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Abstract—To provide robust infrastructure as a service (IaaS),
clouds currently perform load balancing by migrating virtual
machines (VMs) from heavily loaded physical machines (PMs)
to lightly loaded PMs. The unique features of clouds pose
formidable challenges to achieving effective and efficient load
balancing. First, VMs in clouds use different resources (e.g., CPU,
bandwidth, memory) to serve a variety of services (e.g., high
performance computing, web services, file services), resulting
in different overutilized resources in different PMs. Also, the
overutilized resources in a PM may vary over time due to
the time-varying heterogenous service requests. Second, there
is intensive network communication between VMs. However,
previous load balancing methods statically assign equal or pre-
defined weights to different resources, which leads to degraded
performance in terms of speed and cost to achieve load balance.
Also, they do not strive to minimize the VM communications
between PMs. We propose a Resource Intensity Aware Load
balancing method (RIAL). For each PM, RIAL dynamically
assigns different weights to different resources according to
their usage intensity in the PM, which significantly reduces
the time and cost to achieve load balance and avoids future
load imbalance. It also tries to keep frequently communicating
VMs in the same PM to reduce bandwidth cost, and migrate
VMs to PMs with minimum VM performance degradation.
Our extensive trace-driven simulation results and real-world
experimental results show the superior performance of RIAL
compared to other load balancing methods.

I. INTRODUCTION

Cloud computing is becoming increasingly popular due to
its ability to provide unlimited computing services with the
pay-as-you-go service model. Currently cloud systems employ
virtualization technology to provide resources in physical
machines (PMs) in the form of virtual machines (VMs). Users
create VMs deployed on the cloud on demand. Each VM runs
its own operating system and consumes resources (e.g., CPU,
memory and bandwidth) from its host PM.

Cloud providers supply services by signing Service Level
Agreement (SLA) with cloud customers that serves as both
the blueprint and the warranty for cloud computing. Under-
provisioning of resources leads to SLA violations while over-
provisioning of resources leads to resource underutilization,
and a consequent decrease in revenue for the cloud providers.
Under this dilemma, it is important for cloud providers to
fully utilize cloud resources and meanwhile uphold the SLAs.
In order to provide robust infrastructure as a service (IaaS),
clouds currently perform load balancing by migrating VMs
from heavily loaded PMs to lightly loaded PMs so that the
utilizations of PMs’ resources (defined as the ratio between
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Fig. 1. Migration VM and destination PM selection policy.

actual requested resource amount and the resource capacity)
are below a threshold. Previously proposed load balancing
methods [1]–[5] combine the utilizations of different resources
in selecting VMs to migrate and finding the most suitable
destination PMs. They predefine a weight (or give equal
weight) for each resource, calculate the weighted product of
different resource utilizations to represent the load of PMs
and the weighted product of owned amount of each resource
to represent the capacity of PMs, and then migrate VMs from
the most heavily loaded PMs to the most lightly loaded PMs.

By assigning different resources equal or predefined weight-
s, these methods neglect the unique feature of clouds of
time-varying and different overutilized resources in different
PMs. Cloud VMs use different resources to serve a variety of
services (e.g., high performance computing, web hosting, file
service), resulting in different overutilized resources and differ-
ent resource intensities (e.g., CPU-intensive, MEM-intensive)
in different PMs. Resource intensity here means the degree that
a type of resource is demanded for services. By leveraging
different resource intensities (e.g., moving a CPU-intensive
and non-MEM-intensive VM from a CPU-intensive PM to a
CPU-underutilized PM), we can more quickly achieve and
more constantly retain the load balanced state with fewer
VM migrations (i.e., fast and constant convergence). As cloud
tasks are different from customers to customers and vary
with time, the overutilized resources in a PM may vary over
time. Predetermined or equal resource weight cannot adapt to
the heterogeneous resource intensities among PMs and time-
varying resource intensity in one PM.

Also, previous load balancing methods do not consider
the communication between VMs and VM performance (i.e.,
response time) degradation due to migration. There may
be intensive network communication between two VMs, so



separating such two VMs to two different PMs would increase
the network bandwidth consumption. Moving a VM to a
distant PM would lead to high VM performance degradation.
Therefore, the previous methods are not efficient for cloud
tasks where VM communication is intensive and delayed VM
response time is highly undesirable.

We aim to not only reduce the number of VM migrations
in achieving the load balanced state but also avoid load imbal-
ance in the future (i.e., fast and constant convergence) while
minimize the adverse effect of VM migration on the quality
of cloud services. In addition to reducing load balancing cost,
reducing VM migrations also mitigates the negative effect on
cloud services because each migration i) generates a service
downtime; and ii) requires extra amount of network bandwidth
and cache warm-up at the destination [6], [7].

