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Abstract—Content Delivery Networks (CDNs) play a central
role of today’s Internet infrastructure, and have seen a sharp
increment in scale. More and more internet sites are armed
with dynamic (or live) content (such as live sports game
statistics, e-commerce and online auction), and there is a need
to deliver dynamic content freshly in scale. To achieve high
scalability, the consistency maintenance problem for dynamic
content (contents with frequent updates) served by CDNs is
non-trivial. The large number of widely scattered replicas
guarantee the service QoS of end-users, meanwhile largely
increase the complexity of consistency maintenance. Current
consistency maintenance infrastructures and methods cannot
simultaneously satisfy the two requirements: scalability and
consistency. In this paper, we first analyze our crawled trace
data of a cached sports game content on thousands of content
servers of a major CDN. We analyze the content consistency
from different perspectives, from which we try to break down
the reasons for inconsistency among content servers. Finally,
we further evaluate the performance in consistency, scalability
and overhead for different infrastructures with different update
methods. We itemize the advantages and disadvantages of
different methods and infrastructures in different scenarios
through the evaluation. We aim to give guidance for appropri-
ate selections of consistency maintenance infrastructures and
methods for a CDN, and for choosing a CDN service with
different considerations.

I. INTRODUCTION

Over the past decade, Content Delivery Networks (CDNs)
have seen a dramatic increase in popularity and use. There
were 28 commercial CDNs [1] reported in this crowded
market, including Akamai, Limelight, Level 3, and more
recent entrants like Turner and ChinaCache. Among them,
Akamai [2], as a major CDN, has more than 85,800 servers
in about 1,800 districts within a thousand different ISPs in
more than 79 countries. The trend of scale is growing rapidly
at about 50% per year, due to the 100% increase of traffic
per year [3]. The vast growth of traffic and infrastructure
illustrates that CDNs serve as a key part of today’s Internet,
and undertake heavy content delivery load. This promising
growth makes CDNs a hot spot for research.

Figure 1 shows the standard architecture of current
CDNs [4]. When an end-user tries to visit web content,
the request is forwarded to the local DNS server, which
returns the IP of the URL if it exists in the cache and is
not expired. Otherwise, the local DNS server forwards the
request to the CDN’s recursive DNS servers, which returns
the IP of the content server (server in short) close to this
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Figure 1: The architecture of CDNs.

end-user with load-balancing consideration [5]. Then, the
user sends its content request to the IP of a content server,
which returns content. The content servers periodically poll
content updates from the content provider (provider in short).

CDNs not only serve static contents (contents without
updates such as photos and videos), but also dynamic (or
live) contents (contents with frequent updates such as live
game statistics), which need updates to be delivered from
providers to all replicas. Caching/Replicating to surrogate
servers near the network edge is widely used in CDNs to
optimize the end user experience with short access latency.
The large amount of widely scattered replicas make the
consistency maintenance methods non-trivial. In addition,
this method has two key requirements: scalability and con-
sistency guarantee.

Based on the infrastructure, there are three common
infrastructures used to deliver updates for consistency main-
tenance: i) unicast [6, 7], ii) broadcast [8] and iii) multicast
tree [9–16]. However, none of these approaches can satisfy
both requirements simultaneously. The unicast approach can
guarantee consistency, but since it relies on centralized
content providers for updates, it causes congestion at bot-
tleneck links, and cannot promise scalability. Broadcasting
can efficiently propagate the updates inside a local network,
and guarantee the consistency. However, it generates very
high overhead due to an overwhelming number of updating
messages. Thus, it cannot support the scalability required for
large world-wide CDNs due to a vast number of redundant
messages. The multicast approach produce fewer update
messages than broadcasting, but node failures break the
structure intactness, and hence lead to unsuccessful update
propagation. Node failure aside, the structure maintenance



will incur high overhead and complicated management due
to the dynamism of servers in the multicast tree.

With each update architecture, there are three basic
methods to update replicas: i) Time To Live (TTL) [6, 17],
ii) push [10–15] and iii) server-based invalidation [7, 16, 18].
All of these update methods cannot guarantee the
aforementioned two requirements. In TTL, servers poll
the updates from providers whenever the cached content
is outdated, which supports greater scalability. TTL
value offers a tradeoff between freshness and CDN
efficiency. In push, an update is transmitting to every
replicas right after updating time, which guarantees short
inconsistency. However, an update will be pushed to all
replicas immediately, which depends on the consistency
infrastructure to support scalability. Also, push may
generate unnecessary update messages to uninterested
replicas. In server-based invalidation, whenever there are
updates on source providers, an invalidation message is
received by each replica, and replicas only fetch the update
whenever the needed content is invalid. It can save traffic
cost compared to push if the content visit rates on servers
in CDNs are smaller than the update rate of this content.

