
Bandwidth Guarantee under Demand Uncertainty in
Multi-tenant Clouds

Lei Yu and Haiying Shen
Department of ECE, Clemson University, Clemson, SC, USA

{leiy, shenh}@clemson.edu

Abstract—The shared multi-tenant nature of cloud network
infrastructures has caused poor application performance in the
clouds due to unpredictable network performance. To provide
bandwidth guarantee, several virtual network abstractions have
been proposed which allow the tenants to specify and reserve
virtual clusters with required network bandwidth between the
VMs. However, all of these existing proposals require the tenants
to deterministically characterize the exact bandwidth demands in
the abstractions, which can be difficult and result in inefficient
bandwidth reservation due to the demand uncertainty. In this
paper, we propose a virtual cluster abstraction with stochastic
bandwidth requirements between VMs, called Stochastic Virtual
Cluster (SVC), which probabilistically models the bandwidth
demand uncertainty. Based on SVC, we propose a network
sharing framework and efficient VM allocation algorithms to
ensure that the bandwidth demands of tenants on any link are
satisfied with a high probability, while minimizing the bandwidth
occupancy cost on links. Using simulations, we demonstrate
the effectiveness of SVC for accommodating cloud application
workloads with highly volatile bandwidth demands, in the way of
achieving the trade-off between the job concurrency and average
job running time.

I. Introduction

Cloud computing, based on modern virtualization of data-
centers, delivers cost-effective and powerful Infrastructure as
a Service (IaaS) for a wide spectrum of applications like those
which use the MapReduce paradigm to process large data
sets [1]. However, the shared, multi-tenant nature of cloud
network infrastructures have caused unpredictable application
performance in the cloud [2] due to the competition of applica-
tions for the scarce network resources. The lack of guaranteed
network bandwidth leads to variable data transmission latency
and job completion time, causing poor job scheduling and
datacenter throughput [3], [4].

To provide the network performance guarantees, several re-
cent works such as SecondNet [5], Oktopus [6], and TIVC [7]
have proposed virtual network abstractions which explicitly
enable bandwidth reservation in datacenter networks. Second-
Net aims to guarantee end-to-end bandwidth for each pair of
virtual machines (in short, VMs). Oktopus proposes a virtual
cluster model that requires a virtual topology comprising N
VMs connected by links to a virtual switch with a specified
constant bandwidth capacity. With the observation that many
cloud applications have time-varying bandwidth requirements,
TIVC further proposes a temporally-interleaved virtual cluster
model that allows specifying the different bandwidth demands
at different times. All these methods allocate VM slots on the

physical machines with the goals of satisfying the bandwidth
requirement of virtual network abstractions, as well as achiev-
ing good locality of VMs. Good locality means that the VMs
allocated for a job should be as localized to a subtree/cluster
as possible, to conserves the bandwidth of the links and
maximize the ability to accommodate future tenant requests.
While these methods enable the bandwidth reservation for
tenants, they require reliable and deterministic estimate of
bandwidth demand among VMs; such estimate is made with
the workload pattern obtained either from the understanding
of the cloud applications or from profiling runs [7].

Unfortunately, recent measurement studies [8], [9] show that
the network traffic is highly volatile in production datacenters.
It is difficult for a tenant to determine the exact amount
of bandwidth it needs at a particular time under demand
uncertainty. Although the usual approach of over-provisioning
can resolve the problem, it leads to significant resource waste
to cloud providers and high costs to tenants. Thus, it is
imperative to find efficient bandwidth reservation methods
with consideration of uncertain bandwidth demands.

The primary contribution of this paper is to explore a
new network reservation abstraction called Stochastic Virtu-
al Cluster (SVC) that allows probabilistic characterization
of bandwidth demands in virtual networks. The model can
better capture the uncertainty and variance of the bandwidth
demands of cloud applications by the probabilistic description
of bandwidth requirement. Based on the SVC model, we
propose a stochastic network sharing framework that provides
probabilistic bandwidth guarantee to tenants, i.e., reserves
sufficient bandwidth on any links such that the bandwidth
demands of all tenants are satisfied with a high probability.
With accommodating the bandwidth demand uncertainty, the
stochastic network sharing framework provides better perfor-
mance guarantee to cloud applications with highly volatile
bandwidth demands. Also, SVC allows the sharing of the
bandwidth among multiple stochastic demands, which im-
proves the job concurrency in clouds.