In this paper, we propose a Resource Intensity Aware
Load balancing method (RIAL). The advantages of RIAL are
threefold. First, RIAL novelly distinguishes different PMs, dif-
ferent resource intensities and considers time-varying resource
intensity in a PM when determining resource weights. For
each PM, RIAL assigns different weights to different resources
according to their intensities, which are then used in selecting
VMs to migrate and finding destination PMs in each load
balancing operation. Thus, an overloaded PM migrates out its
VMs with high consumption on high-intensity resources and
low consumption on low-intensity resources, hence quickly
relieving its load while fully utilizing its resources. Also, the
selected destination PM has high capacity on the high-intensity
resources, which proactively avoids overloading destination
PMs in the future. Consider 4 PMs in Figure 1, where over-
loaded PM4 hosts 3 VMs. Because CPU is overutilized while
MEM is underutilized in PM4, VM1 is the best option to move
out since it has high consumption on high-intensity CPU and
low consumption on low-intensity MEM. PM1 is the best op-
tion for the destination PM because it has most available CPU
capacity for the CPU-intensive VM1. As RIAL determines the
weight of a resource based on its current intensity, it is adaptive
to dynamically changing resource intensities in different PMs.
Second, RIAL selects migration VMs that have low commu-
nication rates with other VMs residing in the same PM in
order to reduce bandwidth consumption. Third, when selecting
destination PMs, RIAL tries to minimize the VM performance
degradation due to migration. With the three advantages, RIAL
achieves fast and constant convergence with fewer migrations
while minimizing the interruption to cloud services.

We have conducted extensive trace-driven simulation and
also deployed a small-scale cloud for real-world experiments.
The experimental results show the superior performance of
RIAL compared to other load balancing methods with fewer
migrations, lower VM performance degradation and lower VM
communication cost.

The rest of this paper is organized as follows. Section II
briefly describes the related work. Section III presents the
objective of RIAL. Section IV presents the detailed design of
RIAL and an analysis of its performance compared to other
load balancing methods. Section V evaluates RIAL in both

simulation and real-world experiments in comparison with
other load balancing methods. Finally, Section VI summarizes
the paper with remarks on our future work.

II. RELATED WORK

Many load balancing methods have been proposed to deal
with PM overload problem using VM migration [1]–[5]. Sand-
piper [1] tries to move load from the most overloaded servers
to the most underloaded servers. It defines volume for VMs
and PMs: volume= (1/(1−ucpu))∗ (1/(1−unet))∗ (1/(1−
umem)), where u is resource utilization. It also defines a
volume-to-size ratio (VSR) for each VM: VSR=volume/size,
where size is the memory footprint of the VM. It then
migrates the VM with the maximum VSR to the PM with the
least volume. TOPSIS [5] predetermines weights for different
criteria (e.g., CPU, memory, bandwidth, PM temperature). To
select VMs to migrate (or select destination PM), it first forms
a weighted normalized decision matrix with the utilizations of
VMs of a PM (or PMs) with respect to each criterion. It then
determines the ideal solution by using the maximum utilization
for the benefit criteria and the minimum utilization for the
cost criteria. However, all previous methods statically assume
equal or predefined weights for different resources, which may
not be correct due to the different time-varying demands on
different resources in each PM. RIAL is distinguished from
these methods in that it dynamically determines the resource
weight based on the demand on the resource in each PM,
which leads to fast and constant convergence to the load
balanced state.

Some works deal with load balancing on one resource
such as storage [8] and bandwidth [9]–[11]. Hsiao et al.
[8] proposed a load balancing algorithm for distributed file
systems in clouds by moving file chunks from overloaded
servers to lightly loaded servers. Oktopus [9] provides static
reservations throughout the network to implement bandwidth
guarantees. Popa et al. [11] navigated the tradeoff space
of requirements-payment proportionality, resource minimum
guarantee and system utilization when sharing cloud network
bandwidth. Xie et al. [10] proposed PROTEUS for bandwidth
provisioning using predicted bandwidth utilization profile in
order to increase the system bandwidth utilization and reduce
the cost to the tenants. However, by focusing on only one
resource, these approaches cannot be directly used for PM
load balancing where VMs use different types of resources.

Many other works for resource management in clouds
deal with scheduling incoming workload requests or initial
placement of VMs with the concern of cost and energy
efficiency [12]–[15]. Lin et al. [12] proposed an algorithm
to achieve dynamic right-sizing in datacenters in order to save
energy. It uses a prediction window of future arrivals to decide
when to turn off an idle server. Maguluri et al. [13] focused
on resource allocation that balances the load among servers
to achieve throughput optimization. Meng et al. [15] used
traffic patterns among VMs to determine VM placement in
order to improve network scalability. Shrivastava et al. [14]
proposed AppAware that considers inter-VM dependencies and



the underlying network topology to place VMs with intensive
mutual communication in the same PM to reduce network
traffic. Shen et al. [16] proposed an online resource demand
prediction method to achieve adaptive resource allocation.

III. OBJECTIVES AND PROBLEM STATEMENT

A. Notations and Final Objective

We consider a scenario in which a total of N PMs serve
as a resource pool in the cloud. Let Pi denote PM i (i =
1, 2, ..., N ), and ni be the number of VMs hosted by Pi,
denoted by Vij (j = 0, 1, ..., ni). Let Cik (k ∈ K) denote
the capacity (total amount) of type-k resource owned by Pi,
where K is the set of resources.

