l
a

te
n

c
y

o

f
d

a
y

 1
-

x
 (

m
s
)

Day index in trace data

SPAR RS_L RS_S
SD3 LocMap

SD3

LocMap

SPAR
RS_L

RS_S

Fig. 18: Ave. service latency.

85%

90%

95%

100%

1 11 21 31 41 51 61 71 81

H
it

 r
a

te

Day index in trace data

RS_L RS_S SD3 LocMap

RS_S

SD3
RS_L

LocMap

Fig. 19: Visit hit rate.

0%

20%

40%

60%

80%

100%

256 2048 16384C
D

F
 o

f
p

e
rc

e
n

t
 o

f
d

a
y
s

The size of all packets (MB)

SPAR
RS_L
RS_S
SD3 (w/o)
SD3 (w/)
LocMap

SD3(w/)

RS_S

LocMap

SPAR

SD3(w/o)

RS_L

Fig. 20: Transmission traffic.

0%
10%
20%
30%
40%
50%
60%
70%

0.E+00

2.E+03

4.E+03

6.E+03

8.E+03

1.E+04

1 11 21 31 41 51 61 71 81

N
e

t
w

o
r
k
 l

o
a

d
 s

a
v
in

g

N
e

t
w

o
r
k
 l

o
a

d

(1
0

3
*

 M
B

k
m

)

Day index in trace data

SD3 (w/) Network load saving %

Fig. 21: Network load savings.

results follow SPAR>RS L>SD3>RS S. Also, the median
number of replicas of SD3 is about one third of SPAR’s. SPAR
replicates user data so that all data of friends of a user is in the
same datacenter and the total number of replicas is minimized.
As indicated in Section II that most friend relationships are not
active, so SPAR wastes system resources on those relationships
with few interactions, thus producing the largest number of
replicas. Each datacenter in RS replicates previously queried
data from other datacenters. RS L produces fewer replicas
than SPAR because RS does not replicate unvisited friend data.
SD3 considers the real interactions among datacenters, and
only replicates user data that saves more network load for visits
than the generated update load, thus producing fewer replicas
than RS L. RS S has only a one-day cache timeout, which
makes its total number of replicas much smaller than SD3.
SD3 always maintains replicas with high visit rates, resulting
in better data availability than RS S. The results indicate that
SD3 needs lower load to create and maintain replicas than the
other systems.

From the figure, we also observe that the variation of the
total replicas between the 1st and 99th percentiles follows
SPAR<SD3<RS S<RS L. Because of the stable social re-
lationships, the number of replicas in SPAR remains constant.
RS S has a greater variation than SD3. RS S creates a replica
after each inter-datacenter visit and deletes it after timeout.
SD3 periodically measures the benefit of a replica when
determining whether to create or remove a replica, which
leads to a relatively stable number of replicas and avoids
frequent creations and deletions of replicas. Because RS L
has no timeout, it aggregates replicas during the 90 days and
generates nearly triple the peak number of replicas in RS S.
Therefore, the variance of RS L is larger than RS S. The
result indicates that SD3 avoids frequent replica creations
and deletions, which consumes unnecessary inter-datacenter
communications. We also see that as the number of users

increases, the number of total replicas increases. The result
indicates that given the extremely rapid growth of users in
the OSN, it is important to design a replication method that
constrains the number of replicas without compromising the
data availability to guarantee low service latency. SD3 meets
these requirements.

Figure 15 shows the number of replicas each day over the 90
days. For the same reason as in Figure 14, SD3 has the second
smallest number of replicas, and SPAR has the largest number
of replicas which is stable. The number of replicas of RS L
gradually approaches SPAR due to an accumulation of replicas
during the entire period because of its 90-day cache timeout.
SD3 exhibits a similar growing trend as RS L due to the
replica creations as more and more friends are visited. RS L
has more replicas each day than SD3 while RS S generally
has fewer replicas than SD3. This is because SD3 eliminates
replicas with low benefit, keeps all frequently used replicas
and avoids frequent replica creation and deletion. RS S has a
short cache timeout, leading to frequent replica creation and
deletion and great variation in the number of replicas each day.
The experimental result indicates that SD3 generates fewer
replicas while still maintaining frequently used replicas.

