
A Social Network Integrated Reputation System for
Cooperative P2P File Sharing

Kang Chen, Haiying Shen, Karan Sapra and Guoxin Liu
Department of Electrical and Computer Engineering

Clemson University
Clemson, SC, USA 29631

Email: {kangc, shenh, ksapra, guoxinl}@clemson.edu

Abstract—In current reputation systems for peer-to-peer (P2P)
file sharing networks, reputation querying generates high over-
head in file service. Also, a high-reputed node may be reluctant
to further increase its reputation in these reputation systems.
Recently, social network-based P2P systems that favor file sharing
among friends have been proposed for reliable file sharing. How-
ever, this approach contradicts the objective of widely file sharing
in P2P systems. To overcome these drawbacks, we propose a
social network integrated reputation system, namely SocialTrust,
that synergistically leverages the concept of “friendship fosters
cooperation”. In SocialTrust, each node maintains trusted rela-
tionships for the purpose of file sharing, which are resulted from
both real life acquaintance and online partnership established
between high-reputed and frequently-interacted nodes. Given
a number of server options, a client first chooses a friend
or a partner, if available, without querying their reputations.
Otherwise, it chooses the server with the highest reputation.
The benefits of friendship and partnership on file sharing and
cost saving encourage nodes to be continuously cooperative.
Further, in order to realize accurate reputation evaluation and
strong cooperation incentives, SocialTrust considers the number
of friends/partners and reputation of a node in the process of
reputation rewarding and punishment. Extensive trace-driven
simulation demonstrates the effectiveness of SocialTrust.

I. INTRODUCTION

Due to the open nature of the peer-to-peer (P2P) envi-
ronment, P2P file sharing systems are prone to have selfish
and misbehaving nodes. Selfish nodes are not cooperative in
providing files, but still would like other nodes to comply
to their requests [1], [2]. Misbehaving nodes can distribute
tampered files, corrupted files or files with malicious code
into the system, which could be further spread by unsus-
pecting users. For example, 85% of Gnutella users are selfish
nodes sharing no files, and 45% of files downloaded through
the Kazaa file sharing application contained malicious code.
Therefore, incentives are needed to encourage cooperation in
P2P networks. Reputation system, as a cooperation incentive
method, has been widely studied in recent years [3]–[7]. In
a reputation system, a node’s reputation is built based on
a collection of feedbacks from other nodes. A pre-defined
reputation threshold is used to classify nodes to reputed or
selfish nodes. However, a clever node can sustain in the system
by maintaining its reputation just above the threshold and take
this advantage for uncooperative behaviors. Further, frequent
reputation querying can easily overload the reputation center,
leading to degraded service quality in P2P systems.

Recently, emerging P2P file sharing systems have been
proposed to incorporate online social networks (OSNs) to
enhance service cooperation [8]–[11] or malicious node de-
tection [12] by leveraging the social property of “friendship
fosters cooperation” [13]. Naturally, such an idea can alleviate
the necessity of reputation querying and reduce the load on
reputation centers. However, the friendship network of a node
usually only consists of a very small part of the entire P2P
network, which means that a client may not be able to find a
server among its friends. Thus, these OSN-based approaches,
if imported into P2P file sharing systems, limit the objective
of widely sharing of individuals’ files.

In this paper, we propose a credit based reputation system,
namely SocialTrust, that synergistically integrates the tradi-
tional reputation systems and social networks to overcome
their individual shortcomings with three main components:
(1) Social networks (friend network and partner network).
Each node maintains two lists of trusted nodes, friend-list
containing friends from real life (i.e., real-world acquaintance)
and partner-list containing frequently-interacted high-reputed
nodes (i.e., online acquaintance). They both encourage nodes
to be cooperative. Firstly, nodes do not want to damage
friendship easily but instead desire to maintain their real-life
reputations. Secondly, nodes would like to have more partners
in order to receive more requests and gain more benefits.
(2) Lightweight reliable server selection. Given a number of
server options, a client chooses a friend or partner, if available,
without querying their reputations. This reduces the reputation
querying cost and service delay, and meanwhile still supports
the objective of open and free P2P services. Such overhead
saving encourages nodes to be continuously cooperative in
order to keep their friends and partners.
(3) Reputation evaluation for cooperative file serving and
honest rating. We define a node’s social degree as the number
of its friends and partners. As the social degree of a node
represents the degree of trust from others [14], SocialTrust
considers both a node’s social degree and its reputation as a
measurement of its trust and uses it to adjust node reputation
reward or punishment in a transaction. It gives lower weight
to ratings from lower-trust nodes and vice versa. SocialTrust
assigns reputation punishment proportional to a server’s trust.
Therefore, a node’s reputation is built gradually, but drops in
proportional to its trust, which helps to prevent nodes with

a high trust from gaining unfair advantages [15]. Further, a
node’s final reputation value is calculated based on both its
file serving and reputation rating behaviors, which encourages
nodes to be cooperative in both behaviors.