To enforce our network sharing framework, a fundamental
problem is how to allocate VMs in a physical datacenter for
a SVC abstraction while ensuring the probabilistic bandwidth
guarantee for all tenants. To solve the problem, as opposed
to previous works for the allocation of deterministic virtual
clusters [6], [7], we need to characterize the bandwidth reser-
vation on any links and establish the condition for a valid VM
allocation in a probabilistic manner. Also, we point out that

previous VM allocation algorithms, although providing good
locality, is not optimal in terms of bandwidth occupancy cost.
Thus, in this paper, we first derive the condition for a valid VM
allocation that provides probabilistic bandwidth guarantee,
and then propose a dynamic programming based algorithm
which finds the optimal VM allocation within the lowest-level
subtree while minimizing the maximum bandwidth occupancy
ratio of the links in the subtree. Furthermore, we consider
the SVC model with heterogeneous bandwidth demands that
may follow different probability distributions, and develop a
heuristic algorithm towards finding the optimal VM allocation.

In summary, the contributions of this paper are as follows.
• We introduce a new virtual cluster abstraction SVC with

stochastic bandwidth demands to account for bandwidth
demand uncertainty. Based on that, we propose a network
sharing framework which provides probabilistic band-
width guarantee to tenants.

• We devise efficient VM allocation algorithms for SVC
with homogenous and heterogeneous bandwidth demand-
s, which not only achieve good locality but also minimize
the bandwidth occupancy cost of links.

• We demonstrate the effectiveness of SVC and our network
sharing solution by extensive simulations. The results
show SVC yields better performance to cloud applications
with highly volatile bandwidth demands and achieves
the trade-off between the job concurrency and average
job running time, compared with previous deterministic
bandwidth abstractions.

The rest of the paper is organized as follows. Section II
describes the related work. Section III describes our SVC
model and the stochastic network sharing framework. Section
IV and Section V present the VM allocation algorithms for
SVC with homogenous and heterogeneous bandwidth demand,
respectively. Section VI shows our simulation results.

II. RelatedWork

Several network sharing solutions for multi-tenant datacen-
ters have been proposed [4]–[7], [10], [11]. These solutions
have different sharing policies, including weight proportional
bandwidth sharing [4], [10], [11] and bandwidth reserva-
tion [5]–[7].

Seawall [4], Netshare [11] and FairCloud [10] share the
network bandwidth among VMs, services or tenants based on
weights. Seawall [4] proposes a VM-level congestion control
approach to ensure the share of bandwidth obtained by per
source VM along all network links is proportional to its
weight. Netshare [11] proposes a hierarchical weighted max-
min fair sharing mechanism which allocates the bandwidth
to services according to their weights and then allocates the
bandwidth of each service equally to its TCP connections.
Faircloud [14] describes a comprehensive set of properties for
cloud network sharing and proposes the allocation policies
to navigate the tradeoff space among these properties. These
solutions provide proportional fair sharing of networks with
minimum bandwidth guarantee and statistical multiplexing,

80 90 100 110 120 0

0.01

0.02

0.03

0.04

Bandwidth demand (Mbps)

Pr
ob

ab
ilit

y
de

ns
ity

VM 1 VM N

Virtual Switch

Bandwidth B 1 B N

80 90 100 110 120 0

0.02

0.04

0.06

0.08

Bandwidth demand (Mbps)

Pr
ob

ab
ilit

y
de

ns
ity

Fig. 1: Virtual cluster model with stochastic bandwidth de-
mand.

but cannot provide deterministic bandwidth guarantees. The
performance still depends on other tenants.

