
DSearching: Distributed Searching of Mobile Nodes
in DTNs with Floating Mobility Information

Kang Chen and Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {kangc, shenh}@clemson.edu

Abstract—In delay tolerant networks (DTNs), enabling a node
to search and find an interested mobile node is an important func-
tion in many applications. However, the movement of nodes in
DTNs makes the problem formidable. Current methods in discon-
nected networks mainly rely on fixed stations and infrastructure-
based communication to collect node position information, which
is difficult to implement in DTNs. In this paper, we present
DSearching, a distributed mobile node searching scheme for
DTNs that requires no infrastructure except the GPS on mobile
nodes. In DSearching, the entire DTN area is split into sub-
areas, and each node summarizes its mobility information as
both transient sub-area visiting record and long-term movement
pattern among sub-areas. Each node distributes its transient
visiting record for a newly entered sub-area to nodes that are
likely to stay in the sub-area that it just moves out, so that
the information flows in the network for the locator to trace it
along its actual movement path. Each node also stores different
parts of its long-term mobility pattern to long-staying nodes
in different sub-areas for the locator to trace it when visiting
records are absent. Considering that nodes in DTNs usually have
limited resources, DSearching constrains the communication and
storage cost in the information distribution process. Extensive
trace-driven experiments with real traces demonstrate the high
efficiency and high effectiveness of DSearching.

I. INTRODUCTION

In recent years, delay tolerant networks (DTNs) [1], in
which nodes are sparsely distributed and no end-to-end con-
nection can be ensured, have attracted significant research
interests. In such sparsely distributed networks, enabling a
node to search and find the interested node is an important
function in node management and many applications. For
example, in a DTN that consists of animals (i.e., ZebraNet [2])
for various purposes (e.g., environment monitoring and animal
tracking), we may need to find an animal to upgrade or repair
the sensor attached to it. For a DTN in battlefield, the system
administrator needs to not only isolate a misbehaving device
but also find the person who carries the device. In a DTN
formed by mobile device users, the node search function can
allow a person to find and meet another person. Figure 1
demonstrates the problem of node searching in DTNs, in
which the locator node searches for the target node.

This paper addresses the node searching problem in DTNs
embracing social network properties: nodes move with certain
patterns and have skewed visiting preferences [3]–[5], which

978-1-4799-3360-0/14/$31.00 c©2014 IEEE

A1 A2 A3

A4 A5 A6

A7 A8 A9

Target node

Node locator
How to meet the target
node quickly ?

Fig. 1: Demonstration of node searching in DTNs.

exist in many scenarios. For example, in the DTN consisting of
wild animals, animals usually move between different places
for food, water, and flock gathering with certain patterns. For
DTNs in a battlefield, vehicles and soldiers usually move on
specific routes. In a DTN consisting of mobile devices on
campus, device holders (i.e., students) visit several buildings,
e.g., library, department building, and dorm, repeatedly.

There are already some works [2], [3], [6]–[8] for tracking
objects (i.e., animal and people) under the context of dis-
connected mobile networks. In these methods, the position
or mobility information of the target object is proactively
collected for node tracking/searching. However, these methods
require either central stations [2], [7], [8] or infrastructure-
based communication (i.e., GPSR [8] and satellite commu-
nication [6]) to collect node position information. Though
these techniques are possible and even common in certain
scenarios, they are costly and impractical in areas where DTNs
are mainly designed for, i.e., rural and mountain areas.

Therefore, decentralized node searching method is favorable
in DTNs. One intuitive way is to follow the DTN routing
algorithms [4], [9]–[14]. These methods deduce a node’s
probability of meeting other nodes and forward a message to
nodes that have higher probability of meeting its destination.
Then, the node locator can find the target node by following
the movement of the holders of messages destined for the
target node. However, this scheme may lead to a long delay
because it only provides indirect mobility information of the
target node (i.e., other nodes’ probability of meeting the target
node). Without knowing the direct mobility information of the
target node, a node locator cannot move actively toward the
target node for efficient node searching.

In DTNs, nodes meet opportunistically with limited com-
munication range, leading to frequent network partitions and

posing great challenges on the retrieval of direct node mobility
information. Though the target node can be sensed by its
neighbors, its position information can hardly be forwarded to
the locator quickly. Further, the limited resources on mobile
nodes make the broadcasting of mobility information or the
storage of all mobility information on every node not ap-
plicable in DTNs. As a result, a distributed and lightweight
algorithm is desired to distribute node mobility information
and make such information easily accessible for locators.

In this paper, we propose DSearching, a distributed and
lightweight node searching algorithm in DTNs. The design
of DSearching is based on two social network properties in
DTNs. First, mobile nodes in DTNs usually exhibit certain
movement patterns [5]. Indeed, one previous research reveals
that the mobility of mobile devices carried by students in a
campus is predictable [15]. Second, nodes often visit certain
places and stay there for a relatively long time [4].

In DSearching, the entire DTN area is split into sub-areas,
and each node summarizes its mobility information as both
transient sub-area visiting record and long-term movement
pattern among sub-areas. Both types of mobility information
are distributed to selected nodes to control the overhead and
meanwhile support effective node searching. The transient sub-
area visiting record indicates where the node just visits. Each
node distributes its visiting record for a newly entered sub-
area to nodes that are more likely to stay in the sub-area it
just leaves, so that the visiting records form a chain to enable
locators to know the target’s movement path. The long-term
mobility pattern of a node in sub-area Ai reflects how it transits
to next sub-areas in general. Each node distributes its long-
term mobility pattern in sub-area Ai to long-staying nodes
in Ai and its mobility pattern in its home-area to all other
sub-areas. Then, when the visiting records are absent, such
information can be used to search for the missing VRs to
recover the target node’s movement path.