As a result, SocialTrust has below advantages compared to
previous reputation systems [3]–[7].

(1) By integrating the social networks into the reputation
system, SocialTrust saves the reputation querying cost
greatly without constraining server options, while the
large amount of reputation queries in previous methods
may easily overload the reputation center.

(2) SocialTrust considers both a node’s social degree and
reputation to measure its trust, which is used to determine
the weight of its reputation rating for others and the
degree of punishment on its misbehavior. Thus, node
reputation is more accurately evaluated and even high-
reputed nodes are motivated to be constantly coopera-
tive, thereby preventing high-reputed nodes from taking
advantage of its reputation for misbehavior.

(3) SocialTrust considers both service providing and rating
in evaluating a node’s reputation, which encourage nodes
to become cooperative in both behavior.

The remainder of this paper is arranged as follows. Sec-
tion II presents the related work. Section III introduces the
design of SocialTrust. In Section IV, the performance of
SocialTrust is evaluated through real-trace based simulation.
Section V concludes this paper with remarks on future work.

II. RELATED WORK

In recent years, numerous research works have been
conducted on reputation systems [3]–[7] in P2P networks.
These works focus on how to aggregate reputation ratings
and calculate the reputation efficiently and accurately. Though
these systems are effective, they fail to utilize the social
network properties in P2P file sharing to reduce reputation
querying cost and encourage continuous cooperation, as men-
tioned in the introduction. Zhou and Hwang [3] observed a
power-law distribution in user feedbacks in eBay and pro-
posed the PowerTrust reputation system that selects few most
reputable nodes to aggregate reputation feedbacks in order
to improve the global reputation accuracy and aggregation
speed. Zhang et. al [4] presented a reputation system built
upon the multivariate Bayesian inference theory. It offers
a theoretical basis for clients to predict the reliability of
candidate servers based on self-experiences and feedbacks
from peers. GossipTrust [5] uses randomized gossiping and
power nodes to enable fast aggregation and fast dissemina-
tion of global reputation. PeerTrust [6] includes a coherent
adaptive trust model for quantifying and comparing the trust
of peers based on a transaction-based feedback system, which
combines multiple parameters such as feedback a peer receives
from other peers and the total number of transactions a peer
performs. EigenTrust [7] computes a global reputation value
for a peer by calculating the left principal eigenvector of a
matrix of normalized local reputation values, thus taking into

consideration the entire system’s history with each peer and
increasing the accuracy of global reputation.

There are also a number of works that leverage OSNs for
reliable services in P2P networks [8]–[12], [16] based on the
property of “friendship foster cooperation” [13]. Since a user’s
friends are usually trustworthy and share similar interest with
it, Chen et al. [16] exploited the friend relationships to perform
reputation estimation, i.e., a node selects a file based on its
friends’ evaluation on the file. TRIBLER [8] is a social-based
P2P file sharing system, which enables fast, trusted content
discovery and recommendation by allowing nodes to retrieve
files from taste groups, friends and friends-of-friends. Turtle
[9] builds its overlay on top of pre-existent trust relationships
among its users in order to withstand most of the denial
of service attacks and allow both data sender and receiver
anonymity. MyNet [10] is a P2P middleware platform and
user interaction tool that allows everyday users to easily and
securely access and share their devices, services, and content
in real time. In the F2F system [11], a node chooses its
neighbors (the nodes with which it shares resources) based on
existing social relationships. This approach provides incentives
for nodes to cooperate. SybilGuard [12] exploits the property
that social connections usually represent trust relationships to
detect sybil nodes. It is based on the property that sybil nodes
usually have disproportionately small amount of connections
with honest nodes. In these algorithms, though the social
network is exploited to enhance service quality, they limit
the operation (i.e., file sharing and data service) only among
friends. Such a limitation contradicts with the goal of widely
file sharing in the P2P file sharing systems.

III. THE DESIGN OF SOCIALTRUST

SocialTrust is a credit based reputation system for P2P file
sharing systems. Below, we present the three main components
of SocialTrust in detail.

A. Social Networks

In a general OSN, a user’s friends include offline friends
with certain social connections (e.g., friends, classmates, col-
leagues, etc.) in real life and online friends. Similarly, the
social relationships of a node in SocialTrust include both
offline friends and trustable online partners. Both friends
and partners in SocialTrust represent certain trust. Since
friends are connected by certain social relationships in a
social community, they would offer high QoS to each other
with the intention of building high real-life reputations. Thus,
the friendship network motivates nodes to be cooperative
continuously. A node’s partners also have high probabilities
to offer high QoS to the node according to their previous
interaction (collaboration) records.

