

Measuring and Evaluating

Live Content Consistency

in a Large-Scale CDN
Guoxin Liu, Haiying Shen, Harrison

Chandler, Jin Li

Presenter: Haiying Shen

Associate professor
Department of Electrical & Computer

Engineering
Clemson University

• Introduction

• Related work

• Inconsistency analysis

• Performance evaluation

• Conclusion

2

Outline

• Content Delivery Networks (CDNs)
– Cache/replicate contents to surrogate servers near the

network edge
– Optimize the end user experience with short access

latency

• Trends:
– Increased number of enterprises (28 commercial

CDNs)
• Akamai, Limelight, Level 3, Turner, ChinaCache, …

– Scale up rapidly, as Akamai:
• 85,800 servers in 1800 districts over 79 countries
• Growing scale: 50% servers due to 100% increases of traffic

per year

3

Introduction

• Architecture of CDNs

– (1)-(4) recursively resolve
 the hostname

• (2)-(3) for load balancing with
 Locality awareness

– (5)-(8) get the requested content

• Acting as a proxy

• Dynamic contents: (live game statistics)

– Non-trivial for consistency maintenance: Large amount & widely
scattered replicas

– Introduce two requirements: Scalable and consistency
guarantee 4

Introduction

Content Delivery Network

Content server
California)

Content
server

(Geogia)

Local DNS server

End-user

CDN’s recursive
DNS servers

4

1
2

3

5
8

6

7

Content server
(Detroit)

• Our contribution:
– To help develop consistency maintenance

approaches for CDNs by answering
• Can the current update method used in the CDN

provide high consistency for dynamic contents?
– Measuring the inconsistency of a major CDN

• What are the reasons for the content inconsistency?
– Breaking down the inconsistency reasons

• What are the advantages and disadvantages of
employing previously proposed consistency
maintenance approaches in the CDN environment?
– Trace-driven experiments show the performance

5

Introduction

• Introduction

• Related work

• Inconsistency analysis

• Performance evaluation

• Conclusion

6

Outline

• Update infrastructures:
– Unicast: Low scalability
– Broadcast: High overload
– Multicast: Not dynamism resilient

• Update method:
– Time To Live (TTL): high scalability vs. low consistency
– Push: high consistency vs. unnecessary traffic
– Invalidation: traffic saving vs. long access latency

• Problem:
– None of current update infrastructures together with

update methods can achieve both scalability and
consistency guarantee with traffic cost minimization.

7

Related work

• Introduction

• Related work

• Inconsistency analysis

– Trace crawl

– Inconsistency breakdown

• Performance evaluation

• Conclusion

8

Outline

• CDN and content publisher server crawl process:
– Retrieval all domain names after crawling all

webpages of a sport game portal

– 300 geo-distributed PlanetLab nodes to get IPs
through local DNS service
• Domain -> CNAMEs -> Edge server URL-> IPs

– 10 IPs of the provider and 50064 IPs of the CDN

• Content crawl process:
– 200 globally distributed PlanetLab nodes.

• Towards 3000 random selected IPs

– Live statistical webpages served by a major CDN
• 15 day trace between May 15, 2012 and June 4, 2012.

 9

Trace crawl

• Inconsistency measurement method
– Ci: The ith update

– 𝛼𝐶𝑖: The first time when Ci shows up among all servers

– 𝛽𝑠𝐵
𝐶𝑖−1: The last time when Ci-1 shows up

– 𝛥𝐶𝑖−1 = 𝑀𝑎𝑥{𝛽𝑠𝐵
𝐶𝑖−1 −𝛼𝐶𝑖}

10

Inconsistency breakdown
Ti

m
e

Server A Server B Server C Server D

C1
C2

𝛼𝐶2

𝛼𝐶3

C3
𝛽𝑠𝐵
𝐶1

𝛽𝑠𝐶
𝐶2

ΔC1
ΔC2

• Is there any inconsistency?

– 10.1% having inconsistency < 10s

– 20.3% having inconsistency > 50s

• Does a user can observe inconsistency?