In summary, our contributions are threefold:
(1) We propose a lightweight method to distribute and store

node mobility information on mobile nodes, which en-
ables a locator to easily access such information.

(2) We propose a node searching scheme that can efficient
and timely find a target in a decentralized manner.

(3) We have conducted extensive trace-driven experiments to
show the efficiency and effectiveness of DSearching.

The remainder of this paper is organized as follows. Related
work is introduced in Section II. Section III presents the
detailed design of DSearching. In Section IV, the performance
of DSearching is evaluated through trace-driven experiments.
Section V concludes this paper with future work.

II. RELATED WORK

Tracking Objects in Disconnected Networks. Tracking
objects in the network without consistent connections has
been studied in several previous works [2], [3], [6]–[8]. In
SOMA [3], each node utilizes its previous records on encoun-
tering nodes and places to predict the places it is going to
visit. ZebraNet [2] tracks Zebras in Kenya by configuring

tracking collars on them, which record their positions and
send the data back to the central station through hop-by-hop
broadcasting. Cenwits [7] and SenSearch [8] aim to search
people in wilderness areas without a connected network. They
both utilize the opportunistic encountering among nodes to
forward their position information to stations or access-points
in the network. The work in [6] utilizes the flock behavior to
reduce costs needed to track sheep in wild areas. It basically
lets the flock leader monitor and report the positions of other
sheep to the server through GPRS or satellite communication.
Different from these methods, DSearching does not require
central stations, GPRS or satellite communication to collect
position information, but enables a node locator to actively
find the target node in a completely distributed manner.

Routing in DTNs. Routing in DTNs has been widely
studied in recent years [4], [9]–[14]. These methods can
generally be classified into two groups: probabilistic routing
methods [9]–[12] and geographical routing methods [4], [13],
[14]. In the former group, RAPID [9] and MaxContribu-
tion [10] predict a node’s future encountering probability with
the destination based on previous encountering records and
forward packets to nodes with higher probability of meeting
their destinations. They also specify the forwarding or storage
priorities of each packet based on their delivery probabilities.
BUBBLE [11] and SimBet [12] further use social factors (i.e.,
centrality and similarity with the destination node) to deduce
a node’s probability of meeting a packet’s destination.

In the latter group of methods, GeoDTN [13] predicts
node encountering possibility based on previous movement
and forwards a packet to nodes that are more likely to meet
the destination node. GeoOpps [14] deduces each possible
route’s minimal estimated time of delivery (METD) to reach
the closest point to the destination and forwards packets to
nodes that lead to smaller METD. LOOP [4] exploits mobility
patterns of mobile nodes to predict their future movement to
forward packets to certain areas in the network.

These algorithms only provide indirect information about
the target node’s position or mobility, i.e., how other nodes
meet it. Therefore, they lead to low efficiency on node
searching. On the contrary, DSearching uses a novel set of
data structures to directly depict a node’s mobility information.
Therefore, DSearching enables a locator to actively move to-
wards the target node, leading to more efficient node searching.

III. SYSTEM DESIGN

We assume a DTN with n nodes denoted by Ni (i =
1, 2, ...n). We regard the mobility of a node as the transits
among sub-areas (different places) in the network. Then,
how to decide sub-areas? Clearly, the more sub-areas, the
more overhead on maintaining node status, but also the more
accurate depict of node mobility. Considering the sub-area
division is uniform for all nodes, we decide sub-areas based
on popular places that are frequently visited by all nodes.

Specifically, we first select popular places in DTNs, which
are common in DTNs with social network properties, e.g.,

libraries and dorms in the DTN on campus. Then, we partition
the entire DTN area into sub-areas by below rules:

• Each sub-area contains only one popular place.
• The area between two popular places is evenly split to

the two sub-areas containing the two places.
• There is no overlap among sub-areas.

Further, sub-areas with size smaller than a threshold (i.e.,
minimal sub-area size) are merged with the smallest neighbor
sub-area. This is to prevent too many small sub-areas. The
popular places and minimal sub-area size are decided by the
network/application administrator.

The area partition is completed off-line to generate an area
map with sub-areas. Each node is configured with the area
map when it initially joins in the DTN with DSearching
enabled. Therefore, DSearching needs the application scenario
information, i.e., popular places and general node mobility
information, before applying it to a DTN. Though all sub-
areas in the illustration in this paper have regular shapes, i.e.,
squares, they can be any shapes. Each sub-area is stored as
the positions of its vertexes.

We assume that each node has a GPS. Thus, each node
can know the sub-area in which it is located. The GPS is
different from the infrastructures since it can easily be installed
on mobile devices. Further, a node does not need to query the
GPS frequently to save energy, i.e., it can query the position
only when finding it may have transited to a new sub-area.

A. Representation of Node Mobility

In DSearching, each node records its mobility information
for others to search for it. To enable the locator to know its
actual movement path, each node leaves transient sub-area
visiting records as hints along the movement path. This is like
the phenomenon in which an ant leaves a trail of pheromone
as it looks for food for others to follow. To enable the locator
to find its regular movement pattern, each node also creates a
mobility pattern table (MPT) to summarize its staying in and
transits among different sub-areas.

1) Transient Visiting Record: Each node leaves a hint, i.e.,
visiting record (VR), when it enters a new sub-area:

V R :< Ni, Anew, Aprev, T ime, Ts, Seq >

where Ni is node ID, Anew and Aprev are the newly entered
sub-area and the previous sub-area, respectively, Time denotes
the time when the node finds that it enters Anew, Ts is the TTL
of the VR, and Seq is the sequence number. Seq increases by
1 when a new VR is created. Considering these records are
time sensitive, we often set Ts to a relative short period of
time, i.e., half day or one day. The visiting record is designed
to ensure that once the locator arrives at Aprev , it knows that
the target node has moved from Aprev to Anew.