1) Friendship Maintenance: The friendship update (i.e., ad-
dition and deletion) in SocialTrust is user-dependent behavior,
and users are responsible for the consequence of adding a
new friend. In other words, rational users would be cautious
in accepting friend invitations. Consequently, the friendship
network can reflect trustable and stable social relationship
in real lives. Since the friendship is user centric, each user

maintains its own friend-list. When a node, say Ni, wants to
add another node, say Nj , into its friend-list, it sends a friend
invitation to Nj . If Nj accepts the invitation, they become
friends of each other. If a user deletes a friend, they remove
each other from their friend-lists.

Recent research shows that users in online social network
(OSNs) (i.e., Facebook) can be tricked into accepting friend
requests from malicious parties [17]. We claim that this does
not affect the practicality of SocialTrust. Firstly, the friendship
establish requirement in SocialTrust is different from that in
common OSNs in which a user would like to add friends with
no constraint. Secondly, SocialTrust is designed for P2P file
sharing system, where node interactions (i.e., file exchange)
can detect malicious nodes more easily. These nodes are them
removed from friend list. However, as we will see later, a
node would not delete friends arbitrarily since when it has
more friends, it can save more querying overhead.

2) Partnership Maintenance: A bi-directional partnership
is established when both below conditions are satisfied.

(1) The interaction frequency between the two nodes is larger
than a threshold, denoted by Tf .

(2) Each node’s reputation value is larger than the partnership
threshold, denoted by Tr.

The above two requirements match how people build partners
in their businesses, i.e., entities with good and frequent past
transaction records are more reliable.

The interaction frequency of a node, say Ni, with another
node, say Nj , is calculated by

F (Ni, Nj) = γFold(Ni, Nj) + (1− γ)Fnew(Ni, Nj)

where Fnew and Fold denote the frequency measured in the
current and previous period, respectively, and γ ∈ [0, 1] is
an adjusting factor. The update period can be decided as the
average time period between two interactions among nodes
in the system multiplied by a factor. In order to avoid
periodical querying of partners’ reputation values and ensure
timely update of partnerships, the partnership of each node
is maintained on the reputation system. After each reputation
update, the reputation system notifies each node the change
of partnerships, if necessary. Similar to the friendship, a node
would not delete partners arbitrarily in order to save reputation
querying cost and receive reliable services.

3) Further Discussion: A friend or a partner may also be
uncooperative. Therefore, when a node receives uncooperative
service from a friend or partner, it may remove the friend or
partner based on aforementioned criteria. This strategy, in turn,
provides cooperation incentives to friends and partners since
fewer friends and partners would lead to fewer opportunities
to provide service and earn reputation. A node would be
regarded as a selfish node if its reputation drops below a
pre-defined threshold. Then, its services will be rejected by
other nodes in the system. The mechanism of friendship and
partnership network also motivates nodes to keep increasing
their reputations to establish more friendships/partnerships
(i.e., making its reputation value pass the threshold of more

Identify
available
servers

Find
friends and
partners

Select a
friend or
partner
directly

Query
reputations
and select
one server

Send the
request to
the server

Yes

No

Receive
service and
rate the
service

Fig. 1: The process of a client’s server selection.

nodes), which helps to save more reputation querying cost, as
explained in the next section.

B. Lightweight Reliable Server Selection

Since the friendship and partnership represent trust, we
exploit this property to alleviate the reputation querying cost.
That is, a node directly selects friends or partners when
available for service without querying their reputation values.
Each node also maintains local ranks for friends/partners based
on previous service records to handle the case when when
several friends or partners appear in the available server list.

Figure 1 shows the process of a client’s operation in server
selection. When a client needs a service, it first identifies
the available servers (i.e., server candidates) for the requested
service. For example, a node uses the P2P file lookup function
to identify all file owners for its requested file. The client node
then checks whether any of its friend(s) or partner(s) are in the
list. If yes, it skips the step of querying the available servers’
reputations and selects the friend or partner with the highest
local ranking as the server directly. If there is no friend or
partner in the server list, it queries the reputation value of
each server candidate from the reputation system, and chooses
the one with the highest reputation. After the transaction is
completed, the client sends the service rating to the reputation
system. If the service is from a friend or partner, the node also
records the rating for the purpose of local ranking.

We then deduce the percentage of reputation queries (Psc)
that can be avoided in SocialTrust. We assume that the servers
that can satisfy a request are evenly distributed among all
nodes. We use M to denote the total number of nodes in the
system. Let mi be the number of service requests generated
by node i, Ns be the average number of available servers
for a request, and nfp be the number of friends and partners
node Ni has. Then, the probability that none of the available
servers is a friend or partner (Pφ) can be calculated by
Pφ = (1− nfp/N)ns . Then,

Psc =

M∑
i=1

((1− (1− nfp/M)Ns)Nsmi)/

M∑
i=1

Nsmi (1)

Note that a node is more likely to find requested services from
its friends or partners. This means actual Psc should be larger.

