
Energy-efficient Cooperative Broadcast in Fading
Wireless Networks
Chenxi Qiu, Haiying Shen and Lei Yu

Dept. of Electrical and Computer Engineering
Clemson University, Clemson, USA
{chenxiq, shenh, leiy}@clemson.edu

Abstract—Cooperative broadcast, in which receivers are al-
lowed to combine received packet from different senders to
combat transmission errors, has gained increasing attention.
Previous studies showed that broadcast optimization solutions
are sufficient in non-fading environments but may suffer a low
delivery ratio under wireless channel fading. Though previous
work analyzed the tradeoff between energy and delay in co-
operative broadcast, no works investigated the tradeoff in a
fading environment. Thus, in this paper, we study this tradeoff
with the consideration of fading. We formulate this problem
as a Fading-resistant Delay-constrained Minimum Energy Co-
operative Broadcast (FDMECB) problem, and prove that it is
NP-complete. We then propose an approximation algorithm for
theoretical interests. We further propose a heuristic algorithm
that makes approximately optimal local decision to achieve global
optimization. Our experimental results show that our algorithms
outperform a previous non-fading resistant algorithm.

I. INTRODUCTION

Various approaches have been proposed for efficient broad-
casting in wireless multi-hop networks [1]–[10], in which a
source node transmits a packet to all other nodes in the net-
work. Particularly, cooperative broadcast has gained increasing
attention, in which a packet receiver cooperatively combines
received weak signal power from different senders to recover
the original packet in broadcasting. Due to the broadcast nature
of the wireless channel, a packet transmitted by a sender can
be heard by all of its neighbor nodes. Thus, a node can receive
multiple copies of a specific packet from multiple senders in
broadcasting and cooperatively combine the signal power in an
additive fashion using a cooperative diversity technique (e.g.,
maximal ratio combining (MRC)) [6] to recover this packet.
The efficiency of broadcasting is improved by combining weak
signals rather than discarding them.

In cooperative broadcast, the broadcast delay/energy cost is
measured by the total time/energy needed for all nodes in the
network to receive a broadcasted packet. Many works have
been devoted to reducing the energy cost or delay [3], [5],
[6], [9], [10], but not both. There exists a tradeoff between
the energy consumption and the delay. Reducing the transmit
power of senders saves energy but results in fewer nodes
capable of decoding the signal, thus generating a longer
broadcast delay. On the other hand, sending packets at the
highest possible power maximizes the number of receivers
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capable of decoding the packet at each step, thus minimizing
the broadcast delay.

To solve the tradeoff problem, Baghaie et al. [6] attempted
to minimize the energy cost while meeting a desired de-
lay constraint. They assumed a time-slotted and memoryless
system, in which the MRC at the receiver is restricted to
source transmissions from the present time slot. With this
assumption, they formulated the delay constrained minimum
energy broadcast (DMECB) problem to find which nodes
broadcast together and what power level they use at each time
slot. They proved that this problem is NP-hard and proposed
an efficient polynomial time algorithm.

However, their problem formulation did not take into
account the time-varying fading environments, where the
transmissions between relay nodes are susceptible to random
fluctuations in signal strength due to mobility in a multi-
path propagation environment. Therefore, the optimal solution
of DMECB lacks robustness and may not guarantee high
delivery ratio (i.e., percent of nodes successfully receiving
the packet) in fading environments. Indeed, previous studies
showed that the optimization solutions are sufficient in non-
fading environments but may suffer a low delivery ratio under
wireless channel fading [1].

To overcome this limitation, in this paper, we study the
tradeoff between energy cost and delay in cooperative broad-
cast with the consideration of fading. We aim to minimize the
energy cost under delay constraint, while guaranteeing high
delivery ratio in fading environment (fading-resistant). Accord-
ingly, we formulate the Fading-resistant Delay-constrained
Minimum Energy Cooperative Broadcast (FDMECB) prob-
lem. FDMECB takes into account the Rayleigh fading channel
model [1] and ensures that each node’s probability of suc-
cessful packet decoding reaches a threshold. As DMECB, FD-
MECB assumes a deterministic successful decoding condition;
that is, a receiver can successfully decode a packet if the sum
of all of its received expected SNRs or SINRs [1] is above a
decoding threshold. FDMECB also aims to find which nodes
broadcast together and what power level they use in every time
slot in a time-slotted and memory-less system.

We have proved that FDMECB is NP-complete and o(log
(N)) inapproximable. For theoretical interests, we also i-
dentify an approximation algorithm of the Diameter-bounded
Directed Steiner Tree (DDST) problem [11] for FDMECB that
can provide O(nε) approximation. We then propose a time-



efficient heuristic algorithm named Fading-Resistant Energy-
Efficient Broadcast (FREEB) that makes approximately opti-
mal local decision to achieve global optimization. The exten-
sive experimental results demonstrate that FREEB outperforms
the non-fading resistant algorithm and it nearly achieves the
optimal performance compared to the optimal solution.