2) Long-Term Mobility Pattern: A node’s MPT contains
two types of information for each of its regularly visited sub-
areas: staying probability and transit probabilities. This is be-
cause nodes usually present skewed preferences on staying at
certain sub-areas or transiting from a sub-area to another. The

staying probability of a node, say Ni, at a sub-area indicates
how likely the node is in the sub-area and is calculated as

Psi(Am) = Dm/D (1)

where Dm represents the total time Ni has stayed in sub-area
Am and D is the period of time the node has lived.

The transit probability of a node, say Ni, at a sub-area, say
Am, describes its probability to transit to another sub-area,
say An, in next movement, denoted Pti(Am → An). It is
calculated as below:

Pti(Am → An) = Tmn/Tma (2)

where Tmn is the number of occurrences that the node has
transited from Am to An and Tma denotes the total number
of occurrences that the node moves away from Am.

TABLE I: Mobility pattern table on a node.

Rank Sub-area Staying Prob. Next sub-areas and probabilities Seq
1 A5 0.50 A8(0.8), A2(0.2) 1
2 A2 0.25 A1(0.7), A3(0.3) 1
3 A6 0.15 A5(1) 1
4 A8 0.08 A7(0.6), A9(0.4) 1

· · · · · · · · · · · · · · ·

After accumulating sufficient movement records, each node
builds a MPT as shown in Table I. In the table, “Sub-area”
records the regularly visited sub-areas of the node, which
are sorted in descending order of the staying probability.
In the row for a sub-area, say Am, the “Next sub-areas
and probabilities” records the probabilities that the node
moves from Am to the corresponding sub-areas. For example,
Pti(A2 → A1) = 0.7. “Seq” is the sequence number of the
table. It is increased by 1 when the table is updated. Nodes
update their MPTs periodically.

B. Mobility Information Distribution

We assume nodes are non-malicious and are willing to carry
the mobility information. The motivation of nodes to follow
rules in DSearching is out of the scope of this work.

1) Distribute Visiting Record: When a node, say Ni,
moves from sub-area Am to sub-area An, it creates a visiting
record as introduced in Section III-A1, denoted V Rimn. Recall
that the visiting record is to enable the locator to know the
movement path of the target node. Following this direction, we
distribute VRs to nodes to ensure that the discovery probability
that the locator can find them in the previous sub-area (e.g.,
Am for V Rimn) is larger than a threshold Thd.

Specifically, we use Pdi(Am) to denote the discovery
probability to find Ni’s visiting record in Am. Then, we copy
V Rimn to nodes in An that are likely to transit to Am and
have a high probability to stay in Am to satisfy that

Pdi(Am) = 1−
k∏

r=1

(1−Ptr(An → Am)∗Psr(Am)) ≥ Thd (3)

where k is the number of selected nodes and Ptr(An → Am)
and Psr(Am) denote the transit probability from An to Am

and the staying probability in Am of the r-th node, respectively.
Therefore, we set Thd to 0.8 in this paper.

Finally, whenever a node moves from one sub-area to
another sub-area, a visiting record is created to leave hint in
the previous sub-area. These hints form a linked VR chain to
help the locator find the target node gradually and effectively.

2) Distribute the MPT: DSearching utilizes the storage on
mobile nodes to store the MPT in a distributed manner for
node searching. To save storage, a node, say Ni, needs to
choose a subset of nodes to store its MPT so that

• The locators for Ni can easily retrieve the MPT of Ni;
• The overhead for distributing Ni’s MPT is controlled.
We take advantage of node mobility pattern and the mobility

of locators to realize the two goals. The general method is to
ensure that only the necessary part of MPT remains relative
stable in each sub-area for efficient retrieval.

Storage Host List: DSearching is proposed for DTNs with
social network property that each node has several long staying
places [4]. We then define hosts of sub-area Am as nodes with
staying probability in it larger than a threshold.

Then, to store a node’s MPT in a sub-area, a certain number
of hosts of the sub-area are selected to guarantee that the
probability that at least one host holding the MPT stays in the
sub-area is larger than a threshold (Tht). In detail, each node
maintains a host list for each sub-area containing the hosts in
the sub-area that can store its MPT, as shown in Table II.

TABLE II: Host list for each sub-area.

Sub-area Host list Staying prob. MPT staying prob.
Sub1 N1, N2, N4 0.90, 0.8, 0.7 0.994
Sub2 N9 0.99 0.99

...
SubM N3, N4 0.6, 0.7 0.88

The “MPT staying prob.” denotes the probability that at
least one copy of MPT is in the sub-area and is calculated by
1−

∏k
r=1(1−Psr(Am)), where k is the number of hosts and

Psr(Am) is the r-th host’s staying probability in Am.
Each node determines its host lists individually while mov-

ing in the network. Specifically, suppose Ni tries to decide
whether Nj can be added to its host lists. For each sub-area
in the table, Nj is temporarily added to the host list for the
sub-area when it satisfies: 1) Nj is a host of the sub-area with
available memory, and 2) is not in the host list of the sub-
area. Then, if the MPT staying probability of the sub-area is
smaller than Tht, no further action is needed. Otherwise, the
host with the least staying probability is removed until the
MPT staying probability has the minimum value no less than
Tht. The host list of each sub-area can also be determined off-
line based on node movement pattern (similar to the sub-area
division process). We set Tht = 0.7 in this paper.

MPT Distribution and Update: After creating the host lists
from either on-line or off-line method, each node distributes
its MPT to the nodes in the host list for each sub-area when
encountering them. In this step, DSearching does not store
the entire MPT on each node. Instead, only a part of the MPT
is stored on a node. Since the locator searches in a sub-area
by sub-area manner, the MPT in each sub-area only needs to
ensure that the locator knows where to search in the next step.

