## Energy-efficient Cooperative Broadcast in Fading Wireless Networks

Chenxi Qiu, Haiying Shen, and Lei Yu Clemson University, Clemson, U.S.

30. April 2014





- 2 Section 2 System Model
- Section 3 Problem Formulation and Analysis
- 4 Section 4 Algorithm Design
- 5 Section 5 Performance Evaluation
- 6 Section 6 Conclusions

## Background

Broadcast: disseminating a message from one source to all other nodes.

- Broadcast tree
- Connected Dominating Set



## Background: Cooperative Communication

#### Cooperative communication (CC)

- Without CC, the receiver will directly drop the packet if the received Signal-to-noise ratio (SNR) is lower than a threshold.
- With CC, the receiver can combine weak SNRs from different senders to recover the original packet.



## Background: Cooperative Broadcast

**Cooperative broadcast**: The efficiency of broadcasting is improved by combining weak signals rather than discarding them.

Example:



**Problem**: In each time slot, how to allocate the relay nodes to minimize the energy consumption, or minimize the broadcast delay, or both?

## Background: Fading

**Fading**. In fading environments, the transmissions between relay nodes are susceptible to random fluctuations in signal strength.



## Background: Related Work

Reduce energy cost, e.g., CIA/CSIA [Hong, TWC'06], EDS [Wu, TPDS'06], and MLAB [Maric, JASC'05] Reduce delay e.g., EDS [Wu, TPDS'06] and PCDB [Lichte, Mobicom'12] Both e.g., DMECB [Baghaie, Infocom'11].

| Scheme   | Fading       | Delay        | Energy       |
|----------|--------------|--------------|--------------|
| PCDB     | $\checkmark$ | $\checkmark$ |              |
| EDS      |              | $\checkmark$ |              |
| CIA/CSIA |              |              |              |
| MLAB     |              |              |              |
| DMECB    |              |              |              |
| Our work | $\checkmark$ | $\checkmark$ | $\checkmark$ |

#### Table 1

**Our goal**: to study the tradeoff between energy cost and delay in cooperative broadcast, with the consideration of fading.

## Our contributions

#### Challenges:

- Problem formulation is more complicated.
- Algorithm design is more complicated.

## Our contributions:

- Build a mathematical model for the cooperative broadcast problem considering fadings.
- Problem formulation: Fading-resistant Delay-constrained Minimum Energy Cooperative Broadcast (FDMECB) problem.
- Two algorithms: an approximation algorithm and a heuristic algorithm (FREEB).
- Experiments: demonstrate the efficiency of our new algorithm.

## System Model

## Network model

- The system has N nodes:  $V = \{v_1, v_2, ..., v_N\}$  and one source node  $v_s$ , in 2D Euclidean plane;
- A packet is broadcasted from a source node  $v_s$  to all other nodes ( $V v_s$ );
- Time is assumed to be discretized into fixed duration time slots;
- K power levels  $W = \{w_1, ..., w_K\}$  for each node  $(w_1 = 0)$ .

## **Channel model**

• Rayleigh fading:

 $\Pr(\text{received signal power} \le x) = 1 - e^{\frac{x}{\sigma^2}}$ , where

 $\sigma^2 = E(\text{signal power}) \propto \text{transmission power};$ 

#### • Maximal ratio combining:

Packet can be coded iff  $\sum_{i}$  signal power  $i \ge$  decoding threshold;

#### Requirement:

 $\Pr(\sum_{i} \text{ signal power } i < \text{decoding threshold}) < \text{acceptable error rate } \epsilon;$ 

## **Problem Formulation**

## Fading-resistant Delay-constrained Minimum Energy Cooperative Broadcast (FDMECB)

**Instance**: *N* nodes  $V = \{v_1, ..., v_N\}$ , including one source node  $v_s$ , *K* power levels  $w_1, ..., w_K$ , acceptable error rate  $\epsilon$ , delay constraint *T*, and energy constraint *W*.

**Question**: Existence of a schedule such that:

- Each node  $v_j$  can forward packet only if it has been informed.
- By the end of the time slot T, all the nodes in V have been informed.
- By the end of the time slot *T*, the total energy consumption of all the nodes in *V* is no larger than *W*.