None of current update architectures together with update
methods can fully solve both scalability and strong consis-
tency in current CDNs. With the rapid growth of CDNs,
consistency maintenance in CDNs needs to be particularly
studied. Can the current update method used in the CDN
provide high consistency for dynamic contents? If not, what
are the reasons for the content inconsistency? What are
the advantages and disadvantages of employing previously
proposed consistency maintenance approaches in the CDN
environment? The answers to these questions help develop
consistency maintenance approaches specifically for CDNs
with different considerations. Thus, in this paper, we focus
on measuring the inconsistency of a CDN’s servers, and
break down the reasons for this inconsistency. Then, we con-
duct a trace-driven evaluation to measure the performance
of consistency maintenance infrastructures and methods, and
different parameters’ effects on performance. The contribu-
tions of this paper are as follows:

•Measuring the inconsistency of a major CDN. This paper
is the first to measure content consistency for a large amount
of globally scattered servers in a major CDN.
• Breaking down the reasons for the inconsistency of the
CDN. Through our measurement, we break down the reasons
for inconsistency to different factors and analyze their effect.
• Evaluating infrastructures and methods for consistency
maintenance through trace-driven experiments. We further
evaluate the performance for different infrastructures and
update methods. We itemize the advantages and disadvan-
tages of different methods and infrastructures in different
scenarios through our evaluation.
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Figure 2: The example of inconsistency.

II. TRACE ANALYSIS

A. Measurement Methodology

In order to study the consistency maintenance strategies
used in current CDNs, we study our crawled cached content
of a popular sports game from a large number of servers in a
major CDN. The content we crawled was live game statistics
webpages that need to be continuously updated during the
live game. To identify the IP addresses of the CDN servers,
we retrieved all domain names in all webpages, and used the
method in [4] to translate the domain names to IPs. Third,
we validated each IP’s corporation to derive the IP addresses
of the CDN servers and providers using the same method
in [4]. Finally, we found 10 IPs of the provider and 50064
IPs of the CDN. Compared to the IPs of the CDN’s crawled
in [4], we have crawled most (57.2%) of the servers in their
trace, which has 59581 IPs in total. There are 26.9% more
new servers compared to their trace, which indicates the
rapid increase of the CDN. We also use the same method to
track the IPs of the source provider’s servers.

We randomly polled live game statistics from 3000 ran-
domly chosen CDN servers every 10 seconds during around
two and half hours on each day from 200 globally distributed
randomly chosen PlanetLab nodes. We collected 15 day
trace between May 15, 2012 and June 4, 2012.

To measure data inconsistency, for each poll, we retrieve
the snapshot of statistics and current GMT (Greenwich Mean
Time) time on that server in order to avoid the interference of
network delay. As shown in Figure 2, we identified different
snapshots from all polled snapshots and use Ci to denote
the ith content snapshot. We find the first time when each
snapshot Ci shows up in the trace and denote it as αCi .
For each server sn, we ordered its content snapshots over
time. For each Ci, we found the last time when Ci shows
up, which is denoted by βCi

sn . The inconsistency length of
Ci−1 (denoted by 4Ci−1

) for that server is calculated by
4Ci−1 = Max{βCi−1

sn − αCi}. The inconsistency length
of t seconds means that the content is expired for at least
t seconds. While this metric understates the inconsistencies
between servers and providers, it fairly evaluates differences
between user experience in different locations.
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B. Is There Inconsistency in the CDN Servers?
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Figure 3: The inconsisten-
cies of data served by the
major CDN.

Figure 3 shows the cu-
mulative distribution function
(CDF) of inconsistency lengths
for all content requests dur-
ing the 15 days. We see
that only 10.1% of requests
have inconsistency lengths less
than 10 seconds, and 20.3%
of requests have inconsistency
lengths greater than 50 sec-
onds. The results indicate that content inconsistency exists
among the CDN servers in serving the dynamic contents of
game statistics that require frequent updates.

C. Does a User Observe Self Inconsistency?

The game statistics is sequencing over time. A user
observes self inconsistency (inconsistency in short) when
(s)he sees a statistics (such as game score) prior to the most
recently statistics (s)he has seen. For example, a user sees
a game score of 2:3 at 1:00pm, and then sees the score
changes to 2:2 at 1:01pm. Such user observed inconsistency
is caused by the user receiving an older webpage content
that is not updated in time from another server.

The local DNS server caches the IP of the CDN’s server
for each visited domain name. The IP expires in a short
time. When the local DNS server receives a request from an
end-user, if the IP is not expired, it sends the IP to the end-
user; otherwise, it forwards the request to the recursive DNS
servers for the IP of a server. The recursive DNS servers
consider the load balancing between the servers and send
back an IP of a server. To update the dynamic contents in a
webpage, the end-user sends out a request every 10 seconds.
Therefore, the request may be redirected to another server
due to the expired cached IP in the local DNS server and
the server reassignment by the recursive DNS servers. If the
content in the newly assigned server is not updated, the user
may observe the inconsistency.

To investigate the user observed inconsistency, we used
200 world-wide distributed PlanetLab nodes to visit the
same game statistics through its URL once every 10 seconds
during the time period of a game. We recorded the IPs of
serving servers and the received statistics contents for each
user. We measure the consistency performance from a single
user’s perspective. First, we introduce three metrics: the
percent of requests redirected to another server, continuous
consistency time and continuous inconsistency time.