A1 A2 A3

A4 A5 A6

A7 A8 A9

Rank Sub‐area ID ……

1 A5 ……

2 A2 ……

3 A6 ……

4 A8 ……

(a) Mobility pattern table (b) Mobility information distribution

R1: A5
R4: A8

R1: A5

R1: A5

R1: A5

R1: A5
R2: A2

R1: A5

R1: A5
R3: A6

R1: A5
R1: A5

R1: A5

Fig. 2: Distribution of MPT entries (R1 denotes Row 1).

For example, based on Table I, a locator in A5 only needs to
know the row for A5 in the target’s MPT in order to know
where to search in the next step.

Therefore, when Ni meets a node in its host lists, say Nj ,
Ni decides the content to be stored in Nj as below.

• Ni copies the first row of its MPT to Nj .
• If the home sub-area of Nj , denoted hSub(Nj), exists in

Ni’s MPT, Ni copies the corresponding row to Nj .
• When a node receives the row of a MPT that it already

has, it only keeps the latest one.
We define a node’s home sub-area as the sub-area it has the
highest staying probability. The MPT row for the home sub-
area is distributed to all sub-areas because it is the sub-area in
which the target node is most likely to stay. Figure 2 shows an
example of the distribution of a MPT. We see that in addition
to the first row in the MPT, the hosts in sub-areas A5, A2, A6

and A8 store the corresponding rows in Ni’s MPT.
Finally, this strategy can realize the aforementioned two

goals. Firstly, wherever a locator starts searching for the target
node, it can easily retrieve the mobility pattern information
for efficient node searching. Secondly, each node only stores
part of its MPT on a selected set of nodes, which saves
communication and storage cost on the MPT distribution.

C. Node Searching

In node searching, we assume that the locator can move
much faster than the target node, i.e., can pass more sub-areas
in a unit time in average. This is reasonable because the locator
is dedicated for node searching while the target node may
stay at certain places and is not continuously moving. We
also assume that when the locator arrives at a sub-area, it can
search around to determine whether the target node is in the
sub-area with a very high accuracy.

1) Overview: DSearching utilizes the visiting records and
MPT tables distributed in the network to search for the target
node. When a locator is initialized, it first searches the home
sub-area of the target. Then, the locator tries to follow the VR
chain to search for the target node along its actual movement
path. When a visiting record on the VR chain cannot be found,
i.e., there is a gap on the VR chain, DSearching uses the
MPT to search for a valid VR that can bridge the gap. During
this process, whenever a valid visiting record is obtained, the
locator moves to the Anew indicated in it. This process repeats
until the target node is found.

2) Searching Startup: When a locator is initialized, it
knows nothing about the mobility of the target node and

VR

A3

A7

A11

A14

VR

VR

VR

node movement

search route

A10

(a) Ideal situation.

node movement

VR

A3

A7

A11

A14

VR

VR
where to search
next?

A10

(b) A VR is missing.

Fig. 3: Node searching with VRs.

can only search randomly. However, as mentioned in Sec-
tion III-B2, the first row (home sub-area) of each node’s
MPT table is copied to all sub-areas. Therefore, the locator
can easily know the target’s home sub-area. Then, the locator
moves to the home sub-area of the target to search for it. The
rationale behind such a design is that the target stays in the
home sub-area longer than in any other sub-areas.

3) Node Searching with VRs: Whenever the locator dis-
covers one or more VRs of the target node that are newer than
the previous one it uses, it moves to the Anew in the latest VR,
i.e., the one with the largest sequence number, to search for
the target node. In this sub-area, if the target node cannot be
found, the locator is supposed to discover the VR indicating
where the target node moves to from the sub-area. When the
locator finds such a VR, it again goes to search the Anew in
the VR. Ideally, following this manner, the locator searches for
the target node along its movement path indicated in a chain
of VRs. As shown in Figure 3(a), the locator searches along
the actual movement path of the target with the help of VRs,
i.e., A14 → A10 → A11 → A7 → A3.

4) Node Searching without VRs: Although the design in
Section III-B1 requires that a VR should exist in the previous
sub-area with a high probability (≥ Thd), the VRs actually
are floating in the network due to node mobility. Therefore,
it is common that a certain VR cannot be discovered by
the locator, leading to a gap on the VR chain. As shown
in Figure 3(b), the VR created in sub-area A7 fails to reach
A11. Then, after searching A11, the locator cannot know where
to search for the next step. In this case, the MPT table and
geographical limitations are jointly considered to provide a
heuristic solution with a low cost.

Specifically, suppose the locator fails to find the expected
VR in a sub-area, say Ax0

. Then, the locator moves around
to find the missing VR or a VR created after it. We define the
cost in this process as the expected number of searching hops,
denoted W . One searching hop refers to the movement from
one sub-area to another sub-area. Then, the goal is minimizing
the W needed to find a VR that can bridge the gap on the
VR chain. In below, we first assume that when arriving at a
sub-area, the locator can obtain the corresponding row for the
sub-area in the target’s MPT from nearby nodes, which can
easily be realized based on the design in Section III-B2. We
then present the case without MPT information later.

A Practical Method: In order to find a practical and
effective method to find the missing VR, we first investigate
the geographical limitation. We define H-hop neighbor sub-

Ax0

1‐hop neighbor
sub‐areas

2‐hop neighbor sub‐areas

(a) N-hop neighboring sub-areas.

Ax0

(b) A searching route.