Let Lijk(t) denote the type-k resource requested by Vij in
Pi at time t. It is a time varying function. To avoid small
transient spikes of Lijk(t) measurements that trigger needless
VM migrations, we use the average of Lijk(t) during time
period ∆t, denoted by Lijk.

Lijk =
1

∆t

∫ t

t−∆t

Lijk(t)dt (1)

∆t is an adaptive value depending on how fine grained we
want to monitor the resource demands.

The usage of type-k resource in Pi is the sum of type-k
resource requested by its VMs:

Lik =

ni∑
j=1

Lijk (2)

Taking into account the heterogeneity of server capacities,
we define the utilization rate of type-k resource in Pi (denoted
by uik) as the ratio between actual requested resource amount
of all VMs in Pi and the capacity of type-k resource of Pi.

uik =
Lik

Cik
. (3)

We use Th,k to denote the predetermined utilization thresh-
old for the type-k resource in a PM in the cloud. The final
objective of RIAL is to let each Pi maintain uik < Th,k for
each of its type-k resource (i.e., lightly loaded status). We call
a PM with uik > Th,k overloaded PM, and call this type-k
resource overutilized resource.

Cloud customers buy VMs from cloud provider with pre-
defined capabilities. For example, a small VM instance in
Amazon EC2 is specified by 1.7GB of memory, 1 EC2
compute unit, 160GB of local instance storage, and a 32-
bit platform. We use Cijk to denote label capacity of Vij

corresponding to type-k resource. The utilization of Vij is
defined as

uijk =
Lijk

Cijk
(4)

Like the load balancing methods in [1], [5], RIAL can use
a centralized server(s) to collect node load information and
conduct load balancing. It can also use a decentralized method
as in [8] to conduct the load balancing. In this paper, we focus
on how to select VMs and destination PMs to achieve a fast
and constant convergence while minimize the adverse effect
of VM migration on the cloud services.

B. Reducing VM Communications between PMs

The VMs belonging to the same customer are likely to
communicate with each other much more frequently than with
other VMs. Placing VMs with high communication frequency
in different PMs will consume considerable network band-
width. To save bandwidth consumption and hence increase
cloud service quality, we try to keep VMs with frequent
communication in the same PM. Thus, we try not to select
VMs with a high communication rate with local VMs (residing
in the same PM) to migrate to other PMs. We use Tijpq to
denote the communication rate between Vij and Vpq , and use
Tij to denote the communication rate of Vij with local VMs:

Tij =

ni∑
q=1

Tijiq (5)

Also, we try to choose the destination PM with the highest
communication rate with migration VM Vij . We denote the
communication rate between Vij and PM Pp as

Tijp =

np∑
q=1

Tijpq (6)

where np is the number of VMs in Pp.

C. Reducing VM Performance Degradation by Migrations

When a VM is being migrated to another PM, its per-
formance (response time) is degraded [17]. We also aim to
minimize the VM performance degradation caused by migra-
tions. We calculate the performance degradation of VM Vij

migrating to PM Pp based on a method introduced in [17],
[18]:

Dijp =
∑

dip ·
∫ t+

Mij
Bip

t

uij(t)dt (7)

where t is the time when migration starts, Mij is the amount of
memory used by Vij , Bip is the available network bandwidth,
Mij

Bip
indicates the time to complete the migration, uij(t) is the

CPU utilization of Vij , and dip is the migration distance from
Pi to Pp. The distance between PMs can be determined by
the cloud architecture and the number of switches across the
communication path [11], [15].

D. Problem Statement

In a cloud system, we denote the set of all overload PMs
by O and the set of all lightly loaded PMs by L. Given O and
L, our objective is to select Vij from Pi ∈ O and then select
the destination Pp ∈ L to migrate Vij to in order to eliminate
overloaded PMs and meanwhile minimize the number of VM
migrations, the VM communications between PMs and the
VM performance degradation. We use Si to denote the set of
selected migration VMs in Pi, and use | · | to represent the
size of a set. Then, our problem can be expressed as:

min |{Vij |Vij ∈ Si, Pi ∈ O}| (8)

min
∑

Tijp (9)

min
∑

Dijp (10)

subject to : uik ≤ Th,k, ∀ i, k (11)



Our problem of VM migration is a variant of the multiple
knapsack problem, which is NP-complete [19]. A simpler
formulation of our problem has been shown to be NP-complete
in [14], [15]. Our problem differs from them mainly in that
it minimizes the number of VM migrations. We can construct
a special instance of our problem that is similar to them and
hence prove that our VM migration problem is NP-complete.
We will present a method for solving this problem below.