II. RELATED WORK

Cooperative communication has attracted great attention
from both research community and industry [1], [3], [5], [6],
[9], [10], [12]–[14]. For example, Dejun Yang et al. [12] de-
signed an auction scheme for the cooperative communications,
where wireless nodes can trade relay services to be selected
as relay nodes, which increases nodes’ incentives for the par-
ticipating wireless nodes to serve as relay nodes. Also, since
some selfish nodes may cheat in cooperative relay to benefit
themselves, Haifan Yao et al. [13] first proposed a cheat-proof
scheme based on strategic game model for cooperative relay
in cognitive radio networks in order to suppresses cheating
behaviors. In cognitive radio technologies, licensed users have
higher priority to access channel than unlicensed users, and
motivated by the idea of cooperative communication, Jin
Zhang et al. [14] proposed a cooperative framework where
primary users may select some of unlicensed users to be the
cooperative relays, and lease portion of the channel access time
to unlicensed users for their own data transmission. Both ana-
lytical result and numerical result show that such cooperation
can benefit both licensed users and unlicensed users for the
utilization of channel. In [15], Liaoruo Wang et al. considered
how cooperative communication improves the connectivity in
wireless ad hoc networks and they demonstrated that even
relatively simple physical layer cooperation in the form of
noncoherent power summing can substantially improve the
connectivity of large ad hoc networks.

Many cooperative broadcast methods [3], [5], [6], [9], [10]
also have been proposed to reduce energy consumption or
delay of broadcast. Maric et al. [9] considered cooperative
data multicast with the objective to maximize the network
lifetime. They propose an optimal algorithm to enable nodes
to reliably receive a message by collecting energy during
each retransmission when the message is forwarded through
the network. Hong et al. [10] analyzed the energy savings
provided by cooperative broadcast, and derived the optimal
energy allocation policy that minimizes the total energy cost.
They also proved that the optimum energy assignment for
cooperative networks is an NP-complete and introduced sev-
eral sub-optimal energy-saving solutions. Lichte et al. [1]
considered the problem of minimizing broadcast delay while
ensuring that a packet is successfully delivered to all nodes in
the network (complete distribution) with high probability in
fading environments. Mergen et al. [5] theoretically studied
the effect of the source/relay transmission powers and the
decoding threshold on the number of informed nodes. Wu
et al. [3] proposed an Extended Minimum CDS (E-MCDS)
approach in order to cover larger groups of uninformed nodes.

Most of the above methods try to reduce either energy
consumption or broadcast delay, but not both. Finding an
optimal tradeoff between energy cost and delay is essential
for the applications that concern both. Baghaie et al. [6]
formulated this tradeoff problem to the DMECB problem and
found its solution. However, their formulation of successful
packet decoding deterministically depends on the expected
received signal strength at the receiver without considering
the fading. Therefore, their derived solution may have a low
delivery ratio in fading environments. Unlike this work, we
study the DMECB problem with the consideration of fading by
explicitly considering the distribution function of the received
signal strength in fading environments.

III. SYSTEM MODEL

We consider a wireless network consisting of a set of nodes
V = {v1, v2, v3, ..., vN}. A packet is broadcasted from a
source node, denoted by vs, to all other nodes (V − vs). Time
is assumed to be discretized into fixed duration time slots. The
nodes that have received and decoded a packet are allowed to
transmit it in the future time slots. The packet delay of node
vi is the minimum number of time slots for a packet to be
broadcasted from source vs to vi. Then, the packet delay of vs
is 0. Broadcast delay, denoted by T , is the maximum packet
delay among all the nodes in V . Table I lists major notations
used in this paper.

TABLE I
NOTATIONS

Notation Description
V The set of sensor nodes
vi Node i
vs Source node
W The set of power levels
wk Power level k
hi,j,t Channel coefficient from vi to vj at time slot t
di,j Distance between vi and vj
zi,k,t Indicator variable indicating if vi uses

power wk at time slot t
Z Schedule matrix
Xi,j,t SNR transmitted from vi to vj at time slot t
N0 Noise power density
N The number of nodes in the network
K The number of power levels
W The total energy consumption of a broadcast

be selected at each time slot
T The constrained delay
γth Decoding threshold
ε Acceptable error probability
α Path loss exponent

We assume that the transmit power at each node is ad-
justable finitely, and there are K adjustable power levels
denoted by W = {w1, w2, w3, ..., wK} where w1 = 0 and
wk ≤ wk′ if k ≤ k′. We consider time-varying and frequency-
flat fading wireless channels. Channel effects from vi to vj
(with distance di,j) at time slot t can be modeled by a single,
complex, random channel coefficient hi,j,k. We consider the
Rayleigh fading channel model [1], in which all |hi,j,k|2 are
independent and exponentially distributed with a mean value

σ2
i,j,k = wkd

−α
i,j (1)



where α is path loss exponent. We use Si,j,k to denote the
instantaneous signal power received by vj from vi using
power level wk. Si,j,k is a random variable with Cumulative
Distribution Function (CDF) of

FSi,j,k = Pr{Si,j,k ≤ x} = 1− e−x/σ
2
i,j,k . (2)

In a single transmission, whether a packet can be success-
fully received by a receiver depends on the instantaneous
SNR=Si,j,kN0

at the receiver, where N0 is the noise power
density. We use a non-negative random variable Xi,j,k to
represent the SNR at vj for the signal transmitted from vi
using power level wk. Node vj can successfully receive the
packet from vi iff Xi,j,k ≥ γth [1], where γth is a fixed
decoding threshold. Based on Formula (2), suppose Xi,j,k

follows exponential distribution, we derive that the probability
that vj can successfully receive a packet from vi with transmit
power wk equals e−γthN0/σ

2
i,j,k .