Fig. 4: Node searching without VRs.

area set of a sub-area, say Ax0
, as the set of sub-areas that

a node needs at least H hops to reach them from Ax0
. In

Figure 4(a), the 1-hop and 2-hop neighbor sub-areas of Ax0

are connected by two circles, respectively. We can find that
after moving out of Ax0 , the target node needs to visit at least
one H-hop neighbor (H = 1 or 2) sub-area to pass through
the area covered by these sub-areas. Therefore, it is highly
possibility that a VR that can bridge the gap on the VR chain
can be found in these sub-areas. We then limit the searching
for VRs within 1-hop and 2-hop neighbor sub-areas. In detail,
we let the locator searches all 1-hop neighbor sub-areas first
and then all 2-hop neighbor areas.

Furthermore, we let the locator only searches sequentially
along the circle connecting all H-hop sub-areas, i.e., the circles
in Figure 4(a). This is because the movement from one H-hop
sub-area to another non-neighboring H-hop sub-area needs at
least 2 and at most 2∗H hops, while the sequential searching
takes only QH hops to search all sub-areas, where QH is
the number of sub-areas in the set (Q1 = 8 and Q2 = 16
in Figure 4(a)). Such a simplification can greatly reduce the
complexity of finding the best route to find the missing VR.

With above simplification, when searching the H-hop neigh-
bor sub-area set, we only need to determine the start sub-area
and the searching direction, which has only 2 ∗ QH cases,
i.e., QH possible start sub-areas and each has two directions.
Specifically, for 1-hop neighbor sub-area set, the probability
that a VR that can bridge the gap in the VR chain can be found
in Axr (r ∈ [1,M]), denoted Pf(Axr), can be expressed as

Pf(Axr
) = Pv(Axr

)Pd(Axr
)

= Pt(Ax0
→ Axr

) ∗ Thd (4)

where Pv(Axr) denotes the probability that the target has
visited Axr after moving out of Ax0 , and Pd(Axr) denotes the
probability that the VR created in the sub-area immediately
after Axr

can be found in Axr
, which is introduced in

Equation 3. Then, Pv(Axr
) and Pd(Axr

) are approximated
by Pt(Ax0 → Axr) and Thd, respectively. For the former,
the simplification only considers the 1-hop transit from Ax0

to Axr
, i.e., Pt(Ax0

→ Axr
), because 1) the 1-hop transit

accounts for the majority of all transits and 2) this is the only
information the locator can get from the target’s MPT. For the
latter, since DSearching requires that Pd(Axr

) is larger than
Thd, which is set to a large number, e.g., 0.8, it is acceptable
to use Thd to represent Pd(Axr). Then, DSearching calculate

the W for all the 2 ∗Q1 cases by below.

W =

M∑
r=1

S(Axr−1
, Axr

) ∗ (
r−1∏
s=1

(1− Pf(Axs
)))Pf(Axr

)

= (

r−1∏
s=1

(1− Pf(Axs
)))Pf(Axr

) (5)

where S(Axr−1
, Axr

) denotes the number of hops needed to
move from Axr−1

to Axr
. It equals to 1 with our aforemen-

tioned simplification. Finally, the start sub-area and searching
direction that lead to the minimal W is selected.

After searching all 1-hop neighbor sub-areas, if a VR that
can bridge the gap on the VR chain is not found, the locator
then searches the 2-hop neighbor sub-area set. This process is
the same as that for the 1-hop neighbor sub-areas except the
calculation of Pf(Axr). In this case,

Pv(Axr
) =

Rr∑
r=1

Pt(Ax0
→ Ayr

) ∗ Pt(Ayr
→ Axr

) (6)

where Ayr
denotes the intermediate 1-hop sub-area through

which the target node can move from Ax0
to Axr

, and Rr

is the number of such sub-areas. Then, the start sub-area and
searching direction that lead to the minimal W is selected
to search all 2-hop neighbor sub-areas. Note that Pt(Ayr →
Axr) can be obtained in the searching of 1-hop sub-areas.

Figure 4(b) demonstrates the searching of the 1-hop and 2-
hop neighbor sub-areas. During this process, if a VR that can
bridge the gap on VR chain can be found, the locator simply
follow the VR to continue the search. If not, the locator moves
randomly out of the areas covered by the 1-hop and 2-hop
neighbor sub-areas to search for VRs.

Without MPT Information: Due to node mobility, it
is possible that the MPT information in a 1-hop or 2-hop
neighbor sub-area cannot be obtained, which means that the
locator cannot know corresponding Pt(Ax0 → Axr). In this
case, we simply take Pt(Ax0

→ Axr
) as the average value,

i.e., all transits have the same possibility.

D. Summary of the Behaviors of Nodes and Locators
We further summarize the behaviors of nodes and locators

in DSearching. For mobile nodes, they first collect enough
movement records to create the mobility pattern table as
introduced in Section III-A2. Meanwhile, when a node enters
a new sub-area, it creates a visiting record as introduced in
Section III-A1. Both visiting records and mobility pattern
tables are distributed to nodes in the network following the
methods in Section III-B1 and III-B2, respectively.

The locator first moves to the home sub-area of the target
to search for the target, as introduced in Section III-C2. Then,
from the home sub-area, the locator follows the VR chain
to search for the target along its actual movement path, as
introduced in Section III-C3. In case an expected VR cannot
be found, i.e., there is a gap on the VR chain, the locator
follows the practical method in Section III-C4 to find such a
VR. Once an expected VR is found, the locator again moves
along the VR chain to search for the target node.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DSearching
with two real DTN traces and the trace obtained by 9 students
carrying a mobile phone on campus.

A. Empirical Datasets

The first trace, denoted Dartmouth trace (DART) [16],
records the association of students’ digital devices with APs
on the Dartmouth campus. We regarded each building as a
sub-area and merged neighboring records for to the same
mobile device and the same sub-area. We also removed short
connections (< 200s) and nodes with few records (< 500).
Finally, we obtained 320 nodes and 159 sub-areas.