Secondnet [5] and Oktopus [6] provide bandwidth guarantee
through deterministic bandwidth reservations in the network.
Secondnet [5] proposes a virtual datacenter abstraction with
the bandwidth requirements among VM pairs. Oktopus [6]
proposes a virtual cluster abstraction for network reservation,
in which a virtual cluster request < N, B > requires a
virtual topology comprising N machines connected by links
of bandwidth B to a virtual switch. TIVC [7] extends the
virtual cluster model with time-varying bandwidth reservation
in order to capture the time-varying networking requirement of
cloud applications. The work in [12] extends the virtual cluster
model with allowing heterogeneous bandwidth requirements
for different VMs. In these works various VM allocation
algorithms are proposed for bandwidth guaranteed virtual to
physical mapping. Though reservation based mechanisms may
not make full utilization of the network bandwidth, it provides
predictable network performance for a tenant. However, all
these works require deterministic bandwidth demand infor-
mation which may be difficult to estimate due to demand
uncertainty. Our work addresses this problem by extending
the virtual cluster model with stochastic bandwidth demand.

III. STOCHASTIC CLOUD NETWORK SHARING

In this section we propose a new virtual cluster network
abstraction with stochastic bandwidth demand to account for
demand uncertainty, and propose a stochastic cloud network
sharing framework that provides bandwidth guarantee in a
probabilistic way.

A. Stochastic Virtual Cluster Model

Highly dynamic bandwidth usage of cloud applications [8],
[9] indicates the need for a new networking abstraction that
can express the demand uncertainty of application network-
ing requirement. To this end, we propose a novel network
abstraction called Stochastic Virtual Cluster model (SVC) that
captures the bandwidth demand uncertainty of cloud applica-
tions.

The SVC abstraction (shown in Fig. 1) consists of a virtual
cluster of N nodes VM 1, . . ., VM N, connected to a switch,
via links of bandwidth B1, . . . , BN respectively, similar to the

virtual cluster model in [6]. However, there are two key
differences. First, the bandwidth for each link is a random
variable, instead of a constant value in the previous work [6].
This not only avoids the need for reliable bandwidth estimate
which is impossible for highly dynamic network traffic, but
also improves the utilization of datacenter resources and the
performance of cloud applications by efficiently capturing the
uncertainty of the future bandwidth usage of applications,
as we will show in our experiments. Second, the links can
have heterogeneous bandwidth, i.e., the bandwidth of different
links have different probability distributions, instead of homo-
geneous constant bandwidth demand for all VMs [6]. This
provides more flexibility to characterize the diverse bandwidth
needs of tenants’ applications.

Given the bandwidth usage profile of an application, one
can derive the probability distributions of bandwidth demands
of VMs and include them in the virtual cluster requests. In
this paper, to characterize the bandwidth demand uncertainty,
we assume that the bandwidth demand B follows a normal
distribution N(µ, σ2) as in [13], [14], with mean µ = E(B)
and variance σ = Var(B). Then, a virtual cluster request has a
format of < N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN) >, in which N is
the number of VMs and the bandwidth demand for each VM
i follows normal distribution N(µi, σ

2
i).

The SVC model is reduced to traditional deterministic
virtual cluster model [6] if µ1 = µ2 . . . = µN and σi = 0,∀i.
Indeed, the tenants can either specify the constant bandwidth
requirement as in the traditional virtual cluster proposed in [6],
or make the stochastic bandwidth demand by giving the prob-
ability distributions in SVC. The deterministic and stochastic
bandwidth requirements can co-exist in the datacenters in our
network sharing framework.

B. Probabilistic Bandwidth Guarantee for Stochastic Band-
width Demand

For a virtual cluster with deterministic link bandwidth,
the bandwidth to be reserved on physical links is fixed
given the placement of VMs. The bandwidth is guaranteed
through ensuring sufficient bandwidth on the physical links
that connect VMs and enforcing the bandwidth reservation by
rate limiting on VMs or switches. However, the problem of
bandwidth guarantee for the SVC model is different due to the
stochastic bandwidth requirement, and accordingly the notion
called probabilistic bandwidth guarantee is introduced.