– Inconsistency: Continuous inconsistency time is proportional to
TTL of a user’s browser

– Cause: Switching between CDN

 edge servers

– Conclusion: The edge servers

 have inconsistencies

11

Inconsistency breakdown

• Effect of TTL of CDN servers
– Measure the inner cluster inconsistency (by location)

• Exclude the propagation delay effect

• TTL = 80s = 2* Average inconsistency = 2 * 40s

– TTL refinement
• Exclude the other factors’ affection

• Calculate the standard deviation
– Expected distribution VS. Actual distribution within expected TTL

– TTL=60s (with smallest deviation) = 75% of 80s

12

Inconsistency breakdown

• Effect of content provider’s inconsistency
– 90.2% of served requests have inconsistency < 10s

– Average inconsistency = 3.43s = 4.3%*80s

• Effect of provider-server propagation delay
– Average consistency ratio VS. provider-server distance

– Correlation between two factors = 0.11

• Little effect on inconsistency

13

Inconsistency breakdown

• Effect of content provider’s bandwidth
– Measure the response time for querying contents

– [0.5, 2.1]s and 90% requests < 1.5

– Inconsistency effect: 0.5s = 0.6% * 80s (negligible)

• Effect of CDN server failure and overload
– Measure the inconsistency after the absence with certain length

– Effect < 8s = 10% *80s

14

Inconsistency breakdown

• Possible causes:
– TTL of CDN servers

– Provider-server propagation delay

– Content provider servers’ inconsistency

– Content providers’ bandwidth

– CDN server overload and failure

• Influence:
– TTL contributes around 75% of average inconsistency

• Easy to solve by changing update methods

– Other factors contribute significantly less than TTL
• Expensive to solve compared to TTL

15

Inconsistency breakdown

• Introduction

• Related work

• Inconsistency analysis

• Performance evaluation

• Conclusion

16

Outline

• Experimental settings:

– CDN servers: 170 PlanetLab nodes with high
performance and light load in the U.S., Europe, and
Asia.

– Content provider server: One PlanetLab node in
Atlanta

– Trace: Live game events on Jun. 2nd, 2012

• 306 different snapshots

• 2 hours and 26 minutes long

– Users: Each PlanetLab node simulates five browsers

17

Performance evaluation

• Inconsistency under unicast

– Inconsistency among CDN servers
• Push < Invalidation < TTL

• Push needs a long time to update (central server bottleneck)

– Inconsistency among users
• Push ≈ Invalidation < TTL

18

Performance evaluation

• Inconsistency under multicast

– Inconsistency among CDN servers
• Push < Invalidation < TTL (larger inconsistency for nodes at lower

level in the tree)

• Push needs a small time to update (scalable)

– Inconsistency among users

• Push ≈ Invalidation < TTL

19

Performance evaluation

• Traffic cost

– Multicast vs. Unicast
• Unicast > Multicast (locality-aware)

– Traffic cost for different methods
• Scenario: Frequent & Rare updates and frequent visits

• Push < invalidation < TTL

• Different scenarios lead to different results -> Provide guidance for
selecting or designing a CDN’s consistency maintenance methods

20

Performance evaluation

• Update methods
– Push:

• Better consistency in a small-scale network
• Lacks of scalability

– Invalidation:
• Similar consistency guarantee as Push to users with reduced traffic cost
• Has heavy network burden for invalidation notification for frequently updated

contents

– TTL
• Weak consistency
• Better scalability
• Waste cost by rarely updated contents

• Update infrastructures
– Unicast

• Little effect on inconsistency
• Lacks of scalability

– Multicast
• Scalable (needs dynamism resilience)
• Large effect on inconsistency when using TTL

21

Performance evaluation summary

• Introduction

• Related work

• Inconsistency analysis

• Performance evaluation

• Conclusion

22

Outline

• Trace on thousands of CDN servers
– Inconsistency does exist and users can observe it
– Possible causes:

• 1) TTL of CDN servers (major effect), 2) Provider-server propagation
delay, 3) Content provider servers’ inconsistency, 4) Content
providers’ bandwidth 5) CDN server overload and failure (large effect)

• Experiments (thousands of CDN servers)

– Different infrastructures and methods
• Effectiveness: consistency performance
• Overhead: scalability

• Future work:

– A hybrid and self-adapted consistency maintenance method
• Scalable & Consistency& Cost minimization

 23

Conclustion

Thank you!

Questions & Comments?
Haiying Shen

shenh@clemson.edu

Associate Professor of Electrical and

Computer Engineering

Clemson University

24

mailto:shenh@clemson.edu