The second trace, namely DieselNet AP trace (DNET) [17],
collects the AP association records of 34 buses in the down-
town area of a college town. Since there are many APs that do
not belong to the experiment in the outdoor environment, APs
with few appearances (< 50) were removed from the trace.
We mapped APs that are within certain distance (< 1.5km)
into one sub-area. The trace is pre-processed similarly as the
DART trace. Finally, we obtained 34 nodes and 18 sub-areas.

The characteristics of the two traces are shown in Table III.

TABLE III: Characteristics of mobility traces.

DART DNET
Nodes 320 34
Sub-areas 159 18
Duration 119 days 20 days
Transits 477803 25193

B. Experiment Setup

We set the initial period to 30 days for the DART trace and 5
days for the DNET trace, during which nodes collect mobility
information to build the MPT. Then, locators were generated
with random start sub-area and target node at the rate of Rp

per day, which was set to 40 by default. Considering students
move less frequently than the bus, the default locator TTL was
set to 24 hours in the DART trace and 4 hours in the DNET
trace. Since both traces do not provide the map information,
we assume that the locator needs 10 minutes to move from
one sub-area to another sub-area on average.

We compared DSearching with three representative meth-
ods: an encountering based method (Cenwits) [7], a routing
based method (PROPHET) [18], and a random searching
method (Random). In Cenwits, nodes record their meeting
locations and times with other nodes and exchange such
information with others. The locator collects such information
from encountered nodes and moves to the most recent place
where the target node appears to search for it. In PROPHET,
the locator follows the node that has the highest possibility to
meet the target node to search for it. In Random, the locator
moves randomly to search for the target node.

We measured four metrics: Success rate, Average delay,
Average path length, and Average node memory usage. The
former three refer to the percentage of locators that success-
fully find their target nodes and the average delay and average

0.0

0.2

0.4

0.6

0.8

1.0

20 30 40 50 60 70

Su
cc
es
s
Ra
te

Locator Rate

DSearch Cenwits
Random PROPHET

(a) Success rate.

0

10

20

30

40

50

20 30 40 50 60 70

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

Locator Rate

DSearch Cenwits
Random PROPHET

(b) Average delay.

0

10

20

30

40

50

60

20 30 40 50 60 70

Av
er
ag
e
Pa
th
 L
en

gt
h

Locator Rate

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70

Av
er
ag
e
M
em

or
y
U
ni
t

Locator Rate

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.
Fig. 5: Performance with different locator rates using the DART trace.

0.45

0.55

0.65

0.75

0.85

20 30 40 50 60 70

Su
cc
es
s
Ra
te

Locator Rate

DSearch Cenwits
Random PROPHET

(a) Success rate.

2.5

3.0

3.5

4.0

4.5

5.0

20 30 40 50 60 70

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

Locator Rate

DSearch Cenwits
Random PROPHET

(b) Average delay.

4.0

4.5

5.0

5.5

6.0

6.5

7.0

20 30 40 50 60 70

Av
er
ag
e
Pa
th
 L
en

gt
h

Locator Rate

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

10

20

30

40

50

60

20 30 40 50 60 70

Av
er
ag
e
M
em

or
y
U
ni
t

Locator Rate

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.
Fig. 6: Performance with different locator rates using the DNET trace.

path length of these locators, respectively. The last one denotes
the average number of memory units used by each node. For
DSearching, we take one row of the MPT and four visiting
records as one memory unit. For Cenwits, 4 meeting records
with others are regarded as one memory unit. For PROPHET,
8 meeting probabilities are regarded as one memory unit. We
set the confidence interval to 95% in the paper.

C. Experiments with Different Locator Rates

In this test, we varied the locator rate Rp from 20 to 70.
1) Success Rate: Figure 5(a) and Figure 6(a) present the

success rates of the four methods in the tests with the DART
trace and the DNET trace, respectively. We see that the success
rates follow: DSearching>Cenwits>Random>PROPHET.

PROPHET has the lowest success rate because locators in
it only follow the mobile node that has the highest probability
to meet the target node, which has its own mobility pattern.
Therefore, a lot of locators expire due to TTL, leading to
the lowest success rate. For Random, locators move actively
but search blindly, resulting in a low success rate. Cenwits
explores the witness of the target node’s appearances in differ-
ent sub-areas to actively search for it. Therefore, it has higher
success rate than Random and PROPHET. However, Cenwits
has lower success rate than DSearching. This is because
Cenwits only simply utilizes the recent appearances of the
target node but neglects the mobility pattern of the target node.
On the contrary, DSearching combines the two information to
enable more efficient and accurate node searching.

We also find that except DSearching, other three methods
have obvious higher success rate in the test with the DNET
trace than in the test with the DART trace. This is because the
DART trace represents a network with a lot of sub-areas (i.e.,
159) while the DNET trace is a small scenario with 18 sub-
areas. Then, in the test with the DNET trace, though locators
in Random, PROPHET, and Cenwits have limited information
about the mobility of the target nodes, they can meet the target

nodes easily. DSearching has similar success rate in the tests
with both traces because the locator always moves towards the
most possible sub-area where the target node would be. Such
a result validates the effectiveness of the mobility information
distribution in DSearching in networks with different sizes.

2) Average Delay: Figure 5(b) and Figure 6(b) present the
average delays of the four methods in the tests with the DART
trace and the DNET trace, respectively. We see that the average
delays follow: DSearching<Cenwits<Random<PROPHET.