As shown in Equation (1), the more friends/partners a node
has, the more reputation queries (i.e., cost) it can avoid. As
stated in Section III-A, the friendship is usually stable while
the partnerships are built dynamically. If a node has a higher
reputation, it can pass the reputation thresholds of more nodes
and be accepted as the partner of more nodes. As a result, a

node would not maintain its reputation value barely above the
reputation threshold but would like to accumulate its reputation
as high as possible to save more cost on reputation querying.

C. Reputation Evaluation

The reputation system updates node reputations based on
received reputation feedbacks, which determines the accuracy
and the effectiveness of the incentive system in encouraging
cooperation and discouraging non-cooperation.

In order to deter reputed nodes from conducting occasional
misbehavior while still being regarded as reputed, we follow
the principle that reputation is built gradually, but drops in
proportional to its ability to bring about harm when a node
misbehaves [15]. The probability that a misbehaving node is
chosen as a server determines its potential harm to the system
performance. Recall a node either selects its friend/partner or
the available server with the highest reputation as the server
for its request. As a result, the probability is determined by the
node’s reputation and social degree, which is the sum of the
degrees in the friendship and partnership network. Therefore,
we propose a metric called Trust (denoted by T ∈ [0, 1]) that
integrates both reputation and social degree:

T (i) = β
R(Ni)

Rmax
+ (1− β)D(Ni)

Dmax
, (2)

where R(Ni) is the reputation of node Ni, Rmax is the
maximal reputation value allowed in the system, D(Ni) is
the social degree of Ni, Dmax is the maximal number of
friends and partners a node can have in the system, and β
is an adjusting factor. Then, the trust of a node represents
its harm when it is non-cooperation and the credibility of its
service rating when it is cooperative.

Unlike the previous reputation systems that only consider
the QoS of servers and assume that clients always provide
honest ratings, SocialTrust considers both file serving and
service rating of a node to determine its reputation, which
motivates a node to be cooperative in both actions. We name
the file sharing process between two nodes as an interaction
between them. Each interaction is a game, in which each node
selects a strategy for the sharing of a file: cooperative and non-
cooperative. We discuss the reputation evaluation in different
scenarios below and use Tc and Ts to represent the trust of
the client node and the server node, respectively.

1) Cooperative Server and Cooperative Client: In this case,
the server provides requested service to the client, which then
rates the quality of the received service honestly. Then, the
rating is always larger than 0: Yc ∈ (0, 10]. The reputation
system decides whether the rating is honest by asking the
server whether it accepts the rating. If the server accepts
the rating, the reputation credits given to the server node
(Rs1 ∈ [0, 1]) and the client node (Rc1 ∈ [0, 1]) are{

Rs1 = (1 + Tc ∗ Yc/10) ∗ α
Rc1 = α

(3)

In Equation (3), α ∈ [0, 0.05] is the unit reputation credit for
file serving and service rating. Thus, the amount of reputation
credits earned by the server depends on the rating and the trust

of the client. The rationale behind such a design is that the
higher trust the client has, the more trustable its rating is, and
more reward should be assigned to the server. Equation (3)
also shows that a server prefers to serve clients with high
trust in order to earn more reputation, which motivates nodes
to always maintain high trust.

2) Cooperative Server and Non-cooperative Client: In this
situation, the server is cooperative in providing service but
the client gives a bad feedback or does not provide any
feedbacks. Then the server refuses to accept the rating (or no
rating) given by the client and files a claim. When the non-
cooperative behavior of the client is confirmed, the reputation
credits assigned to the server (Rs2 ∈ [0, 1]) and the client
(Rc2 ∈ [−1, 0]) are as below. We explain how the reputation
system investigates whether the client rates honestly later.{

Rs2 = α
Rc2 = −(1 + Tc) ∗ α

(4)

We only assign the unit credit to the server since the rating
provided by the client is dishonest and thus cannot reflect the
QoS of the service provided by the server. The non-cooperative
client is punished based on its trust: the higher trust it has,
the more punishment it receives. Such a design reduces the
reputation of nodes with higher trust more quickly when they
are non-cooperative, preventing them from taking advantage
of the high trusts for non-cooperative behavior. Comparing
Equation (4) with Equation (3), we see that the server earns
Tc ∗ α less reputation credits, which is the cost of choosing a
dishonest client. Thus, servers are further motivated to provide
service to high-reputed nodes, which in turn, motivates nodes
to be cooperative in serving and rating.

3) Non-cooperative Server and Cooperative Client: In this
situation, the server provides false or malicious service and
the client node rates the service honestly (i.e., giving bad
feedback). Therefore, the rating is less than 0: Yc ∈ [−10, 0).
Although the server can reject the bad feedback, the reputation
system can check the QoS correctly using the method intro-
duced later. Then, the reputation credits assigned to the server
(Rs3 ∈ [−1, 0]) and the client node (Rc2 ∈ [0, 1]) are{

Rs3 = −(1 + Tc ∗ |Yc|/10) ∗ (1 + Ts) ∗ α
Rc3 = α

(5)

Above design follows the rationale that a non-cooperative
server with high trust receives more punishment to prevent
it from exploiting high reputation for misbehavior. An unit
credit (α) is assigned to the client to encourage honest rating.