We then consider cooperative broadcast. We use MRC
[6], a commonly used cooperative diversity technique, to
combine the received powers at a receiver. We consider a
memory-less system where nodes do not accumulate energy
from transmissions occurred in previous time slots. Thus,
the condition for successful decoding at receiver node vj is∑
vi∈RXi,j,ki ≥ γth, where each node vi uses power level

wki (wki ∈ W) and R is the set of relays transmitting packets
to vj in time slot t. Assume that X1,j,k1 , X2,j,k2 , ..., XN,j,kN

are independent and let βi,j,k = N0/σ
2
i,j,k, the sum of SNRs

that node vj receives follows a hypoexponential distribution
with the probability density function (PDF) [16]:

f∑
vi∈R

Xi,j,ki
=
∑
vi∈R

βi,j,kie
−βi,j,kix

∏
vl∈V,l 6=i

βl,j,kl
βl,j,kl − βi,j,ki

The probability that vj cannot successfully receive the packet
in time slot t can be calculated by:

Pr

[∑
vi∈R

Xi,j,ki < γth

]
=

∫ γth

0

f∑
vi∈R

Xi,j,ki
dx

=
∑
vi∈R

(1− e−βi,j,kiγth)
∏

vl∈V,l 6=i

βl,j,ki
βl,j,kl − βi,j,ki

(3)

We then show the relationship between Pr, the number of
relays, and their used power levels in Formula (3). We consider
an example with 5 relays {v1, ..., v5} and 1 receiver v6, and
γth = 1 and α = 4. Figure 1(a) shows the probability of
failed transmission to v6 (Pr) when v1’s power level is varied
from 0.1 to 1 and all others’ power is set to a fixed level.
The result shows that Pr decreases with the increase of v1’s
power level and also with the increase of all other relays’
power level. This implies that higher power level of relays
helps increase successful transmission to a receiver. In Figure
1(b), we vary the number of relays from 1 to 5. The figure
shows that Pr decreases as the number of relays increases
and also as the power level of all relays increases. The result
implies that more relays help increase successful transmission
to a receiver.

(a) (b)

Fig. 1. Curves of Formula (3)

IV. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation

Definition 4.1: (broadcast relay schedule) A broadcast
relay schedule specifies which nodes in which time slot using
which transmit power level to relay the broadcasted packet
from a source.

A broadcast relay schedule can be represented by a three di-
mension matrix (named schedule matrix) Z = {zi,k,t}N×K×T ,
where zi,k,t is an indicator variable indicating if node vi
is selected as relay in time slot t using power wk. Then,
the SNR of the signal received by vj from vi in time
slot t is represented by

∑K
k=1Xi,j,kzi,k,t, and the sum of

SNRs received at vj is represented by
∑N
i=1

∑K
k=1Xi,j,kzi,k,t.

Formula (3) calculates the probability that a node cannot
successfully decode the packet in time slot t. We assume
an acceptable error probability ε. Our problem is to find
an optimal broadcast relay schedule to minimize the total
energy cost, while ensuring a high probability (1 − ε) of
complete distribution with delay constraint of T . Then, the
optimal relay schedule should ensure that for each receiver,
say vj , the probability that it cannot successfully decode
the packet in time slot t (∃t ≤ T ) is smaller than ε, i.e.,
Pr[
∑N
i=1

∑K
k=1Xi,j,kzi,k,t < γth] < ε. We say vj is informed

in time slot t if Pr[
∑N
i=1

∑K
k=1Xi,j,kzi,k,t < γth] < ε;

otherwise, we say vj is uninformed. As a result, our problem
can be formulated as a decision problem:

Definition 4.2: Fading-resistant Delay-constrained Min-
imum Energy Cooperative Broadcast problem (FDMECB):
Instance: A finite set of nodes V , a source node vs ∈ V ,
a set of power levels W , non-negative random variables
Xi,j,t denoting the SNR of vj’s received signal from vi using
transmit power wk, constants ε, T , and W (denoted by
I(V,W, T, vs, ε,W )).

Question: Existence of a broadcast relay schedule (or schedule
matrix) such that:

Condition1: In each time slot t, any node vj can be selected
as relay only if vj has been informed: ∃τ < t, Pr [∑N
i=1

∑K
k=1Xi,j,k zi,k,τ < γth ] < ε.

Condition2: In each time slot t, any node vi can only use one
power level for transmission:

∑K
k=1 zi,k,t = 1.

Condition3: By the end of the time slot T , all the nodes in
V/vs have been informed: ∃τ ≤ T , ∀vi ∈ V/vs, Pr[

∑N
i=1∑K

k=1Xi,j,kzi,k,τ < γth] < ε.



Fig. 2. Proof of Theorem 4.1

Condition4: By the end of the time slot T , the sum of the
energy consumption of all the nodes in V is no larger than
W :

∑N
i=1

∑T
t=1

∑K
k=1 wkzi,k,t ≤W .

We say a broadcast relay schedule is a feasible schedule for
a problem instance I(V,W, T, vs, ε,W ) if the schedule can
satisfy the above five conditions.

B. Hardness of FDMECB

In this section, we prove that finding an optimal solution
for the FDMECB problem is NP-hard. Furthermore, we prove
that finding any polynomial time algorithm that approximates
the optimal solution within a factor of o(log(N)) is also NP-
hard by using an approximation-preserving reduction from the
Set Cover decision problem [17] (Set Cover in short) to the
FDMECB problem.