Suppose a user creates N requests in total, in which M
requests are served by redirected servers; then, the percent of
requests redirected to another server equals M

N . Continuous
inconsistency time is the time period from the time the user
observes an inconsistency to the time of next consistency
record. The continuous consistency time is the time period

from the time the user observes an consistency to the time
of next inconsistency record.

We first measured how many percentage of visits of a
single user are redirected to another server different from
the current server. Figure 4(a) shows the CDF of users
versus the percent of visits redirected to another server.
It shows that most of the users have 13%-17% of visits
switched to another server. From the trace we observed that
with continuous updates of the game statistical result, there
are around 11% of servers on average with inconsistent
content at each polling time during all 15 days as shown
in Figure 4(b), which shows the average of percent of
inconsistent servers in every 10 second on each day. This
means that a user’s request has around 11% probability being
redirected to a server that has outdated content. Thus, 1.43%
to 1.87% of visits of a single user during a game will be
redirected to outdated content.

We then measure the continuous (in)consistency time
from a singe user’s perspective. We calculated all continuous
(in)consistency times of all users. Figure 4(c) shows the CDF
of the continuous consistency time. The median continuous
consistency time is around 160 seconds, 82.4% of all con-
tinuous consistency times are within 400 seconds. The result
means that most users can observe inconsistency and receive
outdated contents during watching. Figure 4(d) shows the
CDF of continuous inconsistency times. In this figure, 70%
of all the continuous inconsistency times is 10 seconds, and
around 99% of all the continuous inconsistency times is no
larger than 20 seconds. There are no inconsistency times
longer than 40s. The result indicates that users may observe
outdated dynamic web content, but it always lasts no more
than 20 seconds, which means that the inconsistency usually
lasts no more than two continuous visits.

We varied the polling frequency from 10 seconds per poll
to 60 seconds per poll with a 10 second increase in each
step. For each polling frequency, we collected all continuous
(in)consistency times of all users and calculated the 5th
percentile, median and 95th percentile of the continuous
inconsistency times. Figure 4(e) shows the results with
different polling frequencies. From the figure, we observe
that the median value always equals the 5th percentile
value, meaning most inconsistency lasts for a short time
period. Also, we see that the median and the 95th percentile
value of the inconsistency time increase in proportion to the
visit frequency due to the slower polling frequency. From
Figure 4 and Figure 4(e), we can infer that an individual user
can observe inconsistency on dynamic contents in the CDN.
This implies that the current update strategy in the CDN
can be improved to prevent users from receiving outdated
information for dynamic contents.

D. What are the Causes of Inconsistency in CDNs?

In the above, we observed that content inconsistency
exists in the servers and end-users can also observe the in-
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Figure 4: User perspective consistency.
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(a) CDF of all requests
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(b) CDF of requests with inconsis-
tency less than 100s

Figure 5: CDF of inner-cluster inconsistency.
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consistency (i.e., receive outdated content). In the following,
we identify and explore potential causes of the content in-
consistency in the CDN, which will provide guidance for de-
signing consistency maintenance mechanisms. We measured
the individual influence on the inconsistency among CDN
servers of each potential cause, including the TTL value,
source provider’s inconsistency, propagation delay, shortage
of bandwidth, server/source provider overload/failure.

1) Time-to-live based consistency maintenance: In the
TTL-based consistency maintenance method, when a CDN
server receives a content request from an end-user, it first
checks its cache for the content. If the content exists in
the cache and its TTL has not expired, the server serves
the content. If the content does not exist in the cache
or its TTL has expired, the server retrieves the content
from the source provider, sends it to the user, and caches
the content. Therefore, if the content changes before the
TTL has expired, the CDN server will inadvertently fulfill
requests with outdated content. [19] indicates that the CDN
uses TTL-based consistency maintenance.

We study the impact of the TTL-based method on content
inconsistency. In order to minimize the influence of the
provider-server distance and server-user distance on content
inconsistency, we clustered geographically close servers,
used the same or geographical close PlanetLab nodes to
poll the contents from servers in the same cluster. We exam-
ined the distribution of inner-cluster inconsistency lengths,
which refer to inconsistency lengths calculated only within
clusters of collocated nodes rather than all servers in the
CDN. To create clusters, we first translated the IPs of the
CDN’s servers to geographical locations by an online IP
geolocating service [20], and grouped the servers with the

same longitude and latitude into a cluster.

Figure 5(a) shows the CDF of requests for different
inconsistency lengths. The figure shows that only 31.5%
of served requests have inconsistency lengths less than 10
seconds. Also, the CDF of requests approximately exhibits a
linear increase when the inconsistency length increases from
0 to 60. We can assume that the inner-cluster inconsistency
length is evenly distributed in [0, TTL], which will show
a linear increasing in CDF within [0,TTL]. Then we can
assume that the TTL for cached content is around 60 s.