4) Non-cooperative Server and Non-cooperative Client:
This situation occurs in collusion, where the server provides
service with low quality or does not provide service at all,
but the client still gives good feedback in order to boost
the server’s reputation. We first assume that collusion is not
detected. In this case, the reputation credits assigned to the
server node (Rs4 ∈ [0, 1]) and the client (Rc4 ∈ [0, 1]) are
the same as those in Equation (3). But in reality, collusion
generally is detected with certain probability under different
detection algorithms [18]. When the collusion is detected,

involved nodes are punished. Then the actual credits assigned
to collusion nodes can be expressed as{

Rs4 = Dd ∗Rs1 = Dd ∗ (1 + Tc ∗ Yc/10) ∗ α
Rc4 = Dd ∗Rc1 = Dd ∗ α

(6)

where Dd ∈ [−1, 1) is the adjusting factor considering the
possible punishment for detected collusion behaviors. It is
determined based on the probability of successful detection
and the amount of punishment for collusion. We leave how to
detect non-cooperative behaviors in the system as future work.

IV. PERFORMANCE EVALUATION

We used the trace from LiveJournal [19], which contains
over 4 million users, to construct the friendship links in social
network. We randomly selected a medium social network with
10,500 users from the trace for our test. Among these nodes,
we randomly selected 520 nodes as non-cooperative nodes.
To simulate different node willingness on cooperation, we
assigned each node (both cooperative and non-cooperative) a
level (L) randomly in range [1, 10]. Then, the probability of a
cooperative node to behave cooperatively (Pg) and the proba-
bility for a non-cooperative node to behave non-cooperatively
(Pb) are defined as P = 0.55+ 0.05 ∗ (L− 1). Such a setting
means that the high level a node is, the more likely it behaves
cooperatively or non-cooperatively.

The reputation value of a node lies in the range of [-1,1].
Initially, all nodes are regarded as cooperative nodes by setting
their initial reputation value in range [0,1]. Nodes with nega-
tive reputation values are identified as non-cooperative nodes,
and their services requests are always rejected by others. The
friendship connections in the social network do not change.
The partner list of each node is empty initially and is gradually
built or deleted during experiments. The reputation threshold
of partnership (Tr) of a node was randomly chosen from a
medium range of [0.3, 0.8]. Based on the average interaction
frequency in the trace, the contact frequency threshold (Tf)
was set to 1 transaction every 50 rounds. Also, based on
analysis of the trace, the reward unit (α) was set to 0.04.

In the test, each experiment consists of 200 rounds. In each
round, we reasonably assume each node has 60% probability
to generate a request. We assume that there are m nodes
containing the requested file for each request. Considering the
total number of nodes is not huge, m is randomly selected
from [3, 6]. We let the file quality fall in range [-10,10]. For
the server, the QoS of its service is randomly selected from
(0,10] and [-10, 0) when it is cooperative and non-cooperative,
respectively. If the client is cooperative, it honestly gives rating
QoS+r, where r represents the rating bias and is chosen from
[-1,1] according to the client node’s trust. The final rating value
is in the range [-10, 10]. If the client is non-cooperative, it
gives rating randomly selected from [-10,0) for cooperative
service and (0,10] for non-cooperative service.

We compared SocialTrust with an OSN-based method [16]
(denoted by OSNTrust) and EigenTrust [7]. OSNTrust pro-
vides a social reputation model to guide users to browse
desirable content using the co-relation between different users
by considering the trust and similarity of interest between

friends. We modified it to adapt to a general reputation system
model, in which each node queries the reputation values of
available servers from its friends. If none of a node’s friends
knows the reputation of available servers, the node randomly
selects a server. In OSNTrust, a node considers a server as non-
cooperative when at least four of its friends report negative
reputation value for the server. EigenTrust [3] calculates the
reputation of a node based on the feedbacks from other nodes
weighted by the rater’s reputation as opposed to our method
that weights the feedback based on trust. We set the confidence
interval to 95% in the experiment part.

A. Efficiency of Reputation Systems

Figure 2(a) shows the reputation querying cost, measured
by the total number of generated reputation queries, in the
three reputation systems. We see that the results follow
OSNTrust>EigenTrust>SocialTrust, and OSNTrust generates
much higher cost than SocialTrust and EigenTrust. For OS-
NTrust, each node needs to query all its friends for each avail-
able server, leading to a large amount of reputation queries.
In SocialTrust, friendship and partnership are exploited to
alleviate the necessity of querying the reputation system for
the reputation of available servers, while in EigenTrust, the
service requester needs to query the reputation of all available
servers. Therefore, SocialTrust produces less cost than Eigen-
Trust. This result justifies that SocialTrust realizes the goal of
reducing reputation querying cost by leveraging friendship and
partnership. Though the cost saving is resulted from selecting
friends/partners directly, we can see later that such a design
does not sacrifice the effectiveness of SocialTrust in guiding
trustworthy server selection.