Lemma 4.1: FDMECB is in NP.
Proof: Let n be the total number of symbols needed

to represent an instance I(V,W, T, vs, ε,W ). To prove that
FDMECB for the instance is in NP, we must prove that for a
given broadcast relay schedule Z, we can verify if it satisfies
Conditions 1-4 in O(q(n)) and q(·) is a polynomial. The time
complexities of additions/subtractions and multiplications
/divisions of two n-symbol values are O(n) and O(n2),
respectively [18]. Obviously, it requires O(NKT ) additions,
and O(NKT ) additions and multiplications to verify
Conditions 2 and 4 respectively, which generate O(NKTn)
and O(NKTn2) time complexity, respectively, all of
which are polynomial. To verify Conditions 1 and 3, we
need to repeat the calculation of Equ. (3) which takes
O(N2K2n2) time complexity [19] for O(NT ) and O(N)
times, respectively. Thus, the time complexity for verifying
Conditions 1 and 3 are O(N3K2Tn2) and O(N3K2n2),
respectively. Therefore, we can verify Conditions 1-4 in
O(N3K3Tn2), which has a polynomial time complexity.

Theorem 4.1: FDMECB is NP-complete.
Proof: We prove this theorem by constructing a polyno-

mial time reduction from the NP-complete Set Cover [20] to
FDMECB. Given a finite set of nodes U = {u1, u2, ..., uP }, a
set of U’s subsets C = {C1, ..., CM}, and a positive integer H ,
Set Cover is: if there exists a subset C′ ⊆ C with |C′| ≤ H such
that every element of U belongs to at least one member of C′.

We construct the following FDMECB instance that maps to
Set Cover (see Figure 2): W = {w1, w2}, delay constrained

T = 2, total energy consumption W = Hw2, and V =
{vs,R,D}, where relay setR = {r1, r2, r3, ..., rM} (ri corre-
sponds to Ci ∈ C) and destination node set D = {d1, d2, d3, ...,
dP } (di corresponds to ui ∈ U). For each pair of distinct nodes
x, y ∈ V , we select independent random variables Xx,y,k such
that the following conditions are satisfied: if {x, y} = {vs, ri}
or {x, y} = {ri, dj} and uj ∈ Ci, then Pr [Xx,y,2 > γth] < ε

and E [Xx,y,1] = 0; otherwise, E [Xx,y,2] ≤ (1−ε)γth
H+1 and

E [Xx,y,1] = 0. The problem is, given vs, W = Hw2 and
T = 2, whether a schedule Z exists such that Conditions 1-4
are met. This reduction process from Set Cover to FDMECB is
performed in polynomial time. We then show the correctness
of this reduction, i.e., a solution exists for Set Cover iff there
exists a feasible schedule for the FDMECB instance.
⇒: Assume there exists a solution C′ = { Ci1 , Ci2 , ..., Cim}

(m ≤ H) for Set Cover. Then, we can construct a feasible
schedule for the FDMECB instance that satisfies Conditions1-
4: in the 1st time slot, vs broadcasts the packet with transmit
power w2, and in the 2nd time slot R′ = {ri1 , ri2 , ..., rim} are
selected as relays with transmit power w2. Obviously, Con-
dition1 and Condition2 are satisfied. Condition3 is satisfied
because for each ri ∈ R

Pr [Xvs,ri,2 > γth] < ε. (4)

Because of the existence of a solution for Set Cover, ∀uj ∈ U ,
∃Cil ∈ C′ such that uj ∈ Cil . Then, ∀dj ∈ D, ∃ril ∈ R′
(1 ≤ l ≤ m), such that

Pr[

m∑
r=1

Xril ,dj ,2
> γth] < Pr[Xril ,dj ,2

> γth] < ε. (5)

Thus, every node in V is informed. Finally, Condition 4
is satisfied because the schedule only uses m relays and
each node uses power w2, then the total energy consumption
mw2 ≤ Hw2.
⇐: Assume there exists a feasible schedule for FDMECB:

in the 1st time slot, vs broadcasts the packet with pow-
er w2 and in the 2nd time slot, all the nodes in R′ =
{ri1 , ri2 , ..., rim} forward the packet with power w2. Conse-
quently, all the nodes in D are informed. Then, we need to
prove that we can also find a solution for Set Cover, which
is C′ = {Ci1 , Ci2 , ..., Cim}. We first assume that this solution
cannot solve Set Cover; that is, there exists uj /∈ Cil for all
Cil ∈ C′. Hence, ∀ril ∈ R′, E

[
Xril ,dj ,2

]
≤ (1−ε)γth

H+1 . Then,
by MarKov’s inequality, we can derive that

Pr[
∑
ril∈R′

Xril ,dj ,2
> γth] ≤

E(
∑
ril∈R′

Xril ,dj ,2
)

γth

≤
E(
∑
ril∈R′

Xril ,dj ,2
)

γth
=

∑
ril∈R′

E(Xril ,dj ,2
)

γth
< 1− ε

which implies that Pr
[∑

ril∈R′
Xril ,dj ,2

< γth

]
> ε. Thus,

dj is not informed after the 2nd time slot, which contradicts
with the FDMECB schedule that informs all the nodes in D.



Therefore, C′ = {Ci1 , Ci2 , ..., Cim} is a solution for the Set
Cover problem.

Corollary 4.1: FDMECB is o(log(N)) inapproximable.
Proof: The reduction used in the construction of the

instance in Theorem 4.1 preserves the approximation factor.
That is, if one can find an θ-approximation for FDMECB, by
extension there must exist an θ-approximation for Set Cover. It
was proved that Set Cover is o(log(N)) inapproximable [17],
thus FDMECB must be o(log(N)) inapproximable.