We define the replication distance of a replica as the
geographical distance from its master datacenter to the slave
datacenter. Longer distances also lead to higher data updating
network load. Figure 16 shows the average replication distance
of all replicas each day during the 90 days. We observe that the
result follows SPAR>RS L>RS S>SD3. RS L gradually
approaches SPAR and RS S exhibits variation in different
days. SPAR considers static relationships in data replication.
As indicated in Section II, many friends are geographically
far away from each other, leading to long replication dis-
tances in SPAR. RS conducts replication based on actual
friend interaction activities. As we previously indicated, the
probability of long distance interaction occurrence is much

96%

97%

98%

99%

-50

50

150

250

350

450

550

-T -T/2 0 T/2 T

H
it

 r
a

te

S
e

rv
ic

e
 l

a
te

n
cy

/T
o

ta
l

n
e

tw
o

rk
 l

o
a

d

TMax threshold

Service latency
(min)
Total network load
(10*GBkm)
Hit rate (%)

(a) SD3 (w/o)

92%

93%

94%

95%

0

50

100

150

200

250

300

350

-T -T/2 0 T/2 T

H
it

 r
a

te

S
e

rv
ic

e
 l
a

te
n

cy
/T

o
ta

l
n

e
tw

o
rk

 l
o

a
d

TMax threshold

Service latency(min)
Total network load
(10*GBkm)
Hit rate (%)

(b) SD3 (w/)
Fig. 22: Effect of threshold for replica creation and maintenance.

0%

5%

10%

15%

20%

25%

30%

1 11 21 31 41 51 61 71 81

D
a

ta
c
e

n
te

r
lo

a
d

Day index in trace data

Maximum Median Minimum
Maximum Minimum Median

Fig. 23: Datacenter load balance.

smaller than that of short distance interaction occurrence.
Therefore, RS generates a shorter replication distance than
SPAR. Since long-distance visits occur over a long time, the
average replication distance of RS L gradually increases as
more long-distance data is replicated. For RS S, long-distance
replicas are created and deleted each day, so its average
distance fluctuates. SD3 has few long-distance replications
because long-distance replica updates usually generate higher
update load than the saved visit load. The experimental results
imply that SD3 performs the best in reducing replication
distances so as to reduce the inter-datacenter network load.

We measured the total network load for reads, writes, up-
dates and replication in MBkm in each of the 90 days for each
system. We then calculated the average value per day, which
follows LocMap>RS S>SPAR>RS L>SD3. LocMap gen-
erates 7.06×106MBkm network load per day. Using LocMap
as the baseline, Figure 17 shows the percent of reduced
network load over LocMap of other systems. RS S produces
4% lower network load than LocMap, and SPAR and RS L
have 15% and 16% lower network load respectively, and
SD3 generates 33% lower network load. Compared to other
methods, SD3 considers both visit and update rates when
deciding replication, ensuring that each replica always reduces
network load. RS replicates all previously visited data and
SPAR replicates all friends’ data regardless of their visit and
update rates. As a result, for replicas that are infrequently
visited but frequently updated, SPAR produces much higher
network load. In a nutshell, SD3 dramatically reduces the
inter-datacenter network load of the other systems.

Next, we study whether the reduction of the inter-
datacenter network load of SD3 is at the cost of com-
promising the service latency of users. Figure 18 shows
the average service latency per user request from day 1 to
day x = {1, 2...90}. The average service latency follows
LocMap>RS S>SD3>SPAR>RS L. LocMap generates the
highest average service latency because it does not have
a replication strategy, thus generating many inter-datacenter
queries for long-distance user interactions. RS S has a short
cache timeout for replicas, hence it still generates many inter-
datacenter visits even though for data visited before, leading
to long service latency. RS L does not have replica timeouts
during the experiment time, so most of the visit requests can
be resolved locally, reducing the average service latency. It
is intriguing to see that SPAR produces longer latency than

RS L even though it places all friends of a user together in
a datacenter. This is because, as previously indicated, SPAR
may map some users to far-away datacenters to reduce the
number of total replicas. Thus, the long distance between
these users and their master datacenters increases the average
service latency. SD3 uses the selective replication strategy,
which does not replicate infrequently visited user data with
high probability. Queries towards such data are only a small
part of total queries. Therefore, SD3’s latency is lower than
those of LocMap and RS S.