IV. THE DESIGN OF RIAL

Like all previous load balancing methods, RIAL periodical-
ly finds overloaded PMs, identifies the VMs in overloaded
PMs to migrate out and identifies the destination PMs to
migrate the VMs to. In RIAL, each PM Pi periodically checks
its utilization for each of its type-k (k ∈ K) resources to
see if it is overloaded. We use L and O (L ∪ O = K) to
denote the set of resource types in the PM that are non-
overutilized and overutilized, respectively. An overloaded PM
triggers VM migration to migrate its VMs to other PMs until
its uik ≤ Th,k (k ∈ K). Below, we present the methods for
selecting VMs to migrate and for selecting destination PMs
with the objectives listed in Section III-D.

A. Selecting VMs to Migrate

We first introduce a method to determine the weight of each
type of resource based on resource intensity. We aim to find
VMs to migrate out of each overloaded Pi to quickly reduce
its workload. If Pi is overutilized in CPU, then we hope to
select the VM with the highest CPU utilization in order to
quickly relieve Pi’s load. Since non-overutilized resources do
not overload Pi, we do not need to reduce the utilization of
these resources in Pi. Therefore, we also aim to select the
VM with the lowest utilization in non-overutilized resources
in order to fully utilize resources. To jointly consider these
two factors, we determine the weight for each type-k resource
according to its overload status in Pi.

wik =

{
1

1−uik
, if k ∈ O,

1− uik, if k ∈ L.
(12)

As a result, for an overutilized resource k ∈ O, a higher
utilization leads to a higher weight. For a non-overutilized
resource k ∈ L, a higher utilization leads to a lower weight.
The weight of resource k (wik) means the priority of migrating
this resource out. Note that wik > 1 for a resource k ∈ O
always has a higher weight than wik < 1 for a resource k ∈ L,
which means that overutilized resources always have higher
priority to migrate out than underutilized resources. Then, we
create a 1 × |K| matrix Wi = (wi1, · · · , wik, · · · , wi|K|) for
Pi as its criteria weighted matrix.

Recall that uijk is the type-k resource utilization rate of
VM Vij . Using the MCDM (Multi-Criteria Decision Making)
method [20], we establish a |K| × ni decision matrix Di for
PM Pi with ni VMs as

Di =

 ui11 · · · uini1

...
. . .

...
ui1|K| · · · uini|K|

 (13)

in which each row represents one type of resource and each
column represents each VM in Pi.

We then normalize the decision matrix:

Xi =

 xi11 · · · xini1

...
. . .

...
xi1|K| · · · xini|K|

 (14)

where
xijk =

uijk√∑ni

j=1 u
2
ijk

(15)

Next, we determine the ideal migration VM (denoted by
RVM ) which has the highest usage of overutilized resources
and has the lowest usage of non-overloaded resources. That is,
RV M = {ri1, ..., ri|K|} = {(max

j
xijk|k ∈ O), (min

j
xijk|k ∈ L)};

(16)
for each type-k resource, if it is overutilized, its rik is the
largest element from (xi1k · · ·xijk · · ·xinik) in Xi; otherwise,
rk is the smallest element.

As indicated in Section III-B, we also hope to select the
VM with the lowest communication rate to other VMs in
the same PM (i.e., Tij) in order to reduce subsequent VM
communication cost after migration. Therefore, we set the
ideal value of Tij to 0. We then calculate the Euclidean
distance of each candidate Vij in Pi with the ideal VM and
ideal Tij .

lij =

√√√√ |K|∑
k=1

[wik(xijk − rik)]2 + [wtTij ]2, (17)

where wt is the weight of the communication rate and it
can be adaptively adjusted based on the tradeoff between
the convergence speed/cost and the network bandwidth cost
for VM communication. The migration VM is the VM with
the shortest Euclidean distance (lij), i.e., the most similar
resource utilizations as the ideal VM. After selecting a VM
Vij , RIAL checks if Vij’s uijk(k ∈ K) is in RVM . If so, RIAL
replaces Vij’s uijk in RVM with the updated value. RIAL then
continues to choose the VM with the second shortest lij . Using
the above method, RIAL keeps selecting migration VMs from
Pi until Pi is no longer overloaded.

B. Selecting Destination PMs

When selecting destination PMs to migrate the selected
VMs from Pi, we consider resource intensity, VM commu-
nication rate and performance degradation as indicated in
Section III. We use J to denote the set of lightly loaded PMs.
We also use the MCDM method for destination PM selection.
We build the |K| × |J | decision matrix D′ as

D′ =

 u11 · · · u|J|1
...

. . .
...

u1|K| · · · u|J||K|

 (18)

in which each row represents one type of resource and each
column represents each lightly loaded PM.



We then normalize the decision matrix:

X ′ =

 x′11 · · · x′|J|1
...