V. APPROXIMATION ALGORITHM

In Section IV-B, we proved that FDMECB is NP-complete
and o(log(N)) inapproximable, therefore it is hard to
approximate FDMECB to a factor no worse than o(log(N)).
It is of theoretical interest to know how close a polynomial
time algorithm for FDMECB can approach the optimal
solution. In this section, we consider a special case of
FDMECB, in which the white noise has an exponential
distribution, and we show that the existing approximation
algorithm [6] for the DDST problem [11] can be used to
provide O(N ε) approximation for FDMECB in this case.

Lemma 5.1: For each node vj , if the white noise follows
exponential distribution with mean value µ0, then the proba-
bility that vj can be informed in time slot t iff∑

vi∈R
δi,j,k ≥ ln(1/ε). (6)

where δi,j,k = ln

(
1 +

wkd
−α
i,j

γthµ0

)
is called relative SNR of vj

received by vi with power level wk.
Proof: Define a random variable Bj = N0∑

vi∈R
Si,j,ki

.
Then vj can be informed iff Bj ≤ 1/γth, and the CDF of
Bj is given by
FBj (x) = Pr (Bj ≤ x)

= P (N0 ≤ x
∑
vi∈R

Si,j,ki)

=

∫ ∞
0

∫ xz

0

fN0
(y)dy · f∑

vi∈R
Si,j,ki

(z)dz.(7)

By differentiating, we can obtain

fBj (x) =
d

dx
FBj (x)

=

∫ ∞
0

zfN0
(xz)f∑

vi∈R
Si,j,ki

(z)dz

=

∫ ∞
0

z

µ0
e−

xz
µ0 f∑

vi∈R
Si,j,ki

(z)dz. (8)

Then, the probability that vj can be informed equals

Pr(Bj ≥ 1/γth)

=

∫ ∞
0

∫ ∞
1/γth

z

µ0
e−

xz
µ0 f∑

vi∈R
Si,j,ki

(z)dxdz

=

∫ ∞
0

e
− z
γthµ0 f∑

vi∈R
Si,j,ki

(z)dz

= L∑
vi∈R

Si,j,ki

(
1

γthµ0

)
(9)

where L∑
vi∈R

Si,j,ki
(s) represents the Laplace transform

of f∑
vi∈R

Si,j,ki
(x). Because the Laplace transform of the

exponential distribution with mean 1/µ equals µ/(µ + s),
L∑

vi∈R
Si,j,ki

(s) =
∏
vi∈R

1
1+wkd

−α
i,j s

. So we can derive that,

Pr

[∑
vi∈R

Xi,j,ki ≥ γth

]
= 1− Pr(Bj ≥ 1/γth)

= 1−
∏
vi∈R

1

1 +
wkd

−α
i,j

γthµ0

. (10)

Hence, vj can be informed iff∏
vi∈R

1

1 +
wkd

−α
i,j

γthµ0

≤ ε. (11)

Take the logarithm on both sides of Equ. (12), we get that∑
vi∈R

ln

(
1 +

wkd
−α
i,j

γthµ0

)
≥ ln(1/ε). (12)

Lemma 5.1 shows that to check whether vj can be informed
is actually to check whether the sum of relative SNR from
all the senders is high than ln(1/ε). We now consider a
restricted version of FDMECB, named integral version of
FDMECB (FDMECB-int), which does not allow signals
to be combined at receivers. Based on the conclusion in
Lemma 5.1, FDMECB-int is similar to the integral version
of DMECB introduced [6] that loses a factor of log(N)
compared to the optimal DMECB. It is straightforward to
derive that the integrality gap of FDMECB is also log(N).
Now we turn our attention to how to build a polynomial time
reduction from FDMECB-int to DDST. First, we introduce
some concepts and notations in DDST.

In a graph, the diameter is the longest distance between
any pair of nodes in the graph and the cost is the sum of the
weights of the edges in the graph. Definition 5.1 describes the
decision version of DDST:

Definition 5.1: Given a directed graph G(A, E), a set
of terminals A1 ⊆ A, a root as ∈ A1, and constants
T ′ and W ′, the decision version of DDST, denoted by
DDST(G,A1, as, T

′,W ′), is to construct a Steiner tree rooted
at as, spanning all the terminals in A1, with diameter no larger
than T ′ and cost no larger than W ′.

To make a polynomial time reduction from FDMECB to
DDST, we construct an instance of DDST from FDMECB-int.
Then, the approximation algorithm of DDST can be used
to solve FDMECB. The approximation algorithm provides
O(|A1|ε) approximation with time complexity O(|A1||A|

1
ε )

[11].
First, we construct an auxiliary weighted directed graph

G(A, E) for the FDMECB instance I(V,W, T, vs, ε,W ). We
define a graph vertex ai for each node vi ∈ V (named node
vertex), and define a graph vertex ai,k for each power level
wk of node vi (named power vertex). Then, A = {A1,A2},
where A1 and A2 represent the sets of node vertices and power



vertices, respectively. Suppose V = {v1, v2, v3, ..., v7} and
W = {w1, w2, w3}. v1 can inform {v2, v3, v4} using power
w1, can inform {v4, v5} using power w2, and can inform
{v6, v7} using power w3. Then, the auxiliary graph formed
by node vertices and power vertices is created (Figure 3). The
number of vertices in A1 and A2 are O(N) and O(NK),
respectively. We then build an edge from aj,l to ai with
e(aj,l, ai) = 0 if vi can be informed by vj using power level
wl, and build an edge from ai to ai,l with e(ai, ai,l) = wl. The
set of edges in the former case (black arrows) are directed from
power vertices to node vertices (denoted by E1), and those in
the latter case (red arrows) are directed from node vertices
to power vertices (denoted by E2). Then, E = {E1, E2}. We
define the tree-depth of a vertex as the distance between this
vertex and the root.