PROPHET has the highest average delay because the node
followed by the locator may stay in certain sub-areas for a long
time, resulting in an extremely long delay. Random also has
a large average delay since nodes search randomly. Cenwits
actively searches where the target node has shown recently.
Since nodes usually would stay in a sub-area for a while,
Cenwits has a small average delay. For DSearching, it further
reduces the delay by utilizing both visiting records and MPT to
guide node searching, which can help predict where the target
node would be more accurately, leading to the least delay.

3) Average Path Length: Figure 5(c) and Figure 6(c) show
the average path lengths of the four methods in the tests with
the DART trace and the DNET trace, respectively. We see
that the average path lengths of the four methods follow:
PROPHET<DSearching<Cenwits<Random.

PROPHET has the lowest average path length. This is
because locators in it often stay in a sub-area for a long time.
Therefore, successful locators in PROPHET may only search a
few sub-areas, leading to the shortest search path. DSearching
has the second least average path length because the locator
movement in it has the highest possibility of encountering the
target node by utilizing both transient visiting records and long
term mobility pattern of the target node. For Cenwits, it only
utilizes the transient appearance records of the target node to
guide the node searching, resulting in less efficient locator
movement and relative large average searching path length.
Random has the highest path lengths because the locator

0.0

0.2

0.4

0.6

0.8

1.0

18 21 24 27 30 33

Su
cc
es
s
Ra
te

TTL (hour)

DSearch Cenwits
Random PROPHET

(a) Success rate.

0

10

20

30

40

50

60

18 21 24 27 30 33

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch Cenwits
Random PROPHET

(b) Average delay.

0

20

40

60

80

18 21 24 27 30 33

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

20

40

60

80

100

120

140

160

18 21 24 27 30 33

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.
Fig. 7: Performance with different locator TTLs using the DART trace.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7

Su
cc
es
s
Ra
te

TTL (hour)

DSearch Cenwits
Random PROPHET

(a) Success rate.

2

3

4

5

6

7

2 3 4 5 6 7

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch Cenwits
Random PROPHET

(b) Average delay.

3.0

4.0

5.0

6.0

7.0

8.0

9.0

2 3 4 5 6 7

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

10

20

30

40

50

60

2 3 4 5 6 7

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.
Fig. 8: Performance with different locator TTLs using the DNET trace.

searches randomly in the network.
4) Average Node Memory Usage: Figure 5(d) and Fig-

ure 6(d) show the average node memory usages of the four
methods in the tests with the DART trace and the DNET trace,
respectively. We see that the average memory units of the four
methods follow: Random<PROPHET<Cenwits<DSearching.

Random has 0 average memory unit since nodes do not need
to store any information for node searching. In PROPHET,
each node needs to store its meeting probabilities with all other
nodes, leading to a small amount of memory units. Cenwits has
higher average memory units than PROPHET since it needs to
store a large amount of node appearance records on each node.
For DSearching, each node stores both visiting records and
MPT of other nodes, resulting in the highest memory usage.

Though DSearching has the most memory usage among
the four methods, the absolute amount of memory usage is
acceptable. We find that the average memory unit on each node
is about 150 and 50 in the tests with the two traces. Recall
that each unit is about 200 bytes (i.e. one row of the MPT and
four visiting records). This means the average memory usage
on each node is only about 30 KB and 10 KB in the two tests,
which can easily be satisfied in modern devices. Therefore, we
conclude that the designed mobility information distribution
algorithm is memory efficient in DTNs.

D. Experiments with Different Locator TTLs

We varied the TTL of each locator to see how different
methods scale to locator TTL. Considering the DART trace
is much longer than the DNET trace (119 days vs. 20 days)
and has relative slow node movement (students vs. bus), we
varied the TTL from 18 hours to 24 hours and from 2 hours to
7 hours for the DART trace and the DNET trace, respectively.

1) Success Rate: Figure 7(a) and Figure 8(a) present the
success rates of the four methods in the tests with the
DART trace and the DNET trace, respectively. We see that
the success rates of the four methods follow: DSearching>

Cenwits>Random>PROPHET. This is the same as that in
Figure 5(a) and Figure 6(a) for the same reasons.

We further find that when the TTL increases, Cenwits and
PROPHET have closer and closer success rate with DSearch-
ing. This is because when TTL is large, locators in Cenwits
and PROPHET can also eventually find most target nodes,
leading to a high success rate. However, this comes at the
cost of high average delay, as shown in next section.

2) Average Delay: Figure 7(b) and Figure 8(b) present
the average delays of the four methods in the tests with
the DART trace and the DNET trace, respectively. We find
that the average delays of the four methods follow the same
relationship as in Figure 5(b) and Figure 6(b): DSearching
<Cenwits<Random<PROPHET. The reasons are the same
with those in the tests with different locator rates.

We also see that when the TTL increases, the average delay
increases. This is because when the TTL increases, locators
that may fail to find their target nodes when TTL is small can
find their target nodes. Then, the average delay of locators
increases due to more successful locators with a large delay.

3) Average Path Length: Figure 7(c) and Figure 8(c)
present the average path lengths of the four methods in the
tests with the DART trace and the DNET trace, respectively.
We find that the average path lengths follow: Random<
DSearching<Cenwits<PROPHET, which is the same as in
Figure 5(b) and Figure 6(b). The reasons are also the same.

We also see that when TTL increases, the average path
length increases. This is caused by the same reason as in
Section IV-D1 and IV-D2: when TTL increases, more locators
can find their targets after searching many sub-areas, leading
to increased average search path length.

4) Average Node Memory Usage: Figure 7(d) and Fig-
ure 8(d) present the average memory units a node uses in the
tests with the DART trace and the DNET trace, respectively.
We see that the results are the same with Figure 5(d) and
Figure 6(d). This is caused by the fact that the memory usage

L2 L0L1
L7

L6

L5L4L3

S‐Hall

Union

B‐Hall

R‐Hall Library

M‐Hall

D‐Hall

H‐Center

(a) Maps for sub-area division.