We first characterize the bandwidth allocation of K already
allocated requests with stochastic bandwidth demands on an
underlying physical link L. Let CL be the bandwidth capacity
of link L. Since in our cloud network sharing framework the
deterministic and stochastic bandwidth requirements can co-
exist, a deterministic portion of link bandwidth is reserved for
the deterministic virtual cluster requests, the residual band-
width is sharing among the stochastic virtual clusters. Denote
the total amount of the reserved deterministic bandwidth
demand on link L by DL. Then, as shown in Fig. 2, the residual
bandwidth S L = CL−DL is sharing among K stochastic virtual
clusters, called stochastic sharing bandwidth.

Link Bandwidth CL

Deterministic
Allocation DL

Stochastic Sharing
Bandwidth SL

… … 𝐵𝐵1𝐿𝐿 𝐵𝐵𝐾𝐾𝐿𝐿

Fig. 2: View of Bandwidth Allocation on link L.

Let BL
1 , . . . , B

L
K be the random bandwidth demands of K

virtual clusters on link L, as shown in Fig. 2. Here probabilistic
bandwidth guarantee is provided to these K virtual clusters,
in the sense that link L can satisfy their bandwidth demands
with a high probability 1 − ε, i.e.,

Pr(
∑

i

BL
i > S L) < ε. (1)

This inequality describes that the bandwidth outage on link L
is only allowed to happen with a small probability ε. For a
specific virtual cluster with bandwidth BL

i , the inequality (1)
indicates Pr(BL

i < S L −
∑

j,i BL
j) > 1− ε, i.e., the bandwidth of

this virtual cluster is guaranteed with a high probability. The
parameter ε is indeed a risk factor for the bandwidth shortage
with regard to the tenants’ demands. It can be determined by
the cloud provider as a part of a service level agreement.

C. Cloud Network Sharing with Probabilistic Bandwidth
Guarantee

With the stochastic virtual cluster abstraction, we propose a
stochastic cloud network sharing framework for multi-tenant
datacenters that provides bandwidth guarantee in a probabilis-
tic way.

Like previous works [6], [7], our network sharing frame-
work relies on two components, network manager and rate
limiting components, to implement the SVC models. A net-
work manager, upon receiving a tenant request, performs
admission control and VM allocation in the datacenter with
physical links satisfying the bandwidth requirements in term
of the probabilistic constraint (1). Rate limiting components
at endhost hypervisors or switches are used to enforce the
bandwidth reservations by ensuring that VMs do not exceed
the bandwidth specified in the virtual topology. But as opposed
to previous works, our framework uses the rate limiting
component to enforce the bandwidth reservation for requests
with deterministic bandwidth demands. Since SVC statistically
shares the bandwidth on any links among virtual clusters
with stochastic bandwidth demands, the variance of bandwidth
demand is allowed and no fixed bandwidth reservation needs
to be enforced for them. Instead, proper VM placement
is required to ensure probabilistic bandwidth guarantee for
stochastic bandwidth demands.

Formally, the VM allocation problem in our network sharing
framework is to allocate N empty VM slots to the tenant’s
request < N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN) > such that each
physical link can still satisfy the constraint (1) for all stochastic
bandwidth demands it carries.

To solve the VM allocation problem in an online fashion, the
network manager maintains the up-to-date status of the data-
center network, including (1) the datacenter network topology;

(2) the empty slots in each physical machines; (3) the stochas-
tic sharing bandwidth S L on each physical link L, calculated
from counting the allocations of deterministic virtual clusters
running in the datacenter; (4) the probability distribution of
bandwidth demand of any existing SVC allocations on each
link. For designing the allocation algorithms, we focus on tree-
like topologies such as multi-rooted tree topologies used in
today’s datacenters. Such a topology is hierarchical, in which
machines are grouped into racks and the Top-of-Rack (ToR)
switches are in turn connected to higher level switches. In the
following sections we present our VM allocation algorithms.