Lemma 5.2: For any tree G(A, E) rooted at a node vertex,
all the node vertices have odd tree-depth, and all the power
vertices have even tree-depth.

Proposition 5.1: Let G(A, E) be FDMECB-int’s auxiliary
graph for instance I(V , W , T , vs, ε, W ), then FDMECB-int
has a feasible schedule iff DDST (G,A1, as, 2T,W ) has a
solution.

Proof: ⇒: For I(V,W, T, vs, ε,W ), suppose FDM-
ECB-int has a feasible schedule Z = [Z1, Z2, Z3,..., ZT ]
with

∑T
t=1 |Zt| ≤ W . Then, we can construct a solution for

DDST (G,A1, as, 2T,W ) by serially adding vertices and
edges to build a Steiner tree.

We first add as as the root of the tree. We then add the
power vertex as,k with wk = |Z1| to the tree and build
edge e(as, as,k). For each vi ∈ R1, we connect as,k to ai
with e(as,k, ai) = 0. Then, we build edge from ai to ai,l
if vi uses power level wl in Z. After adding all the node
vertices and power vertices corresponding to R1, we add the
vertices corresponding R2 in the same matter. This process
is repeated until RT is reached. Each iteration increases the
diameter of the tree by at most 2. The sum weights of all
the edges equals

∑T
t=1 |Zt| ≤ W and the diameter is no

larger than 2T . We then add the node vertices corresponding
to non-relays, which must be directed by power vertices
with weight equals 0. Weight 0 does not increase the cost
and connecting vertices to power vertices does not increase
diameter. As a result, we find a Steiner tree spanning all the
node vertices with diameter ≤ 2T and cost ≤ W , a solution
for DDST (G,A1, as, 2T,W ).
⇐: Suppose there exists a Steiner tree rooted at as, spanning

all the terminals in the auxiliary graph, with diameter ≤ 2T
and cost ≤W . Then, we prove there exists a feasible schedule
for FDMECB-int.

According to Lemma 5.2, we can divide the vertices in
the Steiner tree into a series of subsets according to tree-
depth: R′1, R

′′
1 , R

′
2, R

′′
2 , ..., R

′
T , R

′′
T , where R′1 = {as}, R′′t

represents the set of power vertices with tree depth 2t − 1
(t = 1, 2, 3, ..., T ), and R′t represents the set of node vertices
with tree-depth 2t− 2. A feasible schedule for FDMECB-int
based on the solution of DDST (G,A1, as, 2T + 1,W ) is: if
ai ∈ R′t, then there exists ai,l ∈ R′′t , that is, then vi uses

r

Fig. 3. Auxiliary graph

power level wl in time slot t for packet relay. Obviously, the
total energy consumption of this schedule is the cost of the
Steiner tree, which is ≤ W , and the delay constraint is ≤ T .
Also, ∀ai ∈ A1, the Steiner tree connects to ai from a node
aj,k with e(aj,k, ai) = 0. Then, we can infer that ∀vi ∈ V , in
this this schedule, there exists a relay vj that informs vi using
power level wk. It means that this schedule can inform all the
nodes ∈ V .

Property 5.1: The time complexity for constructing FD-
MECB’s auxiliary directed graph is O((NK)3).

Proof: It requires O(NK) time to build the edges directed
from node vertices to their power vertices. As for the edges
directed from power vertices to node vertices, for each power
level, we need to invoke the function IsInformed() (based on
Equ. (3)) once, which requires O(N2K2) time. Because the
number of power vertices is O(NK), it takes O((NK)3) time
to build the edges from power vertices to node vertices

Property 5.2: The number of nodes, the number of termi-
nals, and the number of edges in FDMECB’s auxiliary directed
graph are O(NK), O(N), and O(N2K) respectively.

Proof: Obviously, the number of terminals in the auxiliary
graph is O(N). The number of nodes in auxiliary graph is
calculated by

|A| = |A1|+ |A2| = O(N) +O(NK) = O(NK) (13)

Each node vertex has K edges directing to its power vertices,
so |E1| = O(NK), and each power vertex has at most N
edges directing to node vertices, so |E2| = O(NK ×N) =
O(N2K). Thus, the number of edges in FDMECB’s auxiliary
graph is O(N2K).

We lose a factor of log(N) to convert FDMECB to
FDMECB-int, and the approximation algorithm in [6] can
approximate the optimal FDMECB-int within O(N ε). There-
fore, using the auxiliary directed graph introduced above,
the approximation algorithm can be used to solve FDMECB
within O(N ε logN) approximation on the optimal solution,
which is asymptotically O(N ε), and with O(N

ε+1
ε K

1
ε ) time

complexity. Please refer to paper [6] for the details of this
approximation algorithm.

VI. HEURISTIC FADING-RESISTANT ALGORITHM

Section V presents an approximation algorithm and proved
its for FDMECB. The approximation algorithm does not take
advantage of the cooperative communication in broadcasting,
resulting in degraded performance. In this section, we propose
a computationally efficient heuristic algorithm, named Fading-
Resistant Energy-Efficient Broadcast (FREEB). FREEB makes



a locally optimal choice based on relays and t to approach the
globally optimal solution.

