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Abstract—In cloud datacenters, effective resource provisioning
is needed to maximize energy efficiency and utilization of cloud
resources while guaranteeing the Service Level Agreement (SLA)
for tenants. Previous resource provisioning strategies either
allocate physical resources to virtual machines (VMs) based on
static VM resource demands or dynamically handle the variations
in VM resource requirements through live VM migrations.
However, the former fail to maximize energy efficiency and
resource utilization while the latter produce high migration
overhead. To handle these problems, we propose an initial VM
allocation mechanism that consolidates complementary VMs with
spatial/temporal-awareness. Complementary VMs are the VMs
whose total demand of each resource dimension (in the spatial
space) nearly reaches their host’s capacity during VM lifetime
period (in the temporal space). Based on our observation of the
existence of VM resource utilization patterns, the mechanism
predicts the lifetime resource utilization patterns of short-term
VMs or periodical resource utilization patterns of long-term VMs.
Based on the predicted patterns, it coordinates the requirements
of different resources and consolidates complementary VMs in
the same physical machine (PM). This mechanism reduces the
number of PMs needed to provide VM service hence increases
energy efficiency and resource utilization and also reduces the
number of VM migrations and SLA violations. Simulation based
on two real traces and real-world testbed experiments show that
our initial VM allocation mechanism significantly reduces the
number of PMs used, SLA violations and VM migrations of the
previous resource provisioning strategies.

I. INTRODUCTION

Cloud computing has been intensively studied recently due
to its great promises [1]. Cloud providers use visualization
technologies to allocate Physical Machine (PM) resources
to tenant Virtual Machines (VMs) based on their resource
(e.g., CPU, memory and bandwidth) requirements. The scale
of modern cloud datacenters has been growing and current
cloud datacenters contain tens to hundreds of thousands of
computing and storage devices running complex applications.
Energy consumption thus become critical concerns. Maximiz-
ing energy efficiency and utilization of cloud resources while
satisfying Service Level Agreement (SLA) for tenants requires
effective management of resource provisioning.

Previous server resource provisioning (or VM allocation)
strategies can be classified into two categories: static pro-
visioning and dynamic provisioning [2]. Static provisioning
[3]–[7] allocates physical resources to VMs only once based
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on static VM resource demands, which can be reduced to a
bin-packing problem. However, reserving VM peak resource
requirement for the entire execution time cannot fully utilize
resources as cloud applications consume varying amount of
resources in different phases. In order to fully utilize cloud
resources, dynamic provisioning [8]–[13] has been proposed,
which first consolidates VMs using a simple bin-packing
heuristic and then handles the variations in VM resource
requirements through live VM migrations [8]. However, VM
migration generates high migration overhead and also degrades
the VM performance [14]. In addition, all previous VM
allocation strategies only consider resource demands at one or
each time point. Therefore, they fail to coordinate the resource
requirements in different resource dimensions (in the spatial
space) for a period of time (in the temporal space); that is,
they are spatial/temporal-oblivious, which fails to constantly
fully utilize different resources.
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Fig. 1. Consolidating complemen-
tary VMs.

Our primary goal is to
handle the aforementioned
problems and design a VM
allocation mechanism to fur-
ther reduce the number of
PMs needed for service pro-
visioning, maximize resource
utilization and reduce the
number of VM migrations,
while ensuring SLA guaran-
tees. To this end, we propose an initial VM allocation
mechanism that predicts the VM resource utilization patterns
and consolidates complementary VMs with spatial/temporal-
awareness. Complementary VMs are the VMs whose total de-
mand of each resource dimension (in the spatial space) nearly
reaches their host PM’s capacity during VM lifetime period
(in the temporal space). For example, a low-CPU-utilization
and high-memory-utilization VM and a high-CPU-utilization
and low-memory-utilization VM can be consolidated in one
PM to fully utilize both of its CPU and memory resources.
As shown in a simple 1-dimensional example in Figure 1,
the resource utilization patterns of VM1, VM2 and VM3 are
complementary to each other on the resource. Placing these
three VMs together in the PM can fully utilize this resource
of the PM and reduce VM migrations while still ensures the
SLA guarantees.

It was indicated that when VMs are configured to run an



application collaboratively, their workload pattern variations
can be predicted [15]. We notice that different VMs running
the same short-term application job task (e.g., MapReduce)
tend to have similar resource utilization patterns, because each
VM executes exactly the same source code with the same
options. In long-term applications such as web services and file
services, the workloads on the VMs are often driven by human
requests determined by daily human activities. Therefore, these
VMs exhibit periodical resource utilization patterns. Thus,
based on the historical resource utilizations of VMs from a
tenant, the lifetime resource utilization patterns for short-term
VMs or periodical resource utilization patterns for long-term
VMs requested by this tenant to run the same job can be
predicted. The contribution of this paper can be summarized
as follows.

• We study VMs running short-term MapReduce jobs and
observe that the VMs running the same job task tend
to have similar resource utilization patterns over time.
We also study the PlanetLab and Google Cluster VM
traces and find that different VMs running a long-term
job exhibit similar periodical resource utilization patterns.

• We then design a practical algorithm to detect the re-
source utilization patterns from a group of VMs.

• We propose an initial VM allocation policy that consoli-
dates complementary VMs based on the predicted VM
resource demand patterns. The policy coordinates the
requirements of different resources of the VMs to realize
spatial/temporal-aware VM consolidation.

• We conduct comprehensive simulation based on two real
traces and real-world experiments running a MapReduce
job. Experimental results show that our initial VM alloca-
tion mechanism significantly reduces the number of PMs,
SLA violations and VM migrations.

The rest of the article is organized as follows. Section II
presents the details of our initial VM allocation mechanism.
Section III evaluates our method in trace-driven simulation
experiments. Section IV evaluates our method in real-world
testbed. Section V briefly describes the related work. Finally,
Section VI summarizes the paper with remarks on future work.

II. INITIAL VM ALLOCATION MECHANISM

A. Basic Rationale

Our primary goal in designing the initial VM allocation
mechanism is to minimize the number of PMs used and the
number of VM migrations, and maximize resource utilization,
while ensuring SLA guarantees. Figure 2 shows a simple 1-
dimensional example to explain the idea of our mechanism.
VM1 has a high resource utilization at an early phase but
low resource utilization at a later phase, while VM2 has a
low resource utilization at an early phase but a high resource
utilization at a later phase. Our mechanism predicts the VM
resource utilization pattern and places such complementary
VMs in the same PM to achieve the goal.

The initial VM allocation mechanism must consider re-
source demand across every resource dimension such as CPU,
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Fig. 2. Consolidating complementary VMs in one PM.
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Fig. 3. Consolidating complementary VMs to fully utilize multi-dimensional
resources in a PM.

memory and bandwidth. Consolidating complementary VMs
in a multi-dimensional space is a non-trivial task. For example,
we should avoid placing VMs that intensively use the same
resource in a PM, which otherwise prevents the PM from
accepting other VMs due to lack of this resource. Placing
VMs that intensively use different resources (e.g., a high-
CPU-utilization VM and a high-memory-utilization VM) in
a PM can fully utilize PM multi-dimensional resources while
increases the number of VMs that can reside in one PM. Figure
3 demonstrates an example in a 2-dimensional resource space.
In Figure 3(a), VM1 and VM2 have high memory utilizations
and they use up the memory resource of the host PM. Though
this PM still has spare CPU resource, it cannot host any
more VMs due to the shortage of memory. In Figure 3(b),
by consolidating VM3 and high-CPU-utilization VM4 with
VM1, the CPU and memory resources of this PM are fully
utilized. This example implies that when initially allocating
a VM, it is desirable to choose the PM that makes the load
sum point move towards the top right corner of the PM in
the figure; that is, the resource in each dimension tends to be
equally fully utilized.

In the following sections, we first conduct a measurement
study on VM resource utilizations for both short-term and
long-term applications to verify the existence of utilization
patterns (Section II-B). Second, we discuss how to detect
the patterns of a group of VMs running the same job (e.g.,
WordCount) (Section II-C). Third, we present how to coor-
dinate the resource requirements of different dimensions of
the VMs based on predicted utilization patterns to consolidate
complementary VMs (Section II-D).

B. Profiling VM Resource Demands

In order to predict the resource demand profiles of cloud
VMs, we conducted a measurement study on VM resource
utilizations. Workload arrives at the virtual cluster of a tenant
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Fig. 4. VM resource utilization for TeraSort on three datasets.
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Fig. 5. VM resource utilization for TestDFSIO write.

in the form of jobs. Usually all tasks in a job execute the
same program with the same options. Also, application user
activities have daily patterns. Thus, different VMs running the
same job tend to have similar resource utilization patterns.
To confirm this, we conducted a measurement study on both
short-term jobs and long-term jobs.

1) Utilization Patterns of VMs for Short-Term Jobs:
MapReduce jobs represent an important class of applications
in cloud datacenters. We profile the CPU and memory
utilization patterns of typical MapReduce jobs. We conducted
the profiling experiments on our cluster consisting of 15
machines (3.4GHz Intel(R) i7 CPU, 8GB memory) running
Ubuntu 12.04. We constructed a virtual cluster of a tenant with
11 VMs; each VM instance runs Hadoop 1.0.4. We recorded
the CPU and memory utilization of each VM every 1 second.

We used Teragen to randomly generate 1G data, then ran
TeraSort to sort the data in the virtual cluster. Figures 4(a)
and 4(b) display the resource utilization results of three VMs
for different generated datasets. Figure 5 displays the resource
utilizations of two VMs running TestDFSIO write, which gen-
erates 10 output files with each file having 0.1GB. Figure 6 dis-
plays the resource utilizations of two VMs running TestDFSIO
read, that reads 10 input files generated by TestDFSIO write.
From the figures, we can find that the VMs collaboratively
running the same job have similar resource utilization patterns.
The VMs running the same job on different datasets also have
similar resource utilization patterns. We repeatedly ran each
experiment several times and got similar resource utilization
patterns for the VMs, which indicates that VMs running the
same job task at different times also have similar resource
utilization patterns.
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Fig. 6. VM resource utilization for TestDFSIO read.
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Fig. 7. VM resource utilization from Google Cluster trace.

2) Utilization Patterns of VMs for Long-Term Jobs: To
study the utilization patterns of VMs for long-term jobs, we
used publicly available Google Cluster trace [16] and the Plan-
etLab trace [17]. The Google Cluster trace records resource
usage on a cluster of about 11000 machines from May 2011
for 29 days. The PlanetLab trace contains the CPU utilization
of each VM in PlanetLab every 5 minutes for 24 hours in 10
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Fig. 8. VM resource utilization from
PlanetLab trace.

random days in March and
April 2011. In the Google
Cluster trace, we analyzed
700 VMs and found that dif-
ferent VMs running the same
job tend to have similar u-
tilization patterns. Also, for
a long-term VM, daily pe-
riodical patterns can be ob-
served from the VM trace.
We randomly chose two VMs running the same job as an
example to show our observations. Figure 7(a) shows the CPU
utilizations of two VMs every five minutes during three days
and Figure 7(b) shows their memory utilizations. We see that
both CPU and memory resource demands exhibit periodicity
approximately every 24 hours. Also, the two VMs exhibit
similar resource utilization patterns since they collaboratively
ran the same job. In the PlanetLab trace, we analyzed 900
VMs and also found that they exhibit daily periodical patterns.
Figure 8 shows the CPU utilization of a randomly selected VM
to show their periodical patterns.

C. VM Resource Utilization Pattern Detection

The previous section shows the existence of similar resource
utilization patterns of VMs running the same job. Given
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Fig. 9. Time-varying resource utilization classification.

the resource requirement pattern of VMs in an application,
we can potentially derive some complicated functions (e.g.,
high-order polynomials) to precisely model the changing
requirement over time. However, such smooth functions
significantly complicate the process of VM allocation due
to the complexity of model formulation. Also, very accurate
pattern modeling of an individual VM cannot represent the
general patterns of a group of VMs for similar applications. To
achieve a balance between modeling simplicity and modeling
precision, we choose to model the resource requirement
as simple pulse functions introduced in [18] as shown in
Figure 9. These four models sufficiently capture the resource
demands of the applications. An actual VM resource demand
that is much more complicated usually exhibits a pattern
which is a combination of these simple types.

Next, we introduce how to detect the resource utilization
pattern for a VM. The cloud records the resource utilizations
of the VMs of a tenant. If the job on a VM is a short-term job
(e.g., MapReduce job), the cloud records the entire lifetime
of the job. If the job on a VM is a long-term job (e.g. Web
server VM), the cloud records several periods that show a
regular periodical pattern. From the log, the cloud can obtain
the resource utilization of VMs of a tenant running the same
application. When a tenant issues a VM request to the cloud,
based on the resource utilization pattern of previous VMs
from this tenant running the same application, the cloud can
estimate the resource utilization pattern of this requested VM.

Algorithm 1 VM resource demand pattern detection.
1: Input: Di(t) (i = 1, 2, ..., N): Resource demands of a set of VMs
2: Output: P(t): VM resource demand pattern
3: /* Find the maximum demand at each time */
4: E(tj) = maxi∈N{Di(tj)} for each time tj
5: /* Smooth the maximum resource demand series */
6: E(tj) ← LowPassFilter(E(tj)) for each time tj
7: /* Use sliding window to derive pattern */
8: P(tj) = maxtj∈[tj ,tj+Window]{E(tj)} for each time tj
9: /* Round the resource demand values */

10: P(tj) ← Round(P(tj)) for each time tj
11: return P(t) (t = T0, ..., T0 + T )

Let Di(t)=(D1
i (t), .., D

d
i (t)) be the actual d dimension

resource demands of VM i at time t. Given the resource
demands of a set of VMs running the same job from a
tenant, denoted by Di(t) (t=T0, ..., T0 + T, i=1, 2, ..., N),
our pattern detection algorithm finds a pattern
P(t)=(P 1(t), .., P d(t)) (t=T0, ..., T0 + T ) to cover the future
resource demand profile of a requested VM from the tenant.

Algorithm 1 shows how to generate the resource demand
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Fig. 10. Pattern detection using the PlanetLab trace.
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Fig. 11. Pattern detection using the Google Clusster trace.

pattern for a requested VM. The algorithm first finds the max-
imum demand E(t) among the set of Di(t) (i = 1, 2, ..., N)
at each time t (Line 4). Then, it passes E(t) through a low
pass filter (Line 6) to remove high frequency components to
smooth E(t). The algorithm then utilizes a sliding window of
size Window to find the envelop of E(t) (Line 8). Finally, it
rounds the demand values (Line 10).

To evaluate the accuracy of our pattern detection algorithm,
we conducted an experiment on predicting VM resource
request pattern based on resource utilization records of a group
of VMs running the same application from the PlanetLab trace
and the Google Cluster trace. We randomly selected 700 jobs
and predicted the CPU utilization of a VM in each job during
24 hours. Specifically, in the PlanetLab trace, we used the CPU
utilizations of three VMs of a job on March 3rd, 6th and 9th
in 2011 to predict the CPU utilization of a VM and compared
it with the actual utilization of a VM of the job on March
22nd, 2011. In the Google Cluster trace, we used the CPU
and memory utilizations of two VMs of a job on May 1st and
2nd in 2011 to predict the CPU and memory utilizations of a
VM and compared them with the real utilizations of a VM of
the job on May 3rd, 2011.

Figure 10(a) displays the actual VM CPU utilization and the
predicted pattern generated by our pattern detection algorithm
using the PlanetLab trace. Figure 11(a) and Figure Fig-
ure 11(b) display the actual VM CPU and memory utilizations



and the predicted pattern using the Google Cluster trace. We
see that the pattern can capture the utilization most of the
time except for a few burst peaks. Most of these burst peaks
are only slightly greater than the pattern cap and are single
bursts. This means that the resources provisioned according to
the pattern can ensure the SLA guarantees most of the time,
i.e., before and after the burst points.

When the real VM CPU request from the trace is greater
than the predicted value, we say that a missed capture oc-
curs. Figure 10(b) and Figure 12 show the cumulated dis-
tributed function (CDF) of the number of missed captures
from our 700 predictions using the PlanetLab trace and
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the Google Cluster trace, re-
spectively. The three curves
in the figure correspond to
the pattern detection algo-
rithm with different window
sizes. We see that up to 90%
of the detected patterns have
missed captures fewer than
25 during the 24 hours in
PlanetLab trace, and up to
90% of the detected patterns
have missed captures fewer than 10 in Google Cluster trace.
We also see that the patterns generated by a bigger window
size generates fewer missed captures compared to a small
window size because a larger window size leads to more
resource provisioning. As the previous dynamic provisioning
strategies, VM migration upon SLA violation is a solution for
these missed captures. Our initial VM allocation mechanism
helps reduce a large number of VM migrations in the previous
dynamic provisioning strategies.

D. Initial VM Allocation Policy

The goal of our initial VM allocation policy is to place
all VMs in as few hosts as possible, ensuring that the ag-
gregated demand of VMs placed in a host does not exceed its
capacity across each resource dimension. We consider the VM
consolidation as a classical d-dimensional vector bin-packing
problem [19], where the hosts are conceived as bins and the
VMs as objects that need to be packed into the bins. This
problem is an NP-hard problem [19]. We then use a dimension-
aware heuristic algorithm to solve this problem, which takes
advantage of cross dimensional complimentary requirements
for different resources as illustrated in Figures 2 and 3 in
Section II.