IV. VIRTUAL MACHINE ALLOCATION FOR
HOMOGENEOUS BANDWIDTH DEMAND

In this section, we address the VM allocation problem for
SVC model with homogeneous bandwidth demand, which
means the bandwidth demand of every VM follows the
same probability distribution, i.e., for a SVC request <
N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN) >, µi = µ, σi = σ, ∀i.
In brief, we use the format < N, µ, σ > for such request.
The VM allocation problem has been shown to be NP-hard
for deterministic virtual cluster model [6], [12]. To solve
the problem, we first determine the condition of valid VM
allocation for stochastic bandwidth demands, and based on
that we propose approximate allocation algorithms with the
goal to achieve both good locality of VMs and less bandwidth
occupancy on links.

A. Characterizing bandwidth demand

We begin with characterizing the stochastic bandwidth de-
mand of an allocation for a SVC request r =< N, µ, σ > on a
link. For simplicity, we assume that the bandwidth demands
of N VMs, denoted by B1, . . . , BN , are independent and identi-
cally distributed (i.i.d.) random variables. Considering a link L
on the tree topology, removing L from the tree results in two
disconnected network components. Suppose one component
contains m allocated VMs, and accordingly the other one
contains N − m VMs. Since each VM has an independent
random bandwidth demand following the normal distribution
N(µ, σ2), the aggregate bandwidth demand of m VMs, denoted
by B(m), has distribution N(mµ,mσ2). Accordingly, the total
bandwidth demand on link L for request r, denoted by BL

r (m),
is min(B(m),B(N −m)). It is the min of two normal variables,
of which the exact distribution can be found in [15]. Based
on [15], we can easily derive the following lemma:

Lemma 1: For two independent normal variables X1 ∼

N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), the mean and variance of

X = min(X1, X2) are

E(X) = µ1Φ(α) + µ2Φ(−α) − θφ(α) (2)

Var(X) = (σ2
1+µ2

1)Φ(α)+(σ2
2+µ2

2)Φ(−α)−(µ1+µ2)θφ(α)−(E(X))2

(3)
where φ(·) and Φ(·) are the probability density function (pdf)
and the cumulative distribution function (cdf) of the standard

normal distribution, respectively, and θ =

√
σ2

1 + σ2
2 and α =

µ2−µ1
θ

.
According to Lemma 1, we can compute the mean and

variance of BL
r (m) = min(B(m),B(N − m)), denoted by µr,L

and σ2
r,L, respectively.

B. Determining valid allocation

Assume that link L currently serves the SVC requests
r1, . . . , rK with stochastic sharing bandwidth S L (as shown in
Fig. 2), and the constraint (1) is satisfied. Each request ri has
bandwidth demand BL

i on link L with the mean ui,L and the
variance σ2

i,L. For a new arrival request rK+1, a valid allocation
needs to ensure the adding of demand BL

K+1(m) to link L does
not violate the constraint (1), i.e., still Pr(

∑K+1
i=1 BL

i > S L) < ε.
Since BL

1 , . . . , B
L
K+1 are bandwidth demands under the al-

locations for different requests, they are assumed to be in-
dependent random variables. Accordingly, we use the normal
distribution to approximate the distribution of BL =

∑K+1
i=1 BL

i
according to the central limit theorem. Then, we have BL ∼

N(
∑K+1

i=1 µi,L,
∑K+1

i=1 σ2
i,L). Since BL−E(BL)

√
(Var(BL))

∼ N(0, 1), to satisfy
the constraint (1), we can easily derive the following condition

S L −
K+1∑
i=1

µi,L√∑K+1
i=1 σ2

i,L

> Φ−1(1 − ε), (4)

where Φ−1(·) is the inverse function of Φ(·).
The inequality (4) gives us the sufficient condition for a

valid allocation to a SVC request. Besides, a valid allocation
should only allocate VMs onto the empty slots on physical
machines. Accordingly, given a VM allocation solution for
a SVC request r =< N, µ, σ > that allocates m VMs and
N − m VMs in two components divided by any link L, we
(1) check whether the two components have no less than m
and N−m empty slots in their physical machines respectively,
and also (2) compute the corresponding ur,L and σ2

r,L using
Formula (2) and (3), and then check whether such solution is
valid by examining the condition (4). The allocation solution
is valid only if these two constraints are both satisfied on
any physical links in the network. Note that if the new
arrival request rK+1 is a deterministic virtual cluster request,
i.e., uK+1,L = µmin(m,N − m) and σ2

K+1,L = 0, we can
still use the condition (4), which actually becomes to verify
whether the constraint (1) can still be met for serving the
existing stochastic request r1, . . . , rK under the new stochastic
bandwidth S ′L = S L − uK+1,L. If there are only deterministic
bandwidth demands for the link, we only need to verify the
sum of bandwidth reservations is less than the link capacity.