Below, we attempt to derive TTL using another method.
We assume all updates are independent, and all servers
independently start to cache the dynamic content. We then
derive the average inconsistency lengths of all servers,
denoted by E[I]. If we split the time into slots, each of
which lasts TTL, then a server can poll the content at any
time within [0, TTL] in a slot with the same probability. If
the first server gets the update Ci at time t, since servers poll
the content independently, other servers receive the update
at any time t′ within [t, t+TTL] with uniform distribution.
As the inconsistency length equals t′−t, it is then uniformly
distributed within [0, TTL]. Thus, E[I] = TTL

2 .

Since TTL is not the sole factor of inconsistency, the true
average inconsistency length from the trace denoted by E′[I]
is larger than E[I]. If TTL is the sole factor, 2E′[I] should
not be larger than TTL. Therefore, we use recursive refining
to derive the TTL used by the CDN from the trace. We first
calculated the average inconsistency length in trace E′[I],
and then calculated TTL′ = 2E′[I]. Then, we calculated
E′′[I] from the inconsistency lengths in the trace that are
no larger than TTL′ and derive a new TTL′′ = 2E′′[I].
We then calculated the deviation of the two TTLs as

4



0%

20%

40%

60%

80%

100%

1 10 100 1000

C
D

F
 o

f 
re

q
e

u
st

s
 

Inconsistency length (s) 

Figure 7: The inconsistencies of
data served from the provider.
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(TTL′′ − TTL′)/TTL′. We repeated this procedure to
derive a TTL, which is closet to 2 ∗ E[I] according to the
above equation. Thus, the TTL′ with the smallest deviation
is the actual TTL used in the CDN. Figure 6(a) shows the
deviation distribution versus each derived expected TTL.
The smallest deviation is at 60s, which means that the CDN’s
TTL is approximately equals to 60s.

We then verify if TTL=60s is correct. Using 60s and
80s as the TTL respectively, we calculated the inconsistency
distribution based on the uniform distribution. For TTL=60s
(and 80s), we removed the inconsistency lengths larger than
60s (and 80s) in the trace (which are inconsistencies caused
by reasons other than the TTL) and plotted the inconsistency
distribution based on the remaining data. Figure 6(b) shows
the CDF of inconsistency lengths. From the figure, we see
that the deviation between the trace and theoretical inconsis-
tency with TTL=60s is smaller than that with TTL=80s. The
root mean square error of TTL=60s is 0.0462, while that of
TTL=80s is 0.0955. We also tested other TTL values, and
found that TTL=60s leads to the smallest deviation between
trace and theoretical inconsistency. Thus, the actual TTL
should be 60s, which introduces an average inconsistency
length of 30s. We notice that the average inconsistency is
40s in the trace. Thus, we can conclude that TTL is the
main cause for the inconsistency, and other factors such
as provider/server inconsistency, provider/server overload,
network congestion, server failure and so on introduce a
small part of inconsistency, around 80−60

80 = 25%.
2) Source provider inconsistency: One potential cause of

inconsistency between servers is inconsistency at providers
that provide contents to the servers. We requested statistics
contents for the same game from the providers using the
same setup as before. Figure 7 shows the CDF of inconsis-
tency length for requests served by the providers. The figure
shows that 90.2% of served requests have inconsistency
lengths less than 10 seconds, only 1.2% of requests have in-
consistency lengths greater than 50 seconds, and the average
inconsistency is 3.43 seconds. The inconsistency length is
much lower than that of the CDN-served content as shown in
Figure 3. We have checked the geographical locations of all
our identified providers and found that they are in the same
geographical location. In this case, the content providers can
provide higher consistency than the servers that are dispersed
worldwide. Even if multiple providers provide the same

dynamic content to the servers, the providers have negligible
content inconsistency; therefore, their responsibility on the
inconsistent contents received by the end-users is negligible.

3) Provider-server propagation delay: Content servers
are distributed globally so that end-users can be served by
their geographically close servers. However, globally dis-
persed servers face considerable propagation delay for con-
tent originating from a central location. Since propagation
delay varies for different servers, inconsistency can be in-
troduced. We introduce a metric called consistency ratio for

a server, which is calculated by 1−
∑

inconsistency lengths

total trace time ,
which indicates the capability of a server to maintain con-
sistency. We clustered servers with the same distance to the
provider and calculated the average consistency ratio.

Figure 8 shows the average consistency ratio versus
the provider-server distance. The figure shows that in that
overall, as the provider-server distance increases, the aver-
age consistency ratio exhibits a very slight increase. The
average consistency ratio and distance have little correlation
(r = 0.11). As distance is directly related to propagation
delay, this result indicates that propagation delay have a little
effect on inconsistency.