Given a certain energy cost, we hope to use the energy to
inform more nodes. Given a certain number of nodes, we hope
to use less energy to inform them. Thus, we use these two
factors to create a metric called efficiency of energy allocation
Zt, denoted by e(Zt).

e(Zt) =
|Inewt |
|Zt|

, (14)

where |Inewt | denotes the number of newly informed nodes in
time slot t and |Zt| denotes the total energy cost of these
relays. The Zt with the highest e(Zt) is identified as the
optimal energy allocation for time slot t.

Considering the broadcast delay constraint T , in each time
slot t, we need to set a lower-bound for |Inewt | to guarantee
that the remaining uninformed nodes can be informed within T
(Condition3). We use It to represent the set of nodes that have
been informed by time slot t. A larger number of remaining
nodes |V −It| or shorter remaining time T − t entails a larger
lower-bound, and vice versa. Thus, we set a lower-bound as:

|Inewt | ≥ |V − It|/(T − t+ 1). (15)

We then prove that with this lower-bound, Condition4 can be
satisfied.

Proposition 6.1: If |Inewt | ≥ |V − It|/(T − t+ 1), all the
nodes in V/vs can be informed within T time slots.

Proof: We first prove that |Inewt | ≥ N−1
T by induction.

First, it is true for t = 1 because |Inew1 | ≥ |V−vs|
T = N−1

T .
Assume |Inewt | ≥ N−1

T for t ≤ k, then when t ≤ k + 1

|Inewk+1| ≥
N −

∑k
t=1 |I

new
t | − 1

T − k ≥
N − k(N−1)

T
− 1

T − k =
N − 1

T
(16)

Thus, |Inewt | ≥ N−1
T for any t, which implies that the total

number of nodes informed within T time slots equals:

N ′ =

∣∣∣∣∣
T⋂
t=1

Inewt

∣∣∣∣∣ =
T∑
t=1

|Inewt | ≥ N − 1 (17)

and hence all the nodes in V/vs are informed within the T
time slots.

In conclusion, this optimization problem of selecting relays
at each time slot can be formulated as

max e(Zt) (18)

s.t. |Inewt | ≥ |V − It|/(T − t+ 1) (19)

The solution to this problem makes the relays to use their
energy as efficiently as possible.

Algorithm 2 shows the pseudocode of FREEB, in which
function IsInformed(Zt, vj) (Algorithm 1) returns TRUE if
vj can correctly receive the packet with energy allocation Zt
or FALSE otherwise. Basically, at each time slot t, given a
set of informed nodes It and t, all possible energy allocation
schedule Zt are identified, their newly informed Inewt are iden-
tified using function IsInformed(Zt, vj), and corresponding

Algorithm 1: IsInformed(Zt, vj): indicate if vj is in-
formed at time slot t.

1 begin
2 R ← relay set with zi,k,t = 0 and k = 1 in Zt;
3 for each vi ∈ R do
4 βi,j,t ← N0∑K

k=1 zi,k,twkd
α
ij

// Formulas (1);

5 // Calculate the Pr that vj is
informed based on Formula (3);

6 Pr ← 0;
7 for each vi ∈ R do
8 A← 1;
9 for each vl ∈ V and l 6= i do

10 A← A× βlj/(βlj − βij);
11 Pr ← Pr + (1− e−βijγth)A;

12 if Pr < ε then
13 return TRUE;

14 else
15 return FALSE;

Algorithm 2: FREEB(It, t): output relay schedule Zmin
t

at time slot t.
1 begin
2 e← 0 // Efficiency;
3 for each Zt do
4 n← 0 // Number of newly informed

nodes;
5 for each vj ∈ V/It do
6 if IsInformed(Zt, vj) = TRUE then
7 n← n+ 1;

8 if n ≥ |V − It|/(T − t+ 1) and n/|Zt| > e then
9 e← n/|Zt|;

10 Zmin
t ← Zt;

11 return Zmin
t ;

e(Zt) values are calculated. Among the Zt options that satisfy
Formula (19), the one with the highest e(Zt) is chosen as the
relay schedule at time slot t. Finally, the combination of the
selected Zt at each time slot constitutes the broadcast relay
schedule solution of FDMECB.

VII. PERFORMANCE EVALUATION

To evaluate the performance of our algorithms, we conduct
simulations on MATLAB. We compare our FREEB with the
non-fading resistant algorithm [6]. We refer to this algorithm
as NonResist. In our discrete-event simulation, each node
can finish either sending or receiving a packet but not both
in one time slot. Our simulation settings are as follows:
all the nodes are randomly placed in a 1000m × 1000m
region; path loss exponent α = 4, maximum transmit power
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Fig. 4. Packet delivery ratio of FREEB and NonResist
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Fig. 5. Normalized energy consumption of FREEB and NonResist

Pi = 20dBm, decoding threshold γth = 25.8dB, noise power
density N0 = 4.32× 10−18W/Hz and data rate R = 1Mbit/s;
the number of adjustable power levels K = 5. Each test ran
for 10 times and the average result is reported. The metrics
used in the evaluation include

(1) Packet delivery ratio, which is defined as the percent of
the nodes that successfully received the packet from a source
when every node transmits the packet once.

(2) Normalized energy consumption, which is defined as
the total energy consumption of all the nodes in a broadcast
normalized by the threshold γth at the 11th time slot.