B. Effectiveness of Reputation Systems

Figure 2(b) illustrates the percentage of correctly detected
non-cooperative nodes throughout the test. We find that the re-
sults follow SocialTrust>EigenTrust>>OSNTrust in the first
180 rounds. Also, both SocialTrust and EigenTrust can detect
almost all non-cooperative nodes in the end while OSNTrust
can only identify a small portion of non-cooperative nodes.
SocialTrust decides the punishment for a non-cooperative
node based on its trust. Thus, it can decrease the reputation
of non-cooperative nodes with high trust quickly. Moreover,
SocialTrust adjusts the rating based on the reliability (i.e.,
trust) of the rater. As a result, its reputation evaluation can
more accurately reflect the behavior of nodes, leading to better
detection of non-cooperative nodes. EigenTrust only considers
the rater’s reputation for the credibility of its reputation
feedback. Therefore, the reputation evaluation in EigenTrust
is not as accurate as that in SocialTrust, especially for high
reputation nodes, leading to a slow detection. For OSNTrust,
each node usually has limited interaction records and thereby a
node’s friends can provide very limited and updated reputation
information of available servers. As a result, OSNTrust can
only detect a small amount of non-cooperative nodes.

Figure 2(c) presents the number of falsely identified non-
cooperative nodes. We see that the results follow OSNTrust

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Re
pu

ta
ti
on

 q
ue

ry
in
g

co
st
 (X

10
6)

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(a) Trust querying cost.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

%
 o
f c
or
re
ct
ly
 d
et
ec
te
d

no
n‐
co
op

. n
od

es

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(b) % of correct detections.

0

20

40

0 20 40 60 80 100 120 140 160 180 200

of
 fa
ls
el
y
de

te
ct
ed

no

n‐
co
op

. n
od

es

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(c) # of false detections.

0.0

1.0

2.0

3.0

4.0

0 20 40 60 80 100 120 140 160 180 200

of
 r
ec
ei
ve
d
no

n‐
co
op

.
se
rv
ic
es
 (X

10
5)

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(d) # of received non-cooperative ser-
vices.Fig. 2: Efficiency and effectiveness of the three reputation systems.

>EigenTrust>SocialTrust. OSNTrust has the most false detec-
tions due to its local reputation calculation with limited inter-
action records, which fails to provide the true trustworthiness
of nodes. For SocialTrust, it generates less false detections than
EigenTrust since it adjusts the reputation punishment by trust.
Therefore, when a node has low trust, the punishment for its
non-cooperative behavior is relatively low, which prevents it
from falling into non-cooperation category occasionally. Also,
the consideration of the rater’s trust leads to more accurate
reputation evaluation in SocialTrust.

Figure 2(d) plots the number of non-cooperative services
received by all nodes. We see that the result follows OSNTrust
>EigenTrust>SocialTrust. This is because the abilities of
the three methods to exclude non-cooperative nodes follow
OSNTrust>EigenTrust> SocialTrust, as shown in Figure 2(b).
The more unidentified non-cooperative nodes in the system,
the more non-cooperative services would be provided. This
result further verifies the efficiency of SocialTrust in excluding
non-cooperative nodes and preventing non-cooperative ser-
vices in P2P system. The result also shows that the scheme in
SocialTrust that selects friends directly when available doesn’t
compromise the performance since friends are more likely to
be cooperative with each other [8]–[11], [13].

Figure 3(a) shows the number of cooperative services re-
ceived by non-cooperative nodes. As the number of rounds
increases, OSNTrust cannot prevent non-cooperative nodes
from receiving services, while EigenTrust and SocialTrust
successfully exclude non-cooperative nodes from receiving
services. Also, SocialTrust can prevent more services for non-
cooperative nodes than EigenTrust. This is because the number
of cooperative services provided to non-cooperative nodes is
proportional to the number of non-cooperative nodes that are
not identified, and as demonstrated in Figure 2(b), SocialTrust
has higher ability in excluding non-cooperative nodes than
EigenTrust, which has higher ability than OSNTrust.

Figure 3(b) plots the number of rejected service requests
from cooperative nodes. We see that the number follows
the same relationship as in Figure 2(c) (i.e. OSNTrust>
EigenTrust>SocialTrust). This is because the number of re-
jected service requests from cooperative nodes is proportional
to the number of falsely detected non-cooperative nodes. When
cooperative nodes are falsely detected as non-cooperative
nodes, their subsequent requests are rejected. Therefore, So-
cialTrust generates the least rejected service requests, and
EigenTrust produces fewer rejected service requests than OS-
NTrust. This further justifies that SocialTrust is more reliable

0.0

1.0

2.0

3.0

4.0

5.0

0 20 40 60 80 100 120 140 160 180 200

of
 s
er
vi
ce
s
re
ce
iv
ed

 b
y

no
n‐
co
op

. n
od

es
 (X

10
4)

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(a) # of services received by non-
cooperative nodes.

0

1

2

0 20 40 60 80 100 120 140 160 180 200

of
 r
ej
ec
te
d
re
qu

es
ts

fr
om

 c
oo

p.
 n
od

es
 (x
10

3)

Number of rounds

SocialTrust
OSNTrust
EigenTrust

(b) # of rejected requests from coop-
erative nodes.

Fig. 3: Effectiveness of reputation systems.

0

0.5

1

0 2000 4000 6000 8000

N
or
m
al
iz
ed

no

de
 le
ve
l

Node sequence

Normalized node level

0

0.02

0.04

0.06
N
or
m
al
iz
ed

in
cr
ea
se

Normalized reputation increase

(a) SocialTrust.

0.0

0.5

1.0

0 2000 4000 6000 8000

N
or
m
al
iz
ed

no

de
 le
ve
l

Node sequence

Normalized node level

0.00

0.01

0.02

0.03

0.04

N
or
m
al
iz
ed

in
cr
ea
se

Normalized reputation increase

(b) EigenTrust.

Fig. 4: Accuracy in reputation evaluation of cooperative nodes.

than EigenTrust and OSNTrust on reputation evaluation.

C. Accuracy of Reputation Evaluation

In this experiment, we evaluate the accuracy of the repu-
tation systems in measuring how cooperative or how uncoop-
erative a node is. The degree of a server’s QoS and a rater’s
rating honesty are decided by their trust. If the selected server
is cooperative in serving, the QoS of its service is calculated
as r + 10 ∗ Ti/TMax, where Ti is the node’s trust, and TMax

is the maximal trust. If the calculated QoS is less than 1 or
larger than 10, it is set to 1 or 10, respectively. If the client is
cooperative, it gave rating by: QoS+r∗(1−Di/DMax), where
its social degree Di controls how large the deviation from the
honest rating is, and r determines the deviation direction. If
the client is non-cooperative, it’s rating is randomly selected
from range [-10,-1]. Here, we do not set the rating fluctuation
associated with the rater’s social degree because we only want
to test the effect of punishing nodes based on their trust. If
the selected server is non-cooperative, the QoS of its service
is calculated as −(r+Ti/TMax), which is also confined to the
range of [-10, -1]. Then, if the client is cooperative, it gives
rating by: QoS+r∗ (1−Ti/TMax). Otherwise, it gives rating
randomly in range [1, 10].

0.0

0.5

1.0

0 50 100 150 200 250 300 350 400 450 500N
or
m
al
iz
ed

no

de
 le
ve
l

Node sequence

Normalized node level

0.00

0.01

0.02

0.03

0.04
N
or
m
al
iz
ed

de

cr
ea
se

Normalized reputation decrease

(a) SocialTrust.

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

N
or
m
al
iz
ed

no

de
 le
ve
l

Node sequence

Normalized node level

0.00

0.01

0.02

0.03

N
or
m
al
iz
ed

de

cr
ea
se

Normalized reputation decrease

(b) EigenTrust.
Fig. 5: Accuracy in reputation evaluation of non-cooperative nodes.

The normalized reputation increase refers to the average
reputation increase per interaction, and it is calculated as the
final reputation value increase divided by the total number
of interactions. The normalized node level represents how
actually cooperative a node is. Recall that the probability of
a node to behave cooperatively is decided by its node level,
and its QoS or rating honesty is decided by its social degree.
Therefore, a node i’s normalized node level is defined as
NL = 0.5 ∗ L/Lmax + 0.5 ∗ T/Tmax, in which L and T
are the level and the average trust, while Lmax and Tmax are
their maximal values, respectively.

Since OSNTrust does not provide global reputation, we only
measured that of SocialTrust and EigenTrust. We rank all
cooperative nodes by their normalized node levels, and show
each node’s normalized node level and normalized reputation
increase in SocialTrust and EigenTrust in Figure 4(a) and Fig-
ure 4(b), respectively. We see that when normalized node level
decreases, SocialTrust leads to more similar trend between the
normalized reputation increase and the normalized node level.
The reason is that SocialTrust considers both a node’s social
degree and reputation in evaluating a node’s trust, rather than
only considering reputation as in EigenTrust.

We also tested the relationship between the normalized repu-
tation decrease and normalized node level for non-cooperative
nodes. The results are shown in Figure 5(a) and Figure 5(b).
The normalized reputation decrease is calculated as the av-
erage reputation decrease per interaction. We see that the
normalized reputation decrease more closely approximates
the normalized node level in SocialTrust than in EigenTrust.
This is because SocialTrust utilizes the trust of a node to
adjust the punishment for non-cooperative behaviors: high-
trust nodes receive more reputation punishment. Above results
demonstrate the accuracy of SocialTrust in evaluating the
reputation by considering node trust.

V. CONCLUSIONS

In this paper, we propose a social network reputation
system for P2P networks, namely SocialTrust, which inte-
grates social network properties in order to save reputation
querying cost and enhance the reputation evaluation accu-
racy. Since friends/partners in online social networks usually
trust each other, SocialTrust lets each node directly select
its friends/partners, if available, as service provider without
querying their reputation values, thereby reducing the reputa-
tion querying cost. Further, SocialTrust integrates both social
degree and reputation value of a node as its trust for reputation

clearance. Since nodes with high social degree/reputation are
more likely to be selected as servers, they are more harmful
when they are non-cooperative. Therefore, the trust is used
to adjust the reputation reward and punishment, motivating
nodes to be continually cooperative, rather than remaining
just above the cooperation threshold. Extensive simulation
demonstrates the efficiency and effectiveness of SocialTrust.
In the future, we plan to investigate the correlation between the
OSN friendship and reputation evaluation to further enhance
the accuracy of reputation evaluation.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF
grants CNS-1254006, CNS-1249603, CNS-1049947, CNS-
1156875, CNS-0917056 and CNS-1057530, CNS-1025652,
CNS-0938189, CSR-2008826, CSR-2008827, Microsoft Re-
search Faculty Fellowship 8300751, and U.S. Department
of Energy’s Oak Ridge National Laboratory including the
Extreme Scale Systems Center located at ORNL and DoD
4000111689.

REFERENCES

[1] D. Hughes, G. Coulson, and J. Walkerdine, “Free Riding on Gnutella
Revisited: The Bell Tolls?” IEEE Dist. Systems Online, 2005.

[2] E. Sit and R. Morris, “Security considerations for peer-to-peer dis-
tributed hash tables,” Peer-to-Peer Systems, 2002.

[3] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing,” IEEE TPDS, 2007.

[4] Y. Zhang and Y. Fang, “A Fine-Grained Reputation System for Reliable
Service Selection in Peer-to-Peer Networks,” IEEE TPDS, 2007.

[5] R. Zhou, K. Hwang, and M. Cai, “GossipTrust for Fast Reputation
Aggregation in Peer-To-Peer Networks,” IEEE TKDE, 2008.

[6] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust for
Peer-to-Peer Electronic Communities,” IEEE TKDE, 2004.

[7] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P networks,” in Proc. of
WWW, 2003.

[8] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Y. 0015, A. Iosup,
D. H. J. Epema, M. J. T. Reinders, M. van Steen, and H. J. Sips, “Tribler:
A social-based peer-to-peer system,” in Proc. of IPTPS, 2006.

[9] B. Popescu, B. Crispo, and A. Tanenbaum, “Safe and Private Data
Sharing With Turtle: Friends Team-Up And Beat The System,” in Proc.
of SPW, 2004.

[10] D. N. Kalofonos, Z. Antonious, F. D. Reynolds, M. Van-Kleek,
J. Strauss, and P. Wisner, “MyNet: A Platform For Secure P2P Personal
And Social Networking Services,” in Proc. of PerCom, 2008.

[11] J. Li and F. Dabek, “F2F: Reliable Storage in Open Networks,” in Proc.
of IPTPS, 2006.

[12] H. Yu, M. Kaminsky, and A. D. Flaxman, “Sybilguard: Defending
against sybil attacks via social networks,” in Proc. of Sigcomm, 2006.

[13] E. Pennisi, “How did Cooperative Behavior Evolve?” Science, 2005.
[14] B. Viswanath, A. Post, K. Gummadi, and A. Mislove, “An Analysis of

Social Networkbased Sybil Defenses,” in Proc. of SIGCOMM, 2010.
[15] M. Srivatsa, L. Xiong, and L. Liu, “TrustGuard: Countering Vulnerabil-

ities in Reputation Management for Decentralized Overlay Networks,”
in Proc. of WWW, 2005.

[16] R. Chen, E. K. Lua, and Z. Cai, “Bring Order to Online Social
Networks,” in Proc. of INFOCOM, 2011.

[17] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu, “Reverse social
engineering attacks in online social networks.” in DIMVA, ser. Lecture
Notes in Computer Science, 2011.

[18] Z. Li, H. Shen, and K. Sapra, “Leveraging Social Networks to Combat
Collusion in Reputation Systems for Peer-to-Peer Networks,” in Proc.
of IPDPS, 2011.

[19] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group For-
mation in Large Social Networks: Membership, Growth, and Evolution,”
in Proc. of KDD, 2006.