We further investigate whether inter-ISP traffic has an
effect on inconsistency. Traffic transmitting between ISPs is
more costly for ISPs, and such traffic competes for the lim-
ited transmission capacity [21]. To identify the ISP for each
server, we first found the ISP of each server based on its IP
using IPLOCATION [20]. We further increase the accuracy
of these identified ISPs. We use Traceroute to diagnose the
entire path for each request from a PlanetLab node to a CDN
server. Since the CDN’s servers are close to the backbone
routers of ISPs [4], we checked whether the router in the
last several routing hops in a route belongs to the identified
ISP. If not, we removed the trace record of the server. We
successfully verified the ISPs of 99.6% of the servers.

We grouped servers within the same ISP to a cluster.
We calculated the inconsistency lengths for all servers in
each ISP-based cluster. Figure 9(a) shows the CDF of the
intra-ISP inconsistency. We see that 33.7% of requests have
inconsistency lengths less than 10 seconds, and only 3.9%
of requests have inconsistencies greater than 60 seconds.
This inconsistency distribution is only slightly better than
that in Figure 3. Thus, we can conclude that although inter-
ISP traffic competes for the transmission capacity, it only
contributes slightly to inconsistency in servers.

In order to better understand the degree of influence of
inter-ISP traffic from providers on the inconsistency, we
compare the inner-cluster and inter-cluster inconsistency
lengths. The inter-cluster inconsistency lengths are calcu-
lated using the same method as the inner-cluster inconsis-
tency lengths except that the αCi of a cluster is the earliest
time of Ci’s appearance in all other clusters. Figures 9(b)
and 9(c) show the 5th, 50th and 95th percentiles of the
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Figure 9: The effect on the inconsistency of inter-ISP traffic from the provider.
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Figure 10: The effect of server overload/failure on the inconsistency.

inner-cluster and inter-cluster inconsistency lengths of each
ISP-based cluster. We see that the inter-cluster inconsistency
lengths are always higher than the inner-cluster inconsis-
tency lengths, meaning the inter-ISP traffic from providers
affects the inconsistency. The 50th percentiles of the inner-
cluster and inter-cluster inconsistency lengths range from
[13,28] and [30,45] respectively, and the 95th percentiles
of the inner-cluster and inter-cluster inconsistency lengths
range from [36,73] and [71,79] respectively. The 50th and
the 95th percentiles of the inter-cluster inconsistency lengths
are larger than those of the inner-cluster inconsistency
lengths, and the increment indicates the degree of influence
of inter-ISP traffic from providers. The increment of the
average inconsistency lengths is illustrated in Figure 9(d).
We see that on average, the inter-ISP traffic from providers
increases the inconsistency lengths by [3.69, 23.2]s.

4) Content provider bandwidth: If the providers are over-
loaded or have insufficient bandwidth, they will not be able
to receive up-to-date content. We measure each request’s
response time by tr − ti, where ti is the time that the
PlanetLab node initiates the request and tr is the time that it
receives the content. Figure 10(a) plots the CDF of requests
versus the response time. The figure shows that the response
time are in the range of [0.5, 2.1]s, and 90% of requests are
resolved within 1.5s. Thus, there is no large delay due to
congestion or overloaded of the providers. This indicates that
the source providers have sufficient computing capabilities
and bandwidth to handle all requests. Considering the time
interval between the worst case and the best case of the
response time, the provider’s network resource constraint
only introduces less than 1.6s inconsistency in servers. In
the trace, the size of statistics content is relatively small,

it hardly causes congestion in provider’s uplinks. However
in some situations, such as live video streaming, the con-
tent provider’s bandwidth may introduce large inconsistency
when overloaded.

5) Content server failure and overload: Content server
failure and overload could also be the cause of content
inconsistency. When a server has failed or is overloaded,
it cannot quickly send out content requests to or receive
content from the provider. Suppose that two successive
response times of a server upon polling are ti and ti+1. We
calculated the absence length of the server as ti+1−ti−10s,
where 10s is the time interval of two successive polls. The
absences could be due to either node overload, reboot, or
failure. Suppose the content responded at ti+1 from the
server that was absent is Ci+1, then the consistency length
of Ci+1 is the consistency length of this absence.

Figure 10(b) shows the CDF of absence lengths of servers.
The figure shows that absence lengths range from [1,500]
seconds, with 30.4% less than 10 seconds and 93.1% less
than 50 seconds. The CDN has a load balancing technique
that balances the load between servers, so it is unlikely
that an overloaded node would remain in the overloaded
status for an extended period. Thus, node failures/reboots
are responsible for most of the absences lasting longer than
50 seconds.

We plot the node absence length with the average incon-
sistency length after node returns in Figure 10(c). We group
trace records first by their absence length. Since for a specific
absence length, there may not be enough inconsistencies
to show its general case of inconsistency with such an
absence length, we group absence length by every 50s. In
order to show the average inconsistency without absence,
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we divide first group with absence length of [0,50]s to
[0,0]s and (0,50]s. From the figure, we can see that the
inconsistency is increasing slightly from 38.1s to 43.9s while
the absence length increases from 0s to 400s. It indicates that
the node overloads and failures do not have adverse effects
on consistency. They can increase the average inconsistency
by 15.22%.