(3) The average number of relay transmissions per time slot,
which is calculated by the total number of relay transmissions
of all nodes divided by the total number of time slots.
Packet delivery ratio. Figure 4 (a) and Figure 4 (b) compare
the packet delivery ratio of FREEB and NonResist with
acceptable error probabilities ε = 0.05 and ε = 0.01,
respectively. We see that, when ε = 0.05 and ε = 0.01,
FREEB’s packet delivery ratios are about 10% and 15% higher
than those of NonResist, respectively. FREEB has higher
packet delivery ratio than NonResist because the relays in
FREEB always select the power levels that can guarantee
successful transmission with high probability 1−ε with fading
consideration. NonResist assumes that the channel is non-
fading, and hence a packet can be successfully received iff
the product of the transmission power and the average value of
channel coefficient is higher than γth. This assumption makes
NonResist fading-susceptible since channel coefficient could
be smaller than its average value in a fading environment. In
addition, comparing Figure 4(a) and Figure 4(b), we find that
a lower acceptable error probability ε leads to a higher packet
delivery ratio in FREEB since the successful transmission
probability equals 1− ε.
Energy consumption. Figure 5 (a) and Figure 5 (b) compare
the normalized energy consumption of FREEB and NonResist
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Fig. 6. Energy-delay tradeoff

when the number of nodes ranges from 50 to 75 with accept-
able error probabilities ε = 0.05 and ε = 0.01, respectively.
From the figures, we have two observations: (1) the normalized
energy consumption of FREEB is lower than that of NonResist
when ε = 0.05, but it is almost the same as that of NonResist
when ε = 0.01, and (2) the normalized energy consumption
increases as the number of nodes increases for both algorithms.
Recall that NonResist has lower packet delivery ratio than
FREEB, so NonResist needs more packet transmissions hence
more energy to reach complete distribution when ε = 0.05.
Though FREEB requires fewer transmissions than NonResist,
each relay in FREEB uses higher transmit power to guarantee
higher probability of successful transmission, especially when
the acceptable error probability is extremely low. Therefore,
when ε = 0.01, FREEB consumes similar energy cost as
NonResist. The reason for the observation (2) is obvious since
it always requires more transmissions to deliver a packet to a
larger number of nodes.
Energy-delay tradeoff. We then study the energy-delay trade-
off of FREEB in comparison with NonResist. Figure 6 (a)
and Figure 6 (b) show the normalized energy consumption
of FREEB and NonResist versus the delay constraint in
time slot when ε = 0.05 and ε = 0.01, respectively. Both
figures demonstrate that the energy consumption decreases as
the delay constraint increases. The reason is that when the
delay constraint is smaller, more nodes need to be informed
within the delay constraint and hence more energy is used. In
FREEB, Formula (15) shows that when the delay constraint
T decreases, the size of the set of the newly informed nodes
|Inewt | increases. Based on Algorithm 2, we need to find |Zt|
that produces more IsInformed(Zt, vj) = TRUE hence more
occurrences of Pr < ε in Formula (3). Recall that in Formula
(3), as Figure 1 shows, increasing the power level and number
of relays can increase the Pr. Thus, the selected |Zt| uses
higher power level and more relays. Consequently, smaller
delay constraint increases power level and relays, and hence
the total energy consumption in broadcast.

Figure 7 (a) and Figure 7 (b) show the average number of
relay transmissions per time slot of FREEB and NonResist
versus the delay constraint when ε = 0.05 and ε = 0.01,
respectively. We find that the average number of relay trans-
missions per time slot decreases as the delay constraint in-
creases. As mentioned previously, when delay constraint T is
smaller, more nodes need to be successfully informed in each
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Fig. 7. Average number of relay transmissions per time slot
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Fig. 8. Effect of network channel fading on energy consumption

time slot. As Figure 1 (b) shows, more relays increase the
probability of successful delivery. NonResist generates more
relays in each time slot because it produces more delivery
failures due to neglect of fading, and hence requires more
transmissions for complete distribution. By comparing these
two figures, we find that in FREEB, a smaller acceptable
error probability ε produces smaller average number of relay
transmissions per time slot. This is because a smaller ε requires
a higher probability of successful transmission, which leads to
fewer total relay transmissions to inform all nodes and hence
smaller average number of relay transmissions per time slot.
Effect of channel fading. Recall that path loss exponent α
represents the degree of network channel fading. α should be
set to a larger value in a more severe fading environment.
Figure 8 (a) and Figure 8 (b) compare the normalized energy
consumption of FREEB with different path loss exponent
when α = 3 and α = 4. We find that the energy consumption
is higher when α is larger, i.e., the channel fading is more
severe. This is because when fading is more severe, the
power strength of signal received decreases more rapidly as
the distance increases (according to Formula (1)). Thus, each
relay is required to use a higher power level to guarantee
successful packet delivery. We also see that the normalized
energy consumption decreases as the delay constraint increases
due to the same reasons as in Figure 6.

VIII. CONCLUSIONS

In this paper, we study the problem of minimizing energy
consumption of cooperative broadcast with delay constraint
in fading environments in wireless networks. Though channel
fading decreases delivery ratio in cooperative broadcast, the
previous works did not consider it in energy-delay tradeoff
study. Using a Rayleigh fading model, we formulated a
Fading-resistant Delay-constrained Minimum Energy Coop-

erative Broadcast (FDMECB) problem. We proved that this
problem is NP-hard and o(log(N)) inapproximable. We identi-
fied a polynomial-time Steiner tree based approximation algo-
rithm with O(nε) approximation ratio for FDMECB. However,
the approximation algorithm does not use cooperative trans-
mission. To overcome this shortcoming, we further propose
a heuristic computationally efficient Fading-Resistant Energy-
Efficient Broadcast (FREEB) algorithm. Extensive simulation
results demonstrate that FREEB outperforms a previous algo-
rithm without considering fading.
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