Item Value

Sub‐areas 8

Nodes 9

Transits 147

Duration 4 days

(b) Statistical data.
Fig. 9: Configuration in the real environment.

is independent with the locator TTL.
Combining all above results, we conclude that DSearching

presents superior performance compared to other methods with
different locator rates and TTLs. Such a result justifies our
design goal: efficient node searching with acceptable cost.

E. Test with Real Environment Data

We further applied the DSearching to the mobility data of 9
students on our campus. The 9 students are from 4 departments
in our university. We selected 8 sub-areas, each of which is
represented by a frequently visited building. Such mobility
data is obtained based on the GPS on mobile phones, which
is more accurate than the AP association records in the two
real traces. The test environment and the mobility information
are summarized in Figure 9(a) and 9(b).

Since DSearching shows stable performance with different
locator rates in previous tests, we only varied the locator TTL
from 20 minutes to 70 minutes and set the Rp. Since the
distance between the test buildings are not far, we assume
that a locator averagely takes 5 minutes to move from one
sub-area to a neighboring sub-area.

TABLE IV: Results with real environment data

TTL (min) 20 30 40 50 60 70
Success Rate 0.62 0.75 0.83 0.88 0.89 0.93
Ave. Delay (min) 7.6 10.2 10.8 12.2 13.8 17.6
Ave. Path Length 1.4 1.9 2.0 2.3 2.6 3.1
Ave. Node Memory Usage 5 5 5 5 5 5

The test results are shown in Table IV. We find that when the
locator TTL increases, success rate, average delay and average
path length increase. This is the same as our observation in
previous experiments with the two real traces. The reasons are
the same that when the TTL increases, more locators can find
the target nodes after a large delay and a long searching path.

We also see that when the TTL was set to 70 minutes, a
successful locator takes only about 17 minutes (or 3 transits
between sub-areas) to find the target node on average. Further,
each node only needs 5 units of memory on average to support
the node searching, which is very low and can easily be
satisfied. In conclusion, DSearching is effective and efficient
in searching mobile nodes in realistic DTNs.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947,
CNS-0917056 and CNS-1025652, Microsoft Research Faculty
Fellowship 8300751.

V. CONCLUSION

In this paper, we propose DSearching, a distributed mobile
node searching scheme in DTNs where nodes present certain
mobility patterns. In DSearching, the whole network is split
into sub-areas. A node’s mobility information is summarized
as both transient sub-area visiting records and long-term
transition patterns among sub-areas. Each node distributes its
visiting record for a sub-area to nodes that are likely to stay
in the previous sub-area. The long term mobility information
of a node in a sub-area is distributed to a limited number of
long-staying nodes in the sub-area. The combination of sub-
area visiting records and transition pattern enables the locator
to search along the path that the target node traverses, leading
to efficient node searching. Extensive trace driven experiments
with both real traces and an on-campus DTN trace validate the
high effectiveness and high efficiency of DSearching. In the
future, we plan to investigate how to fully utilize node mobility
information to further improve node searching efficiency.

REFERENCES

[1] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant network,”
in Proc. of SIGCOMM, 2004.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” in Proc. of ASPLOS-X, 2002.

[3] J. Zhao, Y. Zhu, and L. M. Ni, “Correlating mobility with social
encounters: Distributed localization in sparse mobile networks.” in Proc.
of MASS, 2012.

[4] S. Lu, Y. Liu, Y. Liu, and M. Kumar, “Loop: A location based routing
scheme for opportunistic networks.” in Proc. of MASS, 2012.

[5] K. Chen and H. Shen, “Leveraging social networks for p2p content-
based file sharing in disconnected manets.” IEEE TMC, 2013.

[6] B. Thorstensen, T. Syversen, T. Walseth, and T.-A. Bjørnvold, “Elec-
tronic shepherd - a low-cost, low-bandwidth, wireless network system.”
in Proc. of MobiSys, 2004.

[7] J. Huang, S. Amjad, and S. Mishra, “Cenwits: a sensor-based loosely
coupled search and rescue system using witnesses.” in Proc. of SenSys,
2005.

[8] J.-H. Huang, L. Jiang, A. Kamthe, J. Ledbetter, S. Mishra, A. Cerpa,
and R. Han, “Sensearch: Gps and witness assisted tracking for delay
tolerant sensor networks,” in Proc. of Ad Hoc-Now, 2009.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem.” in Proc. of SIGCOMM, 2007.

[10] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, and S. Chong, “Max-
Contribution: On optimal resource allocation in delay tolerant networks.”
in Proc. of INFOCOM, 2010.

[11] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in Proc. of MobiHoc, 2008.

[12] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proc. of MobiHoc, 2007.

[13] J. Link, D. Schmitz, and K. Wehrle, “GeoDTN: Geographic routing in
disruption tolerant networks,” in Proc. of GLOBECOM, 2011.

[14] I. Leontiadis and C. Mascolo, “GeOpps: Geographical opportunistic
routing for vehicular networks,” in Proc. of WOWMOM, 2007.

[15] L. Song, U. Deshpande, U. C. Kozat, D. Kotz, and R. Jain, “Predictabil-
ity of wlan mobility and its effects on bandwidth provisioning.” in Proc.
of INFOCOM, 2006.

[16] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature
campus-wide wireless network,” in Proc. of MOBICOM, 2004.

[17] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Enhancing
interactive web applications in hybrid networks,” in Proc. of MOBICOM,
2008.

[18] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks.” Mobile Computing and Communications
Review, vol. 7, no. 3, 2003.