In order to determine the effect of node absences on
the inconsistency, we grouped the inconsistency lengths
associated with the same absence length and calculated
the average. We then group the average absence lengths
with inconsistency lengths in the range of (0,50]s, (50,100],
· · · , (350,400]. In order to show the average inconsistency
without absence, we also plot the average inconsistency
lengths for absence length equals 0.

Figure 10(c) plots the average consistency length in dif-
ferent ranges of absence lengths. From the figure, we see
that the inconsistency length increases from 38.1s to 43.9s
while the absence length increases from 0s to 400s. That
is, the absence contributes no more than 6s inconsistency.
This indicates that the overload and failure do have influence
on consistency and that they can increases the average
inconsistency by 15.22%. The figure also shows that a
larger absence length leads to a higher average inconsistency
length, because servers may not receive updates or send out
update requests in time when overloaded or failed.

Recall that then the inconsistency length of Ci−1 is
calculated by 4Ci−1 = Max{βCi−1

sn − αCi}. If a server’s
absence length is larger than 0, we calculated the incon-
sistency lengths of Ci−1 polled during [ti − x, ti+1] and
[ti, ti+1+x], where x = 20, 40, 60. For all the inconsistency
lengths in each range of all absent servers, we derived those
with absence lengths within [0s,400s], classified them to
4 groups with absence lengths in [0s,100s], [100s,200s],
[200s,300s] and [300s,400s], and then calculated the average
inconsistency length in each group. Figure 10(d) plots the
average inconsistency lengths in each group in a certain
time period before and after node absence. It shows that in
each group, the inconsistency measured closer to the absence
is larger and vice versa. We suspect this is because when
a server is about to be overloaded or has just recovered
from overload or failure, it has a lower probability of
sending or receiving update requests. From the figure, we
also see that a larger absence length leads to a higher
inconsistency length and that sharper inconsistency length
increase. These results indicate that server overload and
failure affect inconsistency and we need to avoid system
failure when there are continuous updates of the dynamic
contents, as it causes largely degraded user experience.

E. Summary of Trace Analytical Results

The major CDN’s servers indeed have large inconsis-
tencies for their cached dynamic content. Thus, the CDN
cannot guarantee consistency for dynamic content by us-

ing unicast with TTL method. Also, a user can observe
the inconsistency of his/her viewed content due to server
redirection. The inconsistency is caused by several factors
including TTL, provider-server propagation delay, providers’
inconsistency and bandwidth, server overload and failure.
The biggest factor is the TTL, which contributes around 75%
of average inconsistency. The other factors contribute to the
inconsistency significantly less than TTL, and they are not
easy or expensive to solve. For example, the server overload
problem can be resolved by improving the capabilities of
current servers and links. Compared to the other factors,
improving the TTL-based consistency maintenance method
is the easiest and only way to significantly improve content
consistency. Thus, we conduct trace-driven experiments to
evaluate the performance of different consistency mainte-
nance approaches in a CDN to provide guidance for selecting
or designing optimal consistency maintenance approaches
for CDNs.

III. TRACE-DRIVEN PERFORMANCE EVALUATION

We conducted trace-driven experiments to evaluate the
performance of consistency maintenance and overhead for
different consistency maintenance infrastructures and meth-
ods in a CDN. The experimental results shed light on
the selection or design of optimal consistency maintenance
methods based on different needs of a CDN.

We built our simulated CDN on PlanetLab [22]. Accord-
ing to the distribution of the CDN servers in the CDN [4],
we selected 170 PlanetLab nodes with high performance
and light load mainly in the U.S., Europe, and Asia. We
chose one node in Atlanta as the provider. We randomly
selected one-day live game events on Jun. 2nd, 2012 in our
trace data as the content. It includes 306 different snapshots
lasting 2 hours and 26 minutes. We regard the time of each
snapshot’s first appearance in the trace as the update time in
the provider. In each PlanetLab node, we also created five
simulated end-users browsing the content.

We evaluate three different consistency maintenance
methods, Push, Invalidation and TTL-based method (TTL
in short), on two updating infrastructures, Unicast-tree and
Multicast-tree. We do not evaluate broadcast, since CDN is
a large network over various local networks, while broadcast
is only effective and efficient inside a local network. In
the multicast-tree, the provider is the tree root and geo-
graphically close nodes (measured by inter-ping latency) are
connected to each other to form a binary tree. In the unicast-
tree, the provider directly connects to all servers in multiple
unicast channel. The size of all consistency maintenance
related packages and content request packages was set to
1KB. The end-users’ TTL was set to 10s according to the
trace. In each experiment, the provider starts to deliver
content at time 60s. Each end-user starts requesting the
content from a time randomly chosen from [0s,50s].
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Figure 11: Inconsistency in the unicast-tree infrastructure.
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Figure 12: Inconsistency in the multicast-tree infrastructure.