. . .
...

x′1|K| · · · x′|J||K|

 (19)

where
x′jk =

ujk√∑|J|
j=1 u

2
jk

(20)

Recall that the weight of type-k resource (wik) represents
the priority of migrating this resource out from overloaded
PM Pi. Hence, it also indicates the priority of considering
available resource in selecting destination PMs. Therefore, we
also use these weights for different resources in candidate PMs
in order to find the most suitable destination PMs that will not
be overloaded by hosting the migration VMs. We represent the
ideal destination PM as

R′PM = {r′1, ..., r′k, ..., r′|K|} = {min
j

x′jk|k ∈ K}. (21)

consisting of the lowest utilization of each resource from the
candidate PMs.

When choosing destination PMs, we also hope that the VMs
in the selected destination PM Pp have higher communication
rate with the migration VM Vij (i.e., Tijp) in order to reduce
network bandwidth consumption. Thus, we set the ideal Tijp

to be the maximum communication rate between Vij and all
candidate PMs, Tmax = maxTijp (p ∈ J). Further, the perfor-
mance degradation of the migrated VMs should be minimized.

By considering the above three factors, we calculate the Eu-
clidean distance of each candidate PM Pp from the ideal PM.

lp,ij =

√√√√ |K|∑
k=1

[wik(x′
pk − r′k)]

2 + [wt(Tijp − Tmax)]2 + [wdDijp]2

(22)
where wd is the weight of performance degradation consider-
ation that can be adaptively adjusted like wt. We then select
the PM with the lowest lp,ij value as the migration destination
of selected VMs. If the selected PM does not have sufficient
available resources to hold all VMs, the PM with the second
lowest lp,ij is selected using the same method as selecting
migration VMs. This process is repeated until the selected
PMs can hold all selected migration VMs of Pi. Note that
the magnitudes of wt and wd should be properly determined
based on the practical requirements of the cloud on the
tradeoff of the number of VM migrations, bandwidth cost and
VM performance degradation. Higher wt and wd lead to more
VM migrations, while lower wt generates higher bandwidth
cost for VM communications and lower wd generates higher
VM performance degradation. How to determine these
magnitudes for an optimal tradeoff is left as our future work.

C. Performance Comparison Analysis

Compared to Sandpiper [1] and TOPSIS [5], RIAL pro-
duces fewer migrations. Because RIAL determines the re-
source weight based on resource intensity, it can quickly
relieve overloaded PMs by migrating out fewer VMs with

TABLE I
NUMBER OF MIGRATIONS NEEDED FOR LOAD BALANCE

Sandpiper TOPSIS RIAL
# selected migration VMs 2 2 1
# of overload destination
PMs after VM migrations

0 1 0

Total # of migrations 2 3 1

high usage of high-intensity resources. Also, the migra-
tion VMs have low usage of low-intensity resources, which

Fig. 2. VM and PM selection process.

helps fully utilize resources
and avoids overloading oth-
er PMs. In addition, the
migration destination has
a lower probability of be-
ing overloaded subsequent-
ly as it has sufficient ca-
pacity to handle the high-
intensity resources. Finally,
RIAL leads to fewer VM
migrations in a long term.

We use an example with 3 PMs (PM0, PM1, PM2) to
demonstrate the advantage of RIAL. In practice, the over-
loaded threshold should be close to 1. To make the example
simple with few VMs, we set the threshold to 0.5, and
only consider the CPU and memory resources. We assume
that PM0 has 4 VMs (VM0, VM1, VM2, VM3) with the
same capacity and PM0’s capacity is four times of the
VM’s. PMs have the same capacity. As in [5], the weight
of CPU and memory in TOPSIS is 9 and 4, respective-
ly. Figure 2 shows the CPU and memory utilizations of
the 4 VMs, VM0(0.2,0.9), VM1(0.9,0.4), VM2(0.75,0.75),
VM3(0.1,0.75) and the 3 PMs, PM0(0.49,0.7), PM1(0.3,0.15),
PM2(0.1,0.32). PM0 is overloaded in memory resource usage
since 0.7>0.5.
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Fig. 3. Advantage of RIAL in reducing migrations.

Sandpiper attempts to migrate the VM with maximum
VSR=volume/size, where volume= (1/(1−ucpu))∗(1/(1−
unet)) ∗ (1/(1 − umem)). Based on this formula, we draw
two dash curves in Figure 2 to indicate the points whose VSR
equals to 5 and 16, respectively. We see that among the 4 VMs,
VM1 located beyond the curve of VSR=16 has the highest VS-
R. Therefore, Sandpiper selects VM1 to migrate out of PM1.
TOPSIS first determines its ideal VM (T* in Figure 2) with the
maximum CPU and memory utilizations from the 4 candidate
VMs (i.e., (0.9, 0.9)), then compares the weighted distances
of the 4 VMs to the ideal VM, and finally chooses VM2 that
has the shortest distance. In RIAL, according to Equ. (16), the
CPU and memory utilizations of the ideal VM (R* in Figure 2)



are 0.1 and 0.9. Base on Equ. (12), the weights for memory and
CPU are 3.33 and 0.51, respectively. Unlike TOPSIS, RIAL
gives a weight to CPU smaller than memory, since CPU is not
so intensively used as memory. RIAL finally chooses VM0
which has the shortest weighted distance to the ideal VM.

