

DSearching: Distributed Searching of Mobile Nodes in DTNs with Floating Mobility Information

Kang Chen and Haiying Shen Dept. of Electrical and Computer Engineering Clemson University, SC, USA

Outline

- Introduction
- Related work
- System design of DSearching
- Evaluation
- Conclusion

Introduction

- Rapid development of mobile devices
 - Laptops, tablets, smart phones, and sensors
- These devices form a delay tolerant network
 - Alleviate the necessity of infrastructure
 - Nodes communicate when move close
 - Suitable for rural areas, exploit unused contact opportunities

Introduction (cont.)

- Distributed network
 - Without a central controller
 - Without infrastructure for communication
- Nodes move autonomously in the network
 - May not follow instructions to move to a place
 - Example 1: sensors on animals
 - Example 2: malicious nodes in the network
 - Example 3: device holders may feel troublesome

Introduction (cont.)

Node searching is beneficial

- Update and repair sensors on animals timely
- Locate malicious nodes timely
- Support other services

A ₁	A ₂	A₃ Target node ●
A ₄	A ₅	A ₆
A ₇ Node locator	A ₈ How to meet node quickly	A ₉ the target ?

Introduction (cont.)

- Node searching is also non-trivial
 - No central controller to guide node movement
 - No infrastructure to collect node location information
 - Information transmission follows the "delay tolerant" manner
- Proposed solutions
 - Summarize node mobility information
 - Nodes can generate transient location records
 - Nodes usually present mobility pattern
 - Exploit mobile nodes to distribute mobility information in the network to facilitate node searching

Related Work

- Infrastructure-based methods [MobiSys'04 Sensys'05, Adhoc-Now'09]
 - Relying on central station/infrastructure to collect node location/mobility information
 - Drawbacks:
 - Not applicable to the DTN scenario
- DTN Routing methods [SIGCOMM'07, INFOCOM'10, MobiHoc'08]
 - Focus on routing a packet to a node, which can be adapted for node searching by following the forwarding route
 - Drawbacks:
 - Low efficiency since packet holders do not actively move toward the target node

Design: Problem Definition

- A DTN with *n* nodes
 - N_i , $i = 1, 2, 3, \cdots, n$
- The whole DTN is split into sub-areas
 - Each sub-area contains one landmark, e.g., a popular place
 - The area between two landmarks is evenly split
 - No overlap among sub-areas
- Node searching
 - Enable the locator to find the sub-area where the target node resides in quickly

Design: Node Mobility

- Transient visiting record (VR)
 - Generated when entering a new sub-area
 - Shows where the node was before entering the new sub-area $VR: < N_i, A_{new}, A_{prev}, Time, T_s, Seq >$
 - A_{new} and A_{prev} represent the current and the previous sub-area, respectively
 - T_s is the TTL of the VR, e.g., half day
- Purpose of VR
 - Providing the information on where the target node currently is
 - Enabling the locator to know where the target moves to from A_{prev}

Design: Node Mobility

Long-term mobility pattern table (MPT)

S	Rank	Sub-areas	Staying Prob.	Next Sub-areas (Prob.)	Seq	
	1	A_5	0.50	$A_8(0.8), A_2(0.2)$	1	
Tr	2	A_2	0.25	$A_1(0.7), A_3(0.3)$	1	
	3	A_6	0.15	A ₅ (1)	1	m 4
A	ccumula	ited on ea	ich node alo	na movina in the het	work	

- Purpose of MPT
 - Providing the information on the node's pattern on transiting among sub-areas

- Why distribute mobility information?
 - It is generated by each node, not the locator
 - Information forwarding is slow in DTN
 - Rely on mobile nodes to carry such information to other places in the network to make it easy to be accessed
 - Facilitate the locator to search for the target

- Distribute visiting record (VR)
 - When a new VR is generated, it is copied to selected encountered nodes

 $VR: < N_i, A_{new}, A_{prev}, Time, T_s, Seq >$

– Ensure that the VR has a high probability to appear in the previous sub-area, i.e., A_{prev}

A node's probability to stay in A_{prev} : $Pt_r(A_{new} \rightarrow A_{prev}) * Ps_r(A_{prev})$

- Purpose: enabling the locator to know the next sub-area to search after arriving at A_{prev} , i.e., leaving a scent on the trail

Distribute mobility pattern table (MPT)

Rank	Sub-areas	•••
1	A_5	
2	A_2	
3	A_6	

$\begin{bmatrix} A_1 \\ R1: A_5 \end{bmatrix}$	A ₂ R1: A ₅ R2: A ₂	$\begin{bmatrix} A_3 \\ R1: A_5 \end{bmatrix}$
A ₄ R1: A ₅	A ₅ R1: A ₅	A ₆ R1: A ₅ R3: A ₆
A ₇ R1: A ₅	A ₈ R1: A ₅	A ₉ R1: A ₅

Define the sub-area a node stays for the most as its home sub-area

Each row represents the mobility pattern in one sub-area

The row for the home sub-area is stored in every sub-area

The rows for other sub-areas are stored in corresponding subareas

- Distribute mobility pattern table (MPT)
 - How to store a row in a sub-area?
 - Nodes are moving, not fixed

Solution:

 Store the row in the nodes whose home sub-area is the sub-area

– Overall probability to stay in the the sub-area > Th_t

• Purpose:

 When the locator arrives at a sub-area, if it cannot find a VR to know the next sub-area to search, it relies on MPT to search around to retrieve valid VRs

Design: Node Searching

- Startup
 - Search randomly
 - When obtaining the MPT row for the target's home sub-area, the locator searches toward the home sub-area

Following VR

- Whenever one or more valid VRs of the target node are found, the locator moves to the A_{new} in the latest VR for search

Follow the VR chain to search the target node

Design: Node Searching

- Searching with MPT
 - It is possible that when arriving at a sub-area, a valid VR cannot be obtained
 - In this case, the MPT row stored in the sub-area is used to search around to retrieve a valid VR

First search the 1-hop neighbor sub-areas, then 2-hop

The searching direction and start sub-area is determined by the MPT info. : **minimize** the expected steps to retrieve a valid VR

Performance Evaluation

- Simulator
 - Event driven simulator
- Node Mobility Traces
 - Dartmouth trace (DART): AP association records of mobile devices on campus [ref]
 - DieselNet AP trace (DNET): AP association records of buses in a college town [ref]
- Comparison Methods
 - Cenwits: encountering based method
 - PROPHET: following the routing algorithm PROPHET
 - Random: searching randomly

Experiment with Different Locator Rates (DART)

Success rate: DSearch>Cenwits>Random>PROPHET

Ave. delay: Dsearch<Cenwits<Random<PROPHET

Experiment with Different TTLs (DNET)

Success rate:

DSearch>Cenwits>Random>PROPHET

Ave. delay: Dsearch<Cenwits<Random<PROPHET

Conclusions

- We proposed DSearching, a distributed node searching algorithm for DTNs using node mobility information
 - Summarize node information using both transient visiting records and long-term mobility patterns
 - Distribute node mobility information to mobile nodes for easy access
 - Use both the two types of information to search the target node along the actual path it traversed

Thank you! Questions & Comments?

Kang Chen, PhD Candidate kangc@clemson.edu Pervasive Communication Laboratory Clemson University