A. Inconsistency in the Unicast-Tree Infrastructure
With the unicast-tree structure, in Push (or Invalidation),

the provider directly sends updates (or notifications) to the
servers, and in TTL, the servers poll the provider directly.
With the multicast-tree structure, in Push and Invalidation,
the update (or notification) is pushed along the tree in the
top-down manner, and in TTL, the children poll their parents
in the tree in the bottom-up manner. There are two levels of
content inconsistency: i) the inconsistency between servers
and the provider, and ii) the inconsistency between the end-
users and the provider.

Figure 11(a) shows the average of all inconsistencies of
each content server with different update methods in the
unicast-tree infrastructure, where all servers are sorted by
their inconsistency in Push. We see the inconsistency re-
sults follow Push<Invalidation<TTL. In Push, the provider
pushes an update to the servers upon an update occurrence,
leading to the smallest inconsistency. Its inconsistency is
due to the traffic latency including the transmission delay,
the propagation delay and the queuing delay at the output
ports of the provider. In Invalidation, a server receives
notifications for outdated content but does not request the
new update until it receives a request from an end-user.
Therefore, its inconsistencies are higher than Push. Since
there are no user requests during the inconsistency time
period, these inconsistencies do not affect the consistency
of the contents received by users. In TTL, the content in a
server is considered fresh during a TTL. This is why TTL
generates the largest inconsistency, the average of which
equals 5.7s, around TTL/2.

Figure 11(b) shows the largest average inconsistency of
the end-users on each PlanetLab node. We see that Push and
Invalidation produce similar inconsistencies that are lower
than that of TTL. In Push and Invalidation, the servers
always supply updated content. However, since end-users
request the content periodically, they may send requests a
certain time period after the content update, thus generating
inconsistencies. This result implies that “pushing to end-
users” should be a better method to improve the consistency
of contents viewed by end-users. In TTL, the first-level
servers have certain inconsistencies. The second-level con-
tent servers periodical polling amplifies inconsistencies as
they may not poll right after the servers’ polling. Therefore,
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Figure 13: Consistency mainte-
nance cost.
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Figure 14: Consistency mainte-
nance cost vs. TTL of content
servers.

TTL generates larger inconsistencies than other methods.
Also, TTL’s inconsistencies of end-users are higher than
those of the servers in Figure 11(b).

B. Inconsistency in the Multicast-Tree Infrastructure

In this section, we measure the inconsistency of different
methods in the multicast-tree infrastructure. Figure 12(a)
shows the average of all inconsistencies of each server with
different update methods in the multicast-tree infrastructure,
where all servers are sorted by their inconsistencies with
the Push method. It shows that the inconsistency follows
Push<Invalidation<TTL due to the same reason as in
Figure 11(a). Compared to Figure 11(a), nodes in the
lower-level of the multicast tree with the TTL method have
higher inconsistencies, since higher-level nodes are closer
to the provider and expected to receive the update earlier.
For example, an update can reach nodes in level 1 with a
longest delay as TTL, but for nodes in level 2, the longest
delay will be 2 ∗ TTL. In general, a node in level m has
around m − 1 times the expected inconsistency compared
to a node in level 1.

Figure 12(b) shows the average of all inconsistencies of
each end-user with different update methods in the multicast-
tree infrastructure, where all servers are sorted by their
inconsistencies with the Push method. We see that the incon-
sistencies of end-users for TTL increase compared to those
in the unicast tree because of the increased inconsistencies
in the servers in the multicast tree. The other two methods in
the multicast tree have the same performance as unicast tree.

C. Efficiency of Consistency Maintenance

As in [23], we measure the traffic cost as km∗KB for all
packets for consistency maintenance. Figure 13 shows the
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total traffic cost of all update methods in both the unicast-
tree and the multicast-tree. It shows that multicast can save
at least 2.8 ∗ 107km ∗KB in traffic cost of unicast for all
methods. That is due to the proximity-awareness multicast
tree, so updates are transmitted between proximity close
nodes with short latency. In unicast, the provider needs to
communicate with all servers distributed worldwide. The
figure also shows that in both unicast and multicast, the
traffic cost follows Push<Invalidation<TTL. In the trace, the
update frequency is low. Thus, TTL wastes traffic in probing
unchanged content. Invalidation has additional notification
and polling packets compared to Push. As a result, Push
generates lower traffic cost than Invalidation and TTL,
producing the lowest traffic cost.

As shown in Figure 14, the overhead of consistency
maintenance decreases as the time-to-live in TTL method in-
creases in both unicast and multicast. There are two reasons
for this decrease: (a) the traffic overhead querying messages
can be saved due to the larger time interval between queries;
(b) larger time-to-live has a higher probability to skip an up-
date. Since increment of TTL has the same effect while de-
creasing the update frequency, it indicates that with frequent
updates, TTL can be used for applications with weak con-
sistency requirement to save consistency maintenance cost.

D. Summary of Trace-Driven Experimental Results

We summarize our experimental results below, which may
provide guidance for selecting or designing a CDN update
approach.