Figure 3(a) shows the CPU and memory utilizations of
PM0 before VM migration and after migrating VM0, VM1
and VM2 by RIAL, Sandpiper and TOPSIS, respectively. The
arrows in Figure 2 indicate the resource utilizations of PM0
after migration in each method, respectively. We see that
neither migrating VM1 (by Sandpiper) nor migrating VM2
(by TOPSIS) can eliminate memory overload in PM0. Hence,
these two methods require another VM migration. RIAL re-
duces both CPU and memory utilizations below the threshold.

For destination PM selection, PM1(0.3,0.15) and P-
M2(0.1,0.32) are two candidates for the VM from PM0.
Sandpiper selects the PM that has the least volume as the
destination, which is PM2. TOPSIS determines the ideal PM
with the least CPU and memory utilization of all candidate
PMs (i.e., (0.15, 0.1)), and selects the one with the shortest
weighted distance to the ideal PM, which is PM2. However,
after migrating VM2 to PM2, the memory utilization of PM2
increases to 0.51, higher than the threshold. Then, TOPSIS
has to execute another migration and chooses PM1 to migrate
VM2 to. RIAL determines the same ideal PM as TOPSIS, but
assigns higher weight to memory, so it chooses PM1 as the
destination that has the shortest weighted distance.

Figure 3(b) shows the CPU and memory utilizations of
the destination PMs before and after migrations. TOPSIS
overloads the destination PM2 in memory and needs another
migration (VM2→PM1) to relieve its memory load. Though
all three methods finally eliminate the memory overload in
PM0, RIAL generates a more balanced state since resource
utilizations after balancing are relatively lower than those
in Sandpiper and TOPSIS, which reduces the probability of
overloading PMs, and hence helps maintain the system load
balanced state for a longer time period.

Table I lists the number of selected VMs to relieve overload-
ed PM0, the number of overloaded destination PMs after the
VM migrations, and the total number of migrations to achieve
the load balanced state in one load balancing operation. We
see that RIAL generates the least number of migrations due
to its advantages mentioned previously.

V. PERFORMANCE EVALUATION

We used the CloudSim [21] simulator and our deployed
small-scale real-world testbed to evaluate the performance of
RIAL in comparison to Sandpiper [1] and TOPSIS [5]. We
used the real workload trace available in CloudSim to generate
each VM’s CPU resource consumption [18], [22]. To simulate
memory and bandwidth usage, as in [14], we generated 5
different groups of (mean, variance range) for resource uti-
lization, (0.2,0.05),(0.2,0.15),(0.3,0.05),(0.6,0.10),(0.6,0.15),
and set each VM’s memory/bandwidth utilization to a value
generated by a randomly chosen group. Each PM has 1GHz 2-
core CPU, 1536MB memory, and 1GB/s network bandwidth.
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Fig. 4. Total number of VM migrations.

Each VM has 500Hz CPU, 512MB memory, and 100Mbit/s
bandwidth. With our experiment settings, the bandwidth
consumption will not overload PMs due to their high network
bandwidth. In CloudSim, we conducted experiments for two
cloud scales. In the small scale experiment, we simulated 250
VMs running on 100 PMs. In the large scale experiment, we
simulated 5000 VMs running on 1000 PMs. We generated
a tree-like topology to connect the PMs, and measured the
transmission delay between PMs based on the number of
switches between them [15]. At the beginning of experiments,
we randomly and evenly mapped the VMs to PMs. The
overload threshold was set to 0.75. The weights for different
resource are the same for Sandpiper or set to predefined ratio
(e.g., 9:4 for CPU:MEM) as adopted in their papers. The load
balancing algorithm was executed every 5 minutes. As in [14],
we generated a random graph G(n, p = 0.3) to simulate
the VM communication topology, where n is the number of
VMs and p is the probability that a VM communicates with
another VM. The weight of each edge was randomly selected
from [0,1] to represent the communication rate between two
VMs. Unless otherwise specified, we repeated each test 20
times with a 24 hour trace and recorded the median, the 90th
and 10th percentiles of the results.

A. The Number of Migrations

Figure 4(a) and Figure 4(b) show the median, 10th per-
centile and 90th percentile of the total number of VM migra-
tions by the time t = 8h, 16h, 24h of the three methods in
the small-scale and large-scale tests, respectively. We see that
RIAL generates fewer migrations than Sandpiper and TOPSIS.
Since RIAL considers resource intensity of different resources,
it migrates fewer VMs from a PM to relieve its extra load. Al-
so, RIAL proactively avoids overloading the destination PMs
in the future. Thus, it keeps the system in a balanced state for a
relatively longer period of time, resulting in fewer VM migra-
tions than Sandpiper and TOPSIS within the same period of
time. We also see that TOPSIS produces fewer VM migrations
than Sandpiper because TOPSIS gives different weights to
different resources while Sandpiper treats different resource e-
qually. Additionally, we see that the three methods exhibit sim-
ilar variances due to the initial random VM assignment to PMs.