#### Theorem 1 (Hardness of FDMECB)

FDMECB is NP-hard.

Proof: Polynomial reduction from the set covering problem (SCP) to FDMECB.



#### Corollary 1

FDMECB is  $o(\log N)$  inapproximable.

## Algorithm Design: Approximation Algorithm

#### Definition 1

Integral version of FDMECB (FDMECB-int): does not allow signals to be combined at receivers.

#### Lemma 1

Denote the relay node set at time slot t by  $R_t$ . If the white noise follows exponential distribution with mean value  $\mu_0$ , then  $v_j$  can be informed in time slot t iff

$$\sum_{\mathbf{v}_i \in \mathcal{R}_r} \delta_{i,j} \ge \ln(1/\varepsilon),\tag{1}$$

where  $\delta_{i,j} = \frac{w d_{i,j}^{-,\gamma}}{\gamma_{\mathrm{th}} \mu_0}$  is called *relative SNR* from  $v_i$  to  $v_j$ .

FDMECB-int loses a factor of  $o(\log N)$  compared to the optimal FDMECB (can be mapped to weighted set cover problem).

## Algorithm Design: Approximation Algorithm

#### Steiner tree (ST) problem.

- Given a graph, a source node  $a_{\rm s}$  and a set of destinations D
- Objective: construct a tree rooted at *a*<sub>s</sub> and spanning all the destinations, with minimum cost.

**Auxiliary graph**. Construct two types of vertices: *node vertex* and *power vertex*.

- For each node  $v_i$ , construct in a node vertex  $a_i$
- For each power level
  w<sub>j</sub> of node v<sub>i</sub>, construct a power vertex a<sub>i,j</sub>.



Finding a feasible schedule for FDMECB-int = finding a ST on the auxiliary graph.

Using the existing method for ST, FDMECB can be solved with performance guarantee  $O(N^{\varepsilon} \log N)$ , which is asymptotically to  $O(N^{\varepsilon})$ .

## Algorithm Design: Heuristic Algorithm

# Definition 2Efficiency of $R_t = \frac{\# \text{ of newly informed nodes}}{\text{Total energy consumption of } R_t}$ (2)

**Fading-Resistant Energy-Efficient Broadcast (FREEB)**: in each time slot t, solve the following integer programming (IP) problem

Maximize the efficiency of 
$$R_t$$
 (3)  
subject to  $\#$  of nodes in  $R_t \ge \frac{\# \text{ of uninformed nodes}}{T - t + 1}$  (4)

#### Proposition 1

If the constraint in Equ (4) can be satisfied in each time slot, all the nodes in V can be informed within T time slots.

## Simulation

## Settings

| Path loss exponent      | 4.0                        |  |
|-------------------------|----------------------------|--|
| Data rate               | 1Mbit/s                    |  |
| Decoding threshold      | 25.8dB                     |  |
| Maximum transmit power  | 20dBm                      |  |
| Noise power density     | $4.32 	imes 10^{-18} W/Hz$ |  |
| Adjustable power levels | 5                          |  |

#### Table 2

#### Compared algorithm

 Non-fading resistant delay constrained algorithm (denoted by NonResist) [Baghaie, Infocom'11].

#### Metrics

- Packet delivery ratio.
- Energy consumption.

## Experimental results

#### Packet delivery ratio:



- 1. FREEB > NonResist
- 2. When  $\epsilon$  is smaller, the packet delivery ratio of NonResist is higher

## Experimental results

#### Energy consumption:



- 1. FREEB < NonResist
- 2. When  $\epsilon$  is smaller, the energy cost of FREEB is higher

## Experimental results

#### Energy delay tradeoff:



When delay constraint is smaller, the energy consumption is higher

## Conclusions

### Our contributions:

- Math model: cooperative broadcast in fading environment.
- Problem formulation: Fading-resistant Delay-constrained Minimum Energy Cooperative Broadcast (FDMECB) problem.
- Two algorithms: an approximation algorithm and a heuristic algorithm (FREEB).
- Experiments.

#### Future work:

- Dynamic networks.
- Multi-flow broadcast.

## Questions&Comments?



Chenxi Qiu chenxiq@clemson.edu PhD candidate Pervasive Communication Laboratory Clemson University