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Load Balancing is Critical For IaaS Cloud

VM
PM PM PM PM

VM – Virtual Machine
PM – Physical MachineDatacenter DC Network

 Increase resource utilization
 Reduce response time / SLA violations
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 Increase profit



Existing LB Methods Have Limitations
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Reactive Methods

Proactive Methods

Reactively perform VM migration upon the occurrence 
of PM overloads

Predict VM resource demand in a short time for 
sufficient resource provision or load balancing

× Selecting migration VMs and destination PMs generates:
-- high delay 
-- high overhead

× Cannot guarantee a long-term load balance state



Requirements for High Performance LB

Proactively handle the potential load 
imbalance problem
Generate low overhead and delay for load 

balancing
Maintain a long-term load balance state
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Solution for High Performance LB
o Solution
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× Consider current situation

× Consider next step

Consider many steps
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 Finite-Markov Decision Process 
(MDP)

State

Transition 
probability

Action Reward



Optimal action policy π
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MDP-based Load Balancing
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Advantages of MDP-based Load Balancing

o Achieves long-
term load 
balance hence 
reduces SLA 
violations
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SLA

tenant provider

MDP

PM

PM
PM

o Builds one 
MDP used 
by all PMs

o Reduces the 
overhead and 
delay of load 
balancing



Challenges of the MDP Design

1. MDP components must be well designed for low
overhead

8

2. Transition probabilities in the MDP must be stable

VM resc. utilization 
changes over time

VMs have continuous 
resc. utilization values

Large action space

Frequent updates of 
transition probabilities

Probability changes 
over time

Probability changes 
over load thresholds

Difficult to determine the 
load threshold for states
Frequent updates of 
probabilities



Solution to Challenge 1

o Action: moving out a specific VM
needs to record the state transitions of a PM for

moving out each VM
generates a prohibitive cost due to many VMs
is not accurate due to time-varying VM load
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Solution to Challenge 1
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VM/PM states

o Action: moving out a VM state (high, med, low)
uses a PM load state as a state
records the transitions between PM load states

by moving out a VM in a load state



Solution to Challenge 1
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o Action: moving out a VM state (high, med, low)
uses a PM load state as a state
records the transitions between PM load states

by moving out a VM in a load state

o Advantages:
the total number of VM-states in the action set 

does not change
each VM-state itself does not change, so the 

associated transition probability does not 
change



Challenge 2

o MDP’s transition probabilities should be stable
otherwise, it cannot accurately provide guidance
must be updated very frequently to keep the

transition probabilities accurate

o We have studied transition probabilities on VM
migrations based on traces (Google Cluster trace and
PlanetLab VM trace)
stable under slightly varying load threshold
stable over time
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Trace Study on Transition Probabilities
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taking different actions, using Google Cluster trace



MDP Components

o State: classification of resource 
utilization of a PM

o Action: a migration of VM in a 
certain state (VM-State)

o Transition probability: the 
probability that state s will transit 
to state s’ after taking action a

o Reward: given after transition to 
state s’ from state s by taking 
action a
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Rewarding Policy
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PM-high PM-low Positive
reward A

PM-high PM-med Positive
reward B

B > A

PM-low Positive
reward C

C > D

no

PM-med Positive
reward Dno

PM-high Negative
reward no

Rewards for state changes Rewards for no actions

• Goal: avoid heavily loaded state of PMs while 
constrain the number of VM migrations
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MDP-based Load Balancing
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Optimal Action Determination
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Value-iteration algorithm: find an action for each specific 
state that can quickly lead to the maximum reward

Transition probability Reward Value for a specific state, 
calculated based on rewards

Basic idea:
• Set V=0
• Iteratively update V by the equations
• Update optimal actions for states in each iteration

The number of iterations indicates how 
many steps are considered in the future



Experimental Setup
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Simulator: CloudSim

Traces: 
PlanetLab VM trace 
Google Cluster trace

Implement two versions: 
MDP uses the MDP model for migration VM selection;
MDP* uses the model for both migration VM selection and destination PM selection. 

Comparison methods: Sandpiper [1], CloudScale [2]

VM
PM

trace

trace …

DC 
Network

X 1000 X 100
Load balancing is conducted every 300 
seconds for 30 times

PM

VM PM

[1] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Black-box and gray-box strategies for virtual machine 
migration. In Proc. of NSDI, 2007.
[2] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: Elastic resource scaling for multi-tenant cloud systems. 
In Proc. of SOCC, 2011.



The Number of VM Migrations
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Result: MDP*<MDP<Sandpiper<CloudScale
Conclusion: MDP* has the least number of migrations

 the lowest load balancing overhead



The Number of Overloaded PMs
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Result: MDP*<MDP<Sandpiper<CloudScale
Conclusion: MDP* has the least number of overloads

 the longest time for the load balance state

0
10
20
30
40
50

1.5 2 2.5

MDP MDP*
Sandpiper CloudScale

To
ta

l n
um

be
r o

f
ov

er
lo

ad
ed

 P
M

s

Load (x original load in trace)



The CPU Time Consumptions
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Result: MDP*<MDP<CloudScale<Sandpiper
Conclusion: MDP* is the fastest in load balancing
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Total Amount of Energy Consumptions
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Result: MDP*<MDP<Sandpiper<CloudScaleConclusion: MDP* consumes the least amount of energy
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Conclusion from Experimental 
Results
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o The MDP model:
Maintain the load balance state for a longer time
Reduce SLA violations

Reduce the load balancing overhead and delay

SLA

tenant provider



Summary
o Motivation: Provide a load balancing method that 

can reduce SLA violations and meanwhile reduce the 
load balancing overhead and delay

o We propose an MDP-based load balancing method
as an online decision making strategy to enhance the 
performance of cloud datacenters

o We conducted trace-driven experiments to show 
that our method outperforms previous reactive and 
proactive methods

o Future work: make our method fully distributed to 
increase its scalability
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