• Push provides better consistency on content servers than
other methods in a small-scale network with either unicast
or multicast. However its performance deteriorates rapidly
in a large-scale network with heavy traffic burden.

• From the end user perspective, Invalidation can supply
similar consistency guarantee as Push. It can also reduce
traffic costs with infrequent visits from end users on fre-
quently updated content. However, for frequently updated
contents, it introduces heavy network burden by transmitting
the additional invalidation notifications.

• The TTL-based method can supply a weak consistency with
inconsistency no larger than its TTL. It should have better
scalability than the other two methods even by releasing
update transmission load of the content provider. However,
it may waste unnecessary traffic costs on contents with
infrequent updates.

• The proximity-aware multicast tree infrastructure can save
more traffic costs and support better scalability than the
unicast-tree infrastructure. However, it introduces much
more inconsistency into the TTL-based method.

According to measurements, not a single update method
or an infrastructure supports both scalability and consistency
in all scenarios. However a combination of different methods

with different infrastructures could work. New APIs may
be needed to probe visit and update frequency of live
contents, with which we can infer the changes of the scale
of interested users. Additionally, considering customized
requirements such as consistency, a self-adapting strategy
could switch between update methods and infrastructures to
find an optimal combination.

IV. RELATED WORK

Commercial CDNs enable efficient delivery for many
kinds of Internet traffic, such as e-commerce and live sports.
Serving dynamic contents not only requires a scalable CDN,
but also requires consistency guarantees, either strong or
weak. Recent studies of consistency maintenance have been
applied to different applications, such as P2P networks, web
caches, and CDNs. Based on the infrastructure, these studies
can be categorized into three classes.

One class of methods is based on unicast. In [7], an
invalidation method is recommended, since it is better at
saving traffic costs and reducing end-user query times. In [6],
an adaptive TTL is proposed to predict the update time
interval based on a historical record of updates. Compared
to a fixed TTL, it may reduce traffic costs as well as support
stronger consistency.

Another class of methods is based on broadcasting. Lan
et al. [8] proposed to use flooding-based push for near-
perfect fidelity or a push/pull hybrid method for high fidelity.
Broadcasting is widely used in local computer networks but
fails to be sufficiently scalable for use in large scale networks
such as CDNs due to a large number of redundant messages.

The last class of methods is based on multicast. Li et
al. [15] presented a scheme that builds replica nodes into a
proximity-aware hierarchical structure (UMPT) in which the
upper layer form a DHT and nodes in the lower layer attach
to physically close nodes in the upper layer. SCOPE [14]
builds a replica-partition-tree for each key based on its
original P2P system. It keeps track of the locations of repli-
cas and then propagates updates. CUP [12] and DUP [13]
propagate updates along routing paths. In FreeNet [10],
updates are routed to other nodes based on key closeness.
In a hybrid push/poll algorithm [9], flooding is replaced by
rumor spreading to reduce communication overhead. When
a new node joins or a node reconnects, it contacts online
replica nodes to poll updated content. This hybrid push/poll
scheme only offers probabilistic guarantee of replica con-
sistency. GeWave [16] builds a poll-based multicast tree for
consistency maintenance, in which the replica of a parent
node have higher visit frequency than the replicas of their
child nodes. Tang and Zhou [24] studied inconsistency in
distributed virtual environments, which create a common
and consistent presentation of a set of networked computers.
Peluso et al. [25] introduced a distributed multi-version con-
currency control algorithm for transactional systems that rely
on a multicast-based distributed consensus scheme. S2PC-
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MP [26] is a metadata consistency scheme for distributed file
systems based on multicast. Benoit et al. [27] studied replica
placement in tree networks subject to server capacity and
distance constraints, and proposed efficient approximation
algorithms for the placement problem without considering
the consistency maintenance.

So far, there has been no consistency maintenance method
specifically proposed for large-scale CDNs. Also, there has
been no study that investigates the content inconsistency in
current CDNs based on real trace. This is the first work
that analyzes the consistency performance and causes in a
major CDN based on the real trace, and extensively evaluates
the consistency and overhead performance in trace-driven
experiments in different scenarios.

V. CONCLUSIONS

In this paper, we analyzed our crawled trace data of a
cached sports game content on thousands of servers in a
major CDN. From our analysis, we pointed out that the
inconsistency problem does exist in the CDN. We analyzed
the consistency from different perspectives, such as inner-
or inter-clustering, geographical distance to the content
publisher and absent time of a server and so on. From
the analysis, we not only comprehensively evaluated the
inconsistency of dynamic content among the CDN’s servers,
but also broke down the reasons for inconsistency among
end-users. Finally we further evaluated the performance in
consistency and overhead for different infrastructures with
different update methods and itemized the advantages and
disadvantages. We aim to give guidance of appropriate
selections of consistency maintenance infrastructures and
methods when building a CDN or choosing a CDN service.
In our future work, we will study a hybrid and self-adapted
consistency maintenance method that can change the update
method and infrastructure by considering the varying update
and visit frequencies of the live content as well as the
consistency requirements from the customer.
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