C. VM allocation algorithm

According to the discussion above, VM allocation in the
tree topology is to allocate a SVC to a subtree, in which
there are enough empty VM slots and any link L can satisfy
the bandwidth requirement of VMs placed in the subtree
connected by L to the upper level.

VM slot

A B
(a) 2 VMs in A, 4 VMs in B

A B
(b) 3 VMs in A, 3 VMs in B

Fig. 3: Two valid allocations with different bandwidth occu-
pancy costs.

The previous work TIVC [7] proposes a dynamic program-
ming based searching algorithm, referred to as TIVC searching
algorithm, to find the lowest subtree for the allocation of the
deterministic virtual cluster abstraction. Searching the lowest
possible subtree is for the most localized allocation of VMs
such that the bandwidth of the links in the upper levels of
the tree is conserved and the ability to accommodate future
tenant requests is maximized. However, this algorithm cannot
be directly used to solve our VM allocation problem since it is
based on deterministic bandwidth demands, and also it cannot
achieve optimal bandwidth occupancy cost which is addressed
by our allocation algorithm.

For TIVC searching algorithm, multiple possible valid al-
locations may exist for the same subtree. But because the
algorithm makes no distinction between them, it may result in
suboptimal allocation in term of bandwidth occupancy cost. To
illustrate the problem, Fig. 3 gives an example, with a simple
tree topology T in which a switch connects two physical
machines A and B each having 5 VM slots and each link
has bandwidth capacity 50. Considering a deterministic virtual
cluster request < N = 6, B = 10 > that requires 6 VMs
each with bandwidth 10, we can see that the tree T is indeed
the lowest subtree the algorithm finds. The allocation in Fig.
3(a) with 2 VMs in A and 4 VMs in B, and the allocation
in Fig. 3(b) with 3 VMs in A and 3 VMs in B are both
valid. The reserved bandwidth on two links in Fig. 3(a) is
10 ×min(2, 4) = 20, lower than 30 in Fig. 3(b), which means
that the former has a lower bandwidth occupancy. This ex-
ample indicates that without explicitly considering some other
metrics of interest in the algorithm, the allocation returned by
TIVC algorithm [7] is not optimal on these metrics, the reason
of that is formally shown in our algorithm description later.

In this paper we propose the allocation algorithm for SVC
with the goal of finding the optimal VM allocation that fits
in the lowest-level subtree while minimizing the bandwidth
occupancy of the links in the subtree.

1) Bandwidth occupancy: We first quantify the bandwidth
occupancy of a link. Without stochastic bandwidth demands
on link L, its bandwidth occupancy can be easily measured
as the ratio of DL

CL
where DL is the amount of deterministic

reserved bandwidth and CL is the total bandwidth capacity of
link L. However, for the bandwidth occupancy with stochastic
demands, the answer is not so obvious.

To characterize the bandwidth occupancy of a link with
stochastic demands, we introduce the concept of effective
amount of stochastic bandwidth demand. Consider link L
shown in Fig. 2 that meets the constraint (1). According to
Inequality (4), we have

S L >

K∑
i=1

µi,L + c

√√√ K∑
i=1

σ2
i,L =

K∑
i=1

µi,L + c
σ2

i,L√∑K
i=1 σ

2
i,L

 (5)

where c = Φ−1(1 − ε). With the above transformation of the
right side of Inequality (5), we can regard µi,L + c

σ2
i,L√∑K

i=1 σ
2
i,L

as the effective amount of bandwidth reserved for stochastic
demand BL

i , denoted by EL
i (1 ≤ i ≤ K). As we can see, it

depends on the other demands served by the links since they
statistically share the bandwidth, rather than being individually
reserved in previous deterministic virtual cluster models. Then,
we measure the bandwidth occupancy ratio of link L, denoted
by OL, as follows:

OL =
1

CL

DL +

K∑
i=1

EL
i

 (6)

Note that S L >
K∑

i=1
EL

i is equivalent to OL <
1

CL
(DL + S L) = 1.