B. VM Performance Degradation due to Migrations

Figure 5(a) and Figure 5(b) show the median, 90th and 10th
percentiles of the total performance degradation (Formula (7))
in the small-scale and large-scale tests, respectively. We see
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Fig. 6. Total VM communication cost reduction.

that the total performance degradation of RIAL is lower than
those of TOPSIS and Sandpiper in both small and large
scale tests. This is caused by the distinguishing features of
RIAL. First, RIAL triggers fewer VM migrations. Second,
RIAL tries to minimize performance degradation in desti-
nation PM selection. Third, RIAL chooses VMs with lower
utilizations of the non-intensive resources. TOPSIS generates
lower performance degradation than Sandpiper because it
generates fewer VM migrations as shown in Figure 4. We
also see that in both the small-scale and large-scale tests, the
performance degradation variance of the three methods follows
RIAL<TOPSIS<Sandpiper though the difference is small in
the small-scale test.

C. VM Communication Cost Reduction

The communication cost between a pair of VMs was mea-
sured by the product of their communication rate and transmis-
sion delay. We calculated the communication cost reduction by
subtracting the total communication cost observed at a certain
time point from the initial total communication cost of all
VMs. Figure 6(a) and Figure 6(b) show the median, the 90th
and 10th percentiles of total communication cost reduction at
different time points in the small-scale and large-scale tests,
respectively. We see that RIAL’s migrations reduce much more
communication cost than TOPSIS and Sandpiper, which may
even increas the communication cost by migrations (shown by
the negative results). RIAL exhibits smaller variance because
RIAL tries to reduce VM communication rate between PMs
caused by VM migration, while the other two methods do not
consider it.

We then directly compare the communication costs after
the migrations between different methods. We measured the
communication costs of RIAL (x) and Sandpiper/TOPSIS (y)
at the end of simulation and calculated the reduced rate of
communication cost by (y − x)/y. We varied the number of
VMs from 20 to 250 with an increment of 10, and mapped
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Fig. 7. Communication cost reduction of RIAL over Sandpiper/TOPSIS.

the VMs to 50 PMs. Each experiment is run for 30 times. As
the reduced rates of RIAL over Sandpiper and TOPSIS are
similar, we only show one result to make the figures clear.

Figure 7(a) shows the median, 10th percentile and 90th
percentile of the reduced rate of communication cost with
different numbers of VMs. We see that a smaller number
of VMs lead to higher reduced rate of communication cost,
which implies that RIAL can reduce more communication
cost with fewer VMs relative to PMs. This is due to the fact
that fewer VMs lead to fewer overloaded PMs hence more
PM choices for a VM migration, which helps RIAL reduce
more communication costs. Figure 7(b) plots the cumulative
distribution function (CDF) of all 30*24 experiments versus
the reduced rate of communication cost. We see that RIAL
consistently outperforms Sandpiper and TOPSIS with lower
communication cost in all experiments, and decreases the
communication cost by up to 70%.

D. Performance of Varying Number of VMs and PMs

We then study the impact of different ratios of the number
of VMs to the number of PMs on performance. Accordingly,
we conducted two sets of tests. One test has 500 PMs with
the number of VM varying from 2000 to 3000, and the other
test has 1000 PMs with the number of VM varying from
4000 to 6000.

Figure 8(a) and Figure 9(a) show the median, 10th percentile
and 90th percentile of the total number of migrations in the
two tests, respectively. As the number of VMs increases, the
total load on the cloud increases, resulting in more overloaded
PMs and hence more VM migrations. When the number of
VMs is 1000, the resource requests by VMs in the cloud is
not intensive and only a few migrations are needed. When
there are more VMs, the result of number of VM migrations
follows RIAL<TOPSIS<Sandpiper, which is consistent with
Figure 4 due to the same reasons.

Figure 8(b) and Figure 9(b) show the results of the total VM
performance degradation in the two tests, respectively. As the
number of VM increases, the performance degradation increas-
es in each method, mainly because of more triggered VM mi-
grations. RIAL generates lower performance degradation than
Sandpiper and TOPSIS, especially with a higher number of
VMs. We also see that the relative performance on the median,
10th percentile and 90th percentile between the three methods
is aligned with that in Figure 5 due to the same reasons.

Figure 8(c) and Figure 9(c) show the results of the total
communication cost reduction in the two tests, respectively.
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Fig. 9. Performance with varying VM to PM ratio (1000 PMs).

When the VM number is small, there is only a few VM
migrations, resulting in small cost reduction and small variance
for all methods. As the number of VMs grows, RIAL achieves
a higher cost reduction than Sandpiper and TOPSIS. Also,
RIAL has much smaller variance than Sandpiper and TOP-
SIS as the error bars indicate. Both Sandpiper and TOPSIS
performs similarly since neither of them considers the VM
communications when selecting VMs and PMs. The relative
performance between the three methods is consistent with that
in Figure 6 due to the same reasons.

Comparing Figure 8 and Figure 9, we see that the results
in Figure 9 have higher absolute values than those in Figure 8
because the workload and the scale of the cloud are doubled.
We can conclude from 8 and Figure 9 that RIAL outperforms
Sandpiper and TOPSIS under varying ratios of the number of
VMs to PMs in terms of the number of VM migrations, VM
performance degradation and communication cost.

E. Real-World Testbed Experiments

For real-world testbed experiments of RIAL, we deployed a
cluster with 7 PMs (2.00GHz Intel(R) Core(TM)2 CPU, 2GB
memory, 60GB HDD) and two NFS (Network File System)
servers with a combined capacity of 80GB. We then imple-
mented the various load balancing algorithms in Python 2.7.2
using the XenAPI library [23] running in a management node
(3.00GHz Intel(R) Core(TM)2 CPU, 4GB memory, running
Ubuntu 11.04). We created 15 VMs (1VCPU, 256MB memory,
8.0GB virtual disk, running Debian Squeeze 6.0) in the cluster;
each with Apache2 Web Server installed. We used the publicly
available workload generator lookbusy [24] to generate both
CPU and memory workloads.

The communication delay between two PMs is determined
by the number of switches across the communication paths in
the testbed architecture. We created latency between machines
such that all traffic from machine is in the ratio of 1:4:10 to fol-
low the network hierarchical setup [25]. That is, if the commu-
nication path between two PMs comes across one switch, two

switches, and three switches, respectively, the latency between
VMs in the two PMs was set to be 1, 4 and 10, respectively. We
run each test for 20 times; each lasts for approximately 60m.

1) The Number of Migrations: Figure 10 shows the median,
10th percentile and 90th percentile of the total number of
migrations in different methods. We can see that RIAL triggers
fewer VM migrations than the other two methods to achieve
a load balanced state, while TOPSIS generates fewer VM
migrations than Sandpiper. Figure 11 shows the accumulated
number of migrations over time. We see that before 40m,
RIAL generates a similar number of migrations as Sandpiper
and TOPSIS, since all methods begin from a similar load
unbalanced state at the beginning of the experiment. After
around 40m, RIAL produces much fewer migrations and after
50m, it produces no migrations and reaches the load balanced
state, while TOPSIS and Sandpiper continue to trigger VM
migrations. This result confirms that RIAL generates fewer
migrations and achieves the load balanced state faster due to
its consideration of resource intensity.

2) Performance Degradation: Figure 12 shows the me-
dian, 10th percentile and 90th percentile of the total VM
performance degradation of the three methods. We measured
the real migration time to replace Mij

Bip
in Formula (7) to

calculate the performance degradation. The figure shows that
the VM performance degradation of RIAL is lower than
those of Sandpiper and TOPSIS since it tries to reduce
VM performance degradation when selecting destination PMs.
TOPSIS has a slightly lower VM performance degradation
than Sandpiper. As in the simulation, the variance of the
results also follows RIAL<TOPSIS<Sandpiper though it is
not obvious due to the small scale. These experimental results
confirm the advantage of RIAL with the consideration of VM
performance degradation in load balancing.

3) Communication Cost: We generated a random graph
G(n = 15, p = 0.2) to represent the VM communication
topology. Initially, we manually placed intensively commu-
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nicating VMs in PMs with higher network delay for testing.
We measured the sum of the communication cost of each

pair of communicating VMs at the initial stage as the base
and measured the total communication cost at every 5 minutes
during the experiment. Figure 13 shows the normalized com-
munication cost according to the base. We see that as time
goes on, the communication cost of all methods decreases.
This is because we initially placed intensively communicating
VMs in PMs with higher network delay and VM migration
can reduce the communication cost. Our method can reduce
the communication cost much more and faster than the other
methods, reaching 20% of the base communication cost.
TOPSIS and Sandpiper have similar curves since they neglect
VM communication cost in load balancing.

VI. CONCLUSIONS

In this paper, we propose a Resource Intensity Aware Load
balancing (RIAL) method in clouds that migrates VMs from
overloaded PMs to lightly loaded PMs. It is distinguished by
its resource weight determination based on resource intensity.
In a PM, a higher-intensive resource is assigned a higher
weight and vice versa. By considering the weights when
selecting VMs to migrate out and selecting destination PMs,
RIAL achieves faster and lower-cost convergence to the load
balanced state, and reduces the probability of future load
imbalance. Further, RIAL takes into account the communi-
cation dependencies between VMs in order to reduce the
communication between VMs after migration, and also tries
to minimize the VM performance degradation when selecting
destination PMs. Both trace-driven simulation and real-testbed
experiments show that RIAL outperforms other load balancing
approaches in regards to the number of VM migrations, VM
performance degradation and VM communication cost. In our
future work, we will study how to globally map migration
VMs and destination PMs in the system to enhance the
effectiveness and efficiency of load balancing. We will also
measure the overhead of RIAL and explore methods to achieve
an optimal tradeoff between overhead and effectiveness.
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