From the figure, we also see that the average service
latencies of LocMap and RS S remain nearly constant while
those of RS L and SD3 decrease as the time elapses. Since
LocMap has no replication strategy and RS S has a short
cache timeout, both gain no or little benefit from replicas.
In RS L and SD3, the growing number of replicas over time
increases the probability of requests being resolved locally.
This figure shows that SD3 still achieves a good performance
for user service latency even though it also generates the
lowest network load and smaller number of total replicas. Also,
the parameter TMax can be adjusted to balance the tradeoff
between the network load and service latency.

To further investigate the reasons for the service latency
result, we measured the data hit rate, defined as the percent
of the requests that are resolved locally in a datacenter.
Figure 19 shows the hit rate of different systems in each
day. RS L generates the highest hit rate, which increases
from 89% to 99%. SD3’s hit rate increases from 89% to
97%. On average, it is 9% and 4% higher than LocMap and
RS S, respectively. LocMap generates a stable hit rate because
an interaction between geographically distant friends always
produces a miss. Due to the variation of visit rate and different
interacting friends each day, the hit rate of SD3 also varies
in different days. Additionally, we observe that the hit rate
of SD3 and RS L exhibits a rise during day1-day14 and
then becomes stable during day15-day90. This is because they
initially do not have replicas, and replicas are created over
time and subsequently help increase the hit rate. The results
are consistent to the results in Figure 18 as higher hit rate
means lower user service latency.

B. Atomized User Data Replication

We then evaluate the performance of SD3 with and
without the atomized user data replication, denoted by
SD3(w/) and SD3(w/o), respectively. We set the user

visit packet size to 1/3 of its entire data size in SD3(w/).
Figure 20 shows the CDF of days versus the size of all
generated packets in different systems. We see that the
amount of traffic load generated by the systems follows
SD3(w/)<SD3(w/o)<SPAR<RS L<LocMap<RS S.
SD3(w/) has the smallest traffic load, about one half of
SD3(w/o). This is because the atomized user data replication
algorithm avoids replicating some partial user data with higher
network load for updates than for reads. The result shows the
effectiveness of this algorithm in reducing inter-datacenter
traffic. SD3 generates less traffic load than other systems
because SD3 avoids replicating data with higher update
network load than read network load. By replicating all
queried data of users’ friends, SPAR and RS L save traffic
load for reads but also concurrently generate extra traffic
for updates. The short replica timeout of RS S causes it to
generate more update and replication traffic load than saved
read traffic load, leading to higher traffic load than LocMap
that does not have replication strategy. The result indicates
that SD3 saves more transmission traffic load than other
systems, and the atomized user data replication algorithm
further reduces traffic. Figure 21 shows all network loads of
SD3(w/) each day and the network load saving percentage
measured by (SD3(w/o)-SD3(w/))/SD3(w/o) with Y axis
on the right. SD3(w/) saves at least 42% of network load of
SD3(w/o) due to the same reasons as Figure 20.

C. Effect of Thresholds for Replication

In this experiment, we regarded the TMax in previous
experiments as T , and varied TMax from −T to T with T/2
increase in each step to evaluate its effect on the visit latency,
hit rate and total network load. Figure 22(a) and Figure 22(b)
show the average service latency, total network load and hit
rate each day of SD3(w/o) and SD3(w/), respectively. We
see that as TMax increases, the total network load and hit rate
decrease, and the average service latency increases. As TMax

increases, the number of replicas decreases, thus resulting
in a lower probability of visits being responded locally. The
result indicates that TMax affects system performance in terms
of different metrics. Thus, we can adjust the threshold for
different goals. Figure 22(a) shows that TMax = T/2 can
achieve a good tradeoff between visit latency and network
load. It decreases the service latency of TMax = T by 40% at
the cost of slightly more traffic. Comparing Figure 22(b) and
Figure 22(a), we observe that SD3(w/) reduces the network
load of SD3(w/o) due to the reasons explained in Figure 20.

D. Load Balance Among Datacenters

We use the number of users mapped and replicated to a
datacenter to represent the datacenter’s load since this number
directly determines the datacenter workload. We measured the
load balance between datacenters of SD3 compared to the
current Facebook OSN system, in which each datacenter has
a full copy of all user data. For each of the 13 datacenters,
we calculated the ratio of its total load each day in SD3(w/)

compared to the Facebook OSN. Figure 23 shows the max-
imum, median and minimum of the load ratios of the 13
datacenters each day. We see that the maximum gradually
increases and finally stays around 21%, which means that the
datacenter in SD3(w/) only consumes around 1/5 of resources
of the OSN’s centralized datacenters. Also, we see that the
median stays very close to the minimum, and the maximum
is always ≤ 5% more than the minimum, which means that
SD3 achieves a balanced load distribution among datacenters
even with unevenly distributed users.