Thus, the sufficient condition (4) for a valid allocation can also
expressed as OL < 1 for any link L.

2) Minimize the maximum of the bandwidth occupancy
ratios: The example in Fig. 3 shows a special case that two
links always have the same bandwidth occupancy ratios given
only one request in the network, so we can minimize their
bandwidth occupancy ratio simultaneously. However, in gen-
eral network topologies, the bandwidth occupancy ratios vary
among different links and have dependencies due to shared
bandwidth demands, so it is not feasible to simultaneously
to minimize the bandwidth occupancy ratio for each link.
On the other hand, since our SVC model guarantees the
bandwidth in a probabilistic way, link congestion can occur
when

∑
i BL

i > S L in the constraint (1). The link with the
maximum of bandwidth occupancy ratios is the most likely
congested link in the datacenter. Thus, we expect to reduce
the possibility of congestion by the optimization to minimize
the maximum bandwidth occupancy ratio. Therefore, our goal
is to find the valid allocation which minimizes the maximum
of the bandwidth occupancy ratios of the links in the subtree.

We now show that this min-max problem has optimal
substructure. Assume that a tree Tr rooted at vertex r has m
children v1, . . . , vm, as shown in Fig. 4. Each link between vi

and r is denoted by Lvi , also called the uplink of vi. Let Tvi

be the subtree rooted at vi.
Definition 1 (Allocable VM set): For a SVC request of N

VMs, the set of all possible numbers of VMs out of the N
VMs that can be allocated in the subtree Tv rooted at v, with
satisfying the bandwidth constraint of any link in Tv and also
the uplink of v, is called allocable VM set of Tv (or v).

Suppose we have n VMs to be allocated to Tr, and let A∗ be
the optimal VM allocation that minimizes maxL∈Tr (OL) where

r

vm v1 v2

𝐿𝐿𝑣𝑣1 𝐿𝐿𝑣𝑣2 𝐿𝐿𝑣𝑣𝑚𝑚

𝑇𝑇𝑣𝑣1 𝑇𝑇𝑣𝑣2 𝑇𝑇𝑣𝑣𝑚𝑚

𝑇𝑇𝑟𝑟/𝑇𝑇𝑣𝑣𝑚𝑚

Fig. 4: The diagram for showing the optimal substructure with
Lemma 2.

L is a link of Tr. Suppose that the allocation A∗ assigns n∗vm

number of VMs to Tvm , then (n − n∗vm
) VMs are assigned to

Tr \ Tvm which is a tree formed by removing Tvm from Tr.
Given that nv VMs out of the total n VMs are allocated to
Tv, maxL∈Tv (OL) actually only varies with the placement of nv

VMs in Tv, regardless of the placement of n − nv VMs in the
rest of the network Tr \Tv. Thus, we assume Opt(Tv, nv) be the
minimum value of maxL∈Tv (OL) among all possible allocations
of nv VMs in Tv. Then, we have the following lemma:

Lemma 2:

Opt(Tr, n) = max
{
Opt(Tvm , n

∗
vm

),Opt(Tr \ Tvm , n − n∗vm
),O∗Lvm

}
(7)

where O∗Lvm
is the bandwidth occupancy ratio of link Lvm under

the allocation A∗.
Proof: Under the allocation A∗, let the link that has the

optimal bandwidth occupancy ratio of Opt(Tr, n) be L∗, i.e.,
OL∗ = Opt(Tr, n). Denote the maximum of the bandwidth
occupancy ratio of links in Tvm and Tr\Tvm under A∗ by O∗(Tvm)
and O∗(Tr \ Tvm), respectively. Obviously, we have

OL∗ ≥ O∗(Tvm) ≥ Opt(Tvm , n
∗
vm

) (8)
OL∗ ≥ O∗(Tr \ Tvm) ≥ Opt(Tr \ Tvm , n − n∗vm

) (9)
OL∗ ≥ O∗Lvm

(10)

Then, we prove the lemma by three cases of L∗:
1. If L∗ = Lvm , we have O∗Lvm

= OL∗ ≥ O∗(Tvm) ≥
Opt(Tvm , n

∗
vm

). Similarly, we have OLvm
≥ Opt(Tr \Tvm , n−n∗vm

).
Thus, (7) holds.