Each host j is characterized by a d-dimensional vector
to represent its capacities Hj = (H1

j , H
2
j , ...,H

d
j ). Each

dimension represents the host’s capacity corresponding to a
different resource such as CPU, memory, and disk bandwidth.
Recall that Di(t) = (D1

i (t), D
2
i (t), .., D

d
i (t)) denotes the

actual resource demands of VM i. We define the fractional
VM demand vector of VM i on PM j as

Fij(t) = (F 1
ij(t), F

2
ij(t), ...F

d
ij(t)) = (

D1
i (t)

H1
j

,
D2

i (t)

H2
j

, ..,
Dd

i (t)

Hd
j

).

(1)

The resource utilization of PM j with N VMs on resource k
at time t is calculated by Uk

j (t) =
1

Hk
j

∑N
i=1 D

k
i (t).

In order to measure whether a PM has available resource
for a VM in a future period of time, we define the nor-
malized residual resource capacity of a host as Rj(t) =
(R1

j (t), R
2
j (t), ..., R

d
j (t)), in which

Rk
j (t) = 1− Uk

j (t) = 1− 1

Hk
j

N∑
i=1

Dk
i (t). (2)

Algorithm 2 Pseudocode for initial VM allocation.
1: Input: Pi(t): Predicted resource demand of requesting VM i

Rj(t): Residual resource capacity of m host candidates
2: Output: Allocated host of the VM
3: M=Double.MAX VALUE //initialize the distance M
4: for j = 1 to m do
5: if CheckValid(P(t),Rj(t))==false then
6: continue
7: else
8: for k = 1 to d do
9: Ek

j = Ek
j + 1

T ·Hk
j

∫ T0+T
T0

Pk(t)dt

10: Mj+ = {wk(1− Ek
j )}2

11: end for
12: if Mj<M then
13: M=Mj

14: AllocatedHost=host j
15: end for
16: return AllocatedHost
17:
18: function CheckValid(P(t),Rj(t)):
19: for k = 1 to d do
20: for t = T0 to T0 + T do
21: if Fk

ij(t) > Rk
j (t) (Eq.(3)==false)

22: return false
23: end for
24: end for
25: return true

When a VM is allocated to a PM, the VM’s fractional
VM demand F k

ij and the PM’s normalized residual resource
capacity Rk

j must satisfy the capacity constraint below at each
time t and for each resource k:

F k
ij(t) ≤ Rk

j (t), t = T0, ..., T0 + T, k = 1, 2..., d. (3)

in order to guarantee that the host has available resource to
host the VM resource request for the time period [T0, T0+T ].

For each resource k, we hope that a PM j’s Uk
j (t) at each

time t is close to 1, that is, its each resource is fully utilized.
To jointly measure a PM’s resource utilization across different
resources at each time, we define the resource efficiency during
time period [T0, T0+T ] as the ratio of the aggregated resource
demand over the total resource capacity:

Ek
j =

1

T ·Hk
j

∫ T0+T

T0

N∑
i=1

Dk
i (t)dt. (4)

We use a norm-based greedy algorithm [20] to capture the
distance between the average resource demand vector and the
capacity vector of a PM (e.g., the top right corner of the
rectangle in the 2-dimensional space):

Mj =

d∑
k=1

{wk(1− Ek
j )}2, (5)

where wk is the assigned weight to resource k. This distance
metric coordinately measures the closeness of each resource’s



utilization to 1.
To identify the PM from a group PMs to allocate a requested

VM i, our initial VM allocation mechanism first identifies the
PMs that do not violate the capacity constraint of Equ. (3).
It then places the VM i to a PM that minimizes the distance
Mj , that is, this VM can more fully utilize each resource in
this PM.

Algorithm 2 shows the pseudocode for our initial VM
allocation policy. This policy refers to the resource demand
pattern Pi(t) from the library that approximately predicts
the resource demands of VMs from the same tenant for the
same job. Based on Pi(t) and the host capacity vector Hj ,
we can derive predicted Fij(t). For each candidate host, we
first check whether it has enough resource for hosting the
VM at each time t = T0, ..., T0 + T for each resource by
comparing Fij(t) and Rj(t) (Line 5 and Lines 18-25) in order
to ensure that F k

ij(t) ≤ Rk
j (t) (Eq.(3)) during the VM lifetime

or periodical interval [T0, T0 + T ]. If the host has sufficient
residual resource capacity to host this VM, then we calculate
the resource efficiency (Lines 8-11) after allocating this VM
during time period [T0, T0 + T ] using Eq. (4). Finally, we
choose the PM that leads to the minimum distance based on
resource efficiency (Lines 12-16). It means this VM can make
this PM most fully utilize its different resources among the PM
candidates. In this way, the complementary VMs are allocated
to the same PM, thus fully utilizing its different resources.

III. TRACE-DRIVEN SIMULATION PERFORMANCE
EVALUATION

In this section, we conducted the simulation experiments
to evaluate the performance of our proposed complementary
VM allocation mechanism (denoted by CompVM) using VM
utilization trace from PlanetLab [17] and Google Cluster [16].
We used workload records of three days from the trace to
generate VM resource request patterns and then executed
CompVM for the fourth day’s resource requests. The window
size was set to 15 in the pattern detection in CompVM. We
compared CompVM with Wrasse [21] and CloudScale [22],
which are dynamic VM allocation methods. All three methods
first conduct initial VM allocation and then periodically exe-
cute VM migration by migrating VMs from overloaded PMs
to first-fit PMs every 5 minutes. In the initial VM allocation,
Wrasse and CloudScale place each VM to the first-fit PM
based on the expected VM resource demands. In migration,
CloudScale first predicts future demands and then migrates
VMs to achieve load balance in a future time point.

In the default setup, we configured the PMs in the system
with capacities of 1.5GHz CPU and 1536 MB memory and
configured VMs with capacities of 0.5GHz CPU and 512
MB memory. With our experiment settings, the bandwidth
consumption did not overload PMs due to their high network
bandwidth capacities, so we focus on CPU and memory
utilization. Unless otherwise specified, the number of VMs
was set to 2000 and each VM’s workload is twice of its
original workload in the trace. We measured the following
metrics after the simulation was run for 24 hours to report.

• The number of PMs used. This metric measures the
energy efficiency of VM allocation mechanisms.

• The number of SLA violations. This is the number of oc-
currences that a VM cannot receive the required amount
of resource from its host PM.

• Average number of SLA violations. This is the average
number of SLA violations per PM. It reflects the effect
of consolidating VMs into relatively fewer PMs.

• The number of VM migrations. This metric presents the
cost of the VM allocation mechanisms that required to
satisfy VM demands and avoid SLA violations.

A. Performance with Varying Workload

Figure 13 and Figure 14 show the performance of the three
methods under different VM workloads using the PlanetLab
trace and Google Cluster trace, respectively. We varied the
workload of the VMs through increasing the original workload
in the trace by 1.5, 2 and 2.5 times.

Figure 13(a) and Figure 14(a) show the total number of
PMs used, which follows CompVM<CloudScale=Wrasse.
CloudScale and Wrasse aim to avoid overloading each PM in
initial VM placement and subsequent VM migration at each
time point. This may result in some PMs that fully utilize one
resource but under-utilize other resources, failing to fully uti-
lize all resources. In contrast, in initial VM placement, Com-
pVM consolidates complementary VMs in different resource
dimensions, thus fully utilizing each resource in each PM.
Since it considers the resource periodical utilization patterns
during a certain time period, it reduces the VM migrations
and constrains the number of PMs used. Both figures also
show that as the workload increases, the number of PMs of
CompVM increases, while those of Wrasse and CloudScale
remain the same. This is because as the actual workload
increases, CompVM’s predicted resource demands increase in
initial VM placement, while CloudScale and Wrasse still al-
locate VM according to the labeled VM capacities. The result
further confirms that CompVM uses PM resources based on
actual usage, while CloudScale and Wrasse under-utilize some
resources by provisioning PM resources more than needed. As
a result, CompVM needs much fewer PMs than CloudScale
and Wrasse, hence achieves higher energy efficiency.

Figure 13(b) and Figure 14(b) show the total number of
SLA violations and the average number of SLA violation-
s. We see that with the PlanetLab trace, when the work-
load is low, all three methods can provide service with-
out violating SLAs. Both figures show that as the work-
load increases, both metric results increase and they exhibit
CompVM<CloudScale<Wrasse. CompVM has fewer SLA
violations because its predicted patterns can capture the time-
varying VM resource demands and hence guarantee the re-
source provisioning. CloudScale has fewer SLA violations
than Wrasse since CloudScale iteratively predicts VM resource
demands and proactively migrates VMs before SLA violations
occur. These results illustrate that CompVM maintains a small-
er average number of SLA violations per PM even though it
uses fewer PMs than CloudScale and Wrasse, which confirms
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Fig. 13. Performance under different workloads using the PlanetLab Trace.
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Fig. 14. Performance under different workloads using the Google Cluster Trace.

CompVM’s higher performance in energy efficiency and SLA
guarantees.

Figure 13(c) and Figure 14(c) show the total number of
VM migrations in the three methods. Since the workload in the
PlanetLab trace is relatively low compared to the Google Trace
trace, when the workload is low, there are no SLA violations
hence no VM migrations. Both figures show that as the
workload increases, the number of VM migrations increases
due to the increase of SLA violations as shown in Figure 13(b)
and Figure 14(b). CompVM always triggers significantly fewer
VM migrations than CloudScale and Wrasse due to its much
fewer SLA violations. This experimental result confirms the
effectiveness of CompVM in reducing VM migrations.

Figure 13(d) and Figure 14(d) show the accumulated num-
ber of SLA violations and VM migrations over time, respec-
tively. In Figure 13(d), as the workload is low relative to PM
capacity initially in the PlanetLab trace, all three methods have
similar number VM violations and migrations at the early
stage of simulation. As time goes on, due to the awareness
of future resource demand pattern of the VMs during initial
VM allocation, CompVM produces fewer VM violations and
migrations than Wrasse and CloudScale during the experiment.

In the Google Cluster trace, the workload is high relative
to PM capacity initially. Therefore, in Figure 14(d), due to
the unawareness of future VM resource demands, the initial
VM placement of Wrasse and CloudScale leads to around 60
VM migrations to guarantee enough resource provisioning.
In contrast, CompVM generates 0 SLA violations and 0
migrations until at 6000s when the workload becomes higher.
We also observe that when the workload is high relative to PM
capacity, most of the migrations are caused by inappropriate
initial VM placement. Therefore, our initial VM allocation
mechanism is significant in helping greatly reduce the SLA
violations and VM migrations.

B. Performance with Varying Number of VMs
Figure 15 and Figure 16 present the performance of the three

methods when the number of VMs was varied from 1000 to
3000 using the PlanetLab trace and the Google Cluster trace,
respectively.

Figure 15(a) and Figure 16(a) show the total number of PMs
used to provide service for the corresponding number of VMs.
We see the result follows CompVM<CloudScale=Wrasse
due to the same reasons as in Figure 13(a) and Figure 14(a).
Also, as the number of VMs increases, the number of PMs
used increases in each method since more PMs are needed
to host more VMs. These experimental results confirm the
advantage of CompVM in reducing the number of PMs used
hence achieving higher energy efficiency.

Figure 15(b) and Figure 16(b) show the number of SLA vio-
lations and the average number of SLA violations per PM. We
see both metric results follow CompVM<CloudScale<Wrasse
due to the same reasons in Figure 13(b) and Figure 14(b).
Also, as the number of VMs increases, both metric values
in each method increase since more resource demands from
more VMs lead to more SLA violations.

Figure 15(c) and Figure 16(c) show the total number of
VM migrations in the three methods. As the number of VMs
increases, the number of VM migrations increases due to
the increase of SLA violations. CompVM always trigger-
s significantly fewer VM migrations than CloudScale and
Wrasse due to its much fewer SLA violations as shown in
Figure 15(b) and Figure 16(b). CloudScale has slightly more
migrations than Wrasse because it triggers VM migrations
upon a predicted SLA violation, which may not actually
occur. These experimental results confirm the effectiveness of
CompVM in reducing VM migrations.

Figure 15(d) and Figure 16(d) show the number of migra-
tions and SLA violations over time. The figures show similar
trends of the three method as those shown in Figure 13(d) and
Figure 14(d) due to the same reasons.
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Fig. 15. Performance with different number of VMs using the PlanetLab Trace.
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Fig. 16. Performance with different number of VMs using the Google Cluster Trace.

IV. REAL-WORLD TESTBED EXPERIMENTS

We deployed a real-world testbed to conduct experiments
to validate the performance of CompVM in comparison
with Wrasse and CloudScale. The testbed consists of 7 PMs
(2.00GHz Intel(R) Core(TM)2 CPU, 2GB memory, 60GB
HDD) and an NFS (Network File System) server with storage
capacity of 80GB. We implemented CompVM, Wrasse and
CloudScale in Java using the XenAPI library [23] running in
a management PM (3.00GHz Intel(R) Core(TM)2 CPU, 4GB
memory). We used the VM template of XenServer to create
VMs (1VCPU, 256MB memory, 8.0GB virtual disk, running
Debian Squeeze 6.0) in the cluster. We used publicly available
workload generator lookbusy [24] to generate VM workloads.

Figure 17 shows the number of PMs used to provide
the service of different number of VMs. Since Wrasse and
CloudScale are unable to predict workload at the beginning,
they both use the maximum request resource of the VMs
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Fig. 17. # of PMs in testbed.

for allocation and hence
have similar results. We also
monitored the number of
SLA violations during the
experiment period, and found
that were no SLA violations
in all three methods during
the experiment. These
experimental results confirm
that CompVM is able to
provide service with fewer number of PMs than Wrasse and
CloudScale while ensures SLA guarantees.

We then deployed a virtual cluster with 5 VMs collabo-
ratively running the WordCount Hadoop benchmark job. We
first conducted a profiling run of such MapReduce job and
used the collected resource utilization to generate patterns for
initial VM allocation in CompVM. The 5 VMs were initially
allocated to different PMs by different methods. The initial

TABLE I
VM ALLOCATION MAPPING.

PM CompVM Wrasse CloudScale
PM1 VM1, VM2 VM1, VM2 VM1, VM2
PM2 VM3, VM4, VM5 VM3, VM4 VM3, VM4
PM3 - VM5 VM5
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Fig. 18. Performance of running WordCount job on the real-world testbed.

VM to PM mapping is shown in Table I. We see that CompVM
uses fewer PMs than Wrasse and CloudScale. During the
experiment, no SLA violations were detected in all three
methods. Figure 18(a) shows the median, 10th percentile and
90th percentile of the job completion time in ten experiments.
We see that though CompVM uses few PMs, it has a similar
completion time as Wrasse and CloudScale. This result verifies
the advantage of CmpaVM in requiring fewer PMs without
sacrificing the performance quality of the VMs.

Figure 18(b) shows the median, 10th and 90th percentiles
of the percent of missed captures of CompVM during the
experiment. We see that CompVM produces very few missed
captures relative to the total number of predictions at each
time point, which verifies the effectiveness of CompVM in
resource demand pattern detection. We also see that the percent
of missed captures of CPU and its variance are relatively
larger than those of memory. This is due to the reason that the
memory utilizations of the VMs exhibit more obvious patterns
and hence are easier to be captured in pattern detection.



V. RELATED WORK

Recently, many static and dynamic VM allocation strategies
have been proposed [2]. Static provisioning [3]–[7] allocates
physical resources to VMs only once based on static VM
resource demands. For example, Srikantaiah et al. [7] proposed
to use Euclidean distance between VM resource demands and
residual capacity as a metric for consolidation. However, static
provisioning cannot fully utilize resources because of time-
varying resource demands of VMs. To fully utilize cloud
resources, dynamic provisioning [8]–[13] first consolidates
VMs using a simple bin-packing heuristic and handles the
variations in VM resource requirements through live VM
migrations, which however results in high migration overhead.
Some works [22], [25] predict resource demands for VM
migration to avoid SLA violation in the future. All previous
VM allocation strategies consider the current or future state of
resource demand and available capacity at a time point rather
than during a time period, which is insufficient for maintaining
a continuous load balanced state. Though our work focuses on
initial VM allocation rather than subsequent VM migration,
our idea of consolidating complementary VMs for a certain
time period can help the migration strategies maintain the load
balanced state for a longer time period.

Recently, some works focus on allocating network band-
width resources to tenant VMs [5], [6], [18]. Oktopus [5]
provides static bandwidth reservations throughout the network.
Popa et al. [6] proposed a set of properties to navigate the
tradeoff space of requirements-payment proportionality and
minimum guarantees when sharing cloud network bandwidth.
PROTEUS et al. [18] provides bandwidth provisioning using
predicted bandwidth utilization profile. Different from these
works, we focus on consolidating VMs that have demands on
multi-resources rather than a single resource.

VI. CONCLUSIONS

In this paper, we propose an initial VM allocation mechanis-
m for cloud datacenters that consolidates complementary VMs
with spatial/temporal-awareness. This mechanism consolidates
complementary VMs into one PM, so that in each dimension
of the multi-dimensional resource space, the sum of the
resource consumption of the VMs nearly reaches the capacity
of the PM during the VM lifetimes. Specifically, given a
requested VM, our mechanism predicts the resource demand
pattern of this VM, and then finds a PM that has a remaining
resource pattern complement to the VM resource demand
pattern, i.e., the PM has the least residual capacity in each
resource dimension big enough to hold this VM. As a result,
our mechanism helps fully utilize the cloud resources, and
reduce the number of PMs needed to satisfy tenant requests.
It also reduces the numbers of subsequent VM migrations and
SLA violations. These advantages have been verified by our
extensive simulation experiments based on two real traces and
real-world testbed experiments running a MapReduce job. In
our future work, we will explore how to enhance the pattern
detection method to catch peak bursts and how to complement
VMs with peak bursts in resource consumption.
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