V. RELATED WORK

The design of SD3 is based on many previous studies
on OSN properties. The works in [18], [19] studied OSN
structures and evolution patterns. OSNs are characterized by
the existence of communities based on user friendship, with
a high degree of interaction within communities and limited
interactions outside [20], [21]. For very large OSNs, the
communities become untight [22]. This supports the strategy
in SD3 that decides the creation of a replica based on real user
interaction rate rather than the static friend communities. Some
other works focus on communication through relationships
and construct weighted activity graphs [7], [23]. Viswanath et
al. [16] found that social links can grow stronger or weaker
over time, which supports the strategy in SD3 that periodically
checks the necessity of created replicas. Previous studies [9],
[11], [12] also showed that different atomized user data has
different visit/update rates, which supports the atomized user
data replication in SD3. Facebook’s current centralized infras-
tructure has several drawbacks [4]: poor scalability, high cost
of energy consuming and single point of failure for attacks.
To solve this problem, some works [4], [24] improved current
storage methods in Facebook’s CDN to facilitate videos and
images service of OSNs.Unlike these works, SD3 focuses on
OSN’s datacenters’ other types of user data.

To scale Facebook’s datacenter service, a few works that
rely on replication have been proposed recently. Pujol et
al. [17] considered the problem of placing social communities
to different servers in a datacenter and proposed to create a
replica for a friend relationship between users in different
servers. Wittie et al. [3] indicated the locality of interest of
social communities, and proposed to build regional servers
to cache data when it is first visited. This method does not
consider the visit and update rates to reduce inter-datacenter
communications, which may waste resources for updating
barely visited replicas. Little previous research has been de-
voted to data replication in OSN distributed datacenters in
order to reduce both user service latency and inter-datacenter
network load. TailGate [25] adopts a lazy update method of
a content to reduce the peak bandwidth usage of each OSN
site, in which users’ read and write patterns are predicted to
help TailGate to decide a time of update transmission when
the source and destination sites’ uplink and downlink are in
low usage and there is no read of the content yet. However,
our work focuses on where the content replicate to in order
to reduce the network load of OSN datacenters, and TailGate

can be a good complementary to our work for load balancing
of the datacenter’s bandwidth.

To scale clouds, the techniques of service redirection, ser-
vice migration and partitioning [26], [27] have been intro-
duced. In large-scale distributed systems, replication meth-
ods [28]–[30] replicate data in the previous requesters, the
intersections of query routing paths or the nodes near the
servers to reduce service latency and avoid node overload.
Many structures for data updating [31]–[33] also have been
proposed. However, these methods are not suitable for OSNs
because OSN data access pattern has typical characteristics
due to OSN’s social interactions and relationship and the
datacenters have a much smaller scale.

In a nutshell, SD3 is distinguished from the above-
mentioned works by considering OSN properties in data
replication to reduce inter-datacenter communications while
achieving low service latency.

VI. CONCLUSIONS

To realize the promising new OSN model with many world-
wide distributed small datacenters to reduce service latency, a
critical challenge is to reduce inter-datacenter communications
(i.e., network load). Thus, we propose the Selective Data
replication mechanism in Distributed Datacenters (SD3) to
reduce inter-datacenter communications while achieving low
service latency. We verify the advantages of the new OSN
model and present the OSN properties with the analysis on
our trace datasets to show the rationale of the design of SD3.
Some friends may not have frequent interactions and some far-
away friends may have frequent interactions. In SD3, rather
than relying on static friendship, each datacenter refers to the
real user interactions and jointly considers the update load
and saved visit load in determining replication in order to
reduce inter-datacenter communications. Also, since different
atomized data has different update rates. Rather than replicat-
ing a user’s entire data set, each datacenter only replicates
atomized data that saves inter-datacenter communications.
Through trace-driven experiments on PlanetLab, we prove
that SD3 outperforms other replication methods in reducing
network load and service latency. In our future work, we
will investigate how to determine benefit thresholds to meet
different requirements on service latency and network load.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
CNS-1254006, CNS-1249603, CNS-1049947, CNS-0917056
and CNS-1025652, Microsoft Research Faculty Fellowship
8300751, and U.S. Department of Energy’s Oak Ridge Na-
tional Laboratory including the Extreme Scale Systems Center
located at ORNL and DoD 4000111689.

REFERENCES

[1] Facebook. http://www.facebook.com/.
[2] Facebook statistics.

http://www.facebook.com/press/info.php?statistics.
[3] M. P. Wittie, V. Pejovic, L. B. Deek, K. C. Almeroth, and B. Y. Zhao.

Exploiting locality of interest in online social networks. In Proc. of
ACM CoNEXT, 2010.

[4] M. Kryczka, R. Cuevas, C. Guerrero, E. Yoneki, and A. Azcorra. A
first step towards user assisted online social networks. In Proc. of SNS,
2010.

[5] B. Krishnamurthy. A measure of online social networks. In Proc. of
COMSNETS, 2009.

[6] Lulea data center is on facebook.
https://www.facebook.com/luleaDataCenter.

[7] H. Chun, H. Kwak, Y. H. Eom, Y. Y. Ahn, S. Moon, and H. Jeong.
Comparison of online social relations in volume vs interaction: a case
study of Cyworld. In Proc. of ACM IMC, 2008.

[8] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track glob-
ally, deliver locally: Improving content delivery networks by tracking
geographic social cascades. In Proc. of WWW, 2011.

[9] K. N. Hampton, L. S. Goulet, L. Rainie, and K. Purcell. Social
networking sites and our lives. http://pewinternet.org/Reports/2011,
2011.

[10] Z. Li and H. Shen. Social-p2p: An online social network based P2P file
sharing system. In Proc. of ICNP, 2012.

[11] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing
user behavior in online social networks. In Proc. of ACM IMC, 2009.

[12] M. Burke, C. Marlow, and T. Lento. Social network activity and social
well-being. In Proc. of CHI, 2010.

[13] Socialbakers. http://www.socialbakers.com/facebook-statistics/.
[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-

hannona, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!s hosted data serving platform. In Proc. of VLDB, 2008.

[15] PlanetLab. http://www.planet-lab.org/.
[16] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution

of user interaction in facebook. In Proc. of WOSN, 2009.
[17] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,

and P. Rodriguez. The little engine(s) that could: scaling online social
networks. In Proc. of SIGCOMM, 2010.

[18] Y. Ahn, S. Han, H. Kwan, S. Moon, and H. Jeong. Analysis of
topological characteristics of huge online social networking services.
In Proc. of WWW, 2007.

[19] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee. Measurement and analysis of online social networks. In Proc. of
IMC, 2007.

[20] A. Nazir, S. Raza, and C. Chuah. Unveiling facebook: A measurement
study of social network based applications. In Proc. of IMC, 2008.

[21] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: Membership, growth, and evolution.
In Proc. of ACM KDD, 2006.

[22] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 2009.

[23] W. Christo, B. Bryce, S. Alessandra, P. N. P. Krishna, and Y. Z. Ben.
User interactions in social networks and their implications. In Proc. of
ACM EuroSys, 2009.

[24] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle
in haystack: Facebook’s photo storage. In Proc. of OSDI, 2010.

[25] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and
K. Papagiannaki. TailGate: Handling Long-Tail Content with a Little
Help from Friends. 2012.

[26] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan.
Volley: Automated data placement for geo-distributed cloud services. In
Proc. of Usenix NSDI, 2010.

[27] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR:
Decentralized server selection for cloud services. In Proc. of AMC
SIGCOMM, 2010.

[28] D. Rubenstein and S. Sahu. Can unstructured P2P protocols survive
flash crowds? IEEE/ACM Trans. on Networking, 2005.

[29] H. Shen. IRM: integrated file replication and consistency maintenance
in P2P systems. TPDS, 2009.

[30] H. Shen and G. Liu. A lightweight and cooperative multi-factor
considered file replication method in structured P2P systems. TC, 2012.

[31] Z. Li, G. Xie, and Z. Li. Efficient and scalable consistency maintenance
for heterogeneous Peer-to-Peer systems. TPDS, 2008.

[32] Y. Hu, M. Feng, and L. N. Bhuyan. A balanced consistency maintenance
protocol for structured P2P systems. 2010.

[33] H. Shen and G. Liu. A geographically-aware poll-based distributed file
consistency maintenance method for P2P systems. TPDS, 2012.