2. If L∗ ∈ Tvm , we have OL∗ = O∗(Tvm) ≥ Opt(Tvm , n
∗
vm

). If
OL∗ > Opt(Tvm , n

∗
vm

), by allocating n∗vm
V Ms to Tvm according

to the allocation that achieves Opt(Tvm , n
∗
vm

), we can obtain
smaller maxL∈Tr (OL), which is a contradiction to the optimality
of OL∗ . Thus, we must have OL∗ = Opt(Tvm , n

∗
vm

). Then,
according to (9) and (10), we can also tell that Opt(Tvm , n

∗
vm

)
is the maximum of {Opt(Tvm , n

∗
vm

),Opt(Tr \Tvm , n−n∗vm
),O∗Lvm

}.
Thus, (7) holds.

3. If L∗ ∈ Tr \ Tvm , we can prove (7) as in the case of
L∗ ∈ Tvm .

Lemma 2 shows the optimal substructure of the problem.
Accordingly, given the optimal values of the child subtrees, the
optimal value Opt(Tr, n) can be found by searching optimal
n∗vm

. So we can give the dynamic programming recursive

formula to compute the optimal value as follows:

Opt(Tr, n) = min
x∈Mvm

n−x∈M−vm

max
{
Opt(Tvm , x),Opt(Tr \ Tvm , n − x),OLvm

(n, x)
}

(11)
Here x is the number of VMs allocated into Tvm . Mvm and M−vm

are the allocable VM sets of Tvm and Tr\Tvm , respectively, with
considering the bandwidth constraint of Lvm . OLvm

(n, x) denotes
the bandwidth occupancy ratio of link Lvm given x VMs in Tvm

and n− x VMs in Tr \Tvm . OLvm
(n, x) is a function of n and x,

which can be calculated with (2), (3) and (6). Both OLvm
(n, 0)

and OLvm
(n, n) are equal to the initial bandwidth occupancy

ratio based on existing SVC demands on the link.
If the subtree Tv has only one child subtree Tv1 , which

means Tv \ Tv1 is the root vertex, then

Opt(Tv, x) = max
{
Opt(Tv1 , x),OLv1

(n, x)
}

(12)

With (11) and (12), we can use dynamic programming to find
the optimal allocation in a given tree.

3) Algorithm description: Now we present our allocation
algorithm. The algorithm traverses the topology tree starting
at the leaves (physical machines at level 0) and determines if
all N VMs in a request can fit. During the traverse, for any
visited vertex v, the algorithm records its allocable VM set,
which is calculated by reusing the recorded allocable VM sets
of v’s children with consideration of the optimality of band-
width occupancy cost. Since searching the allocable lowest-
level subtree and optimizing maxL∈T (OL) are both dynamic
programming procedures, we propose an efficient algorithm
which combines the optimization into the searching within
only one tree traversal. Algorithm 1 shows our VM allocation
algorithm in pseudo code.

In Algorithm 1, Tv[i] denotes the tree that consists of vertex
v as the root and v’s first i child subtrees. Take Fig. 4 for
instance, Tr[m − 1] = Tr \ Tvm . We define Tv[0] = {v} and
Tv[i] = Tv[i − 1]

⊕
Tvi where “

⊕
” is to connect the child

subtree Tvi to Tv[i−1] via link Lvi . Tv = Tv[m] where m is the
number of v’s children. S v[i] denotes the set that contains the
numbers of VMs that could be accommodated Tv[i], without
considering the uplink bandwidth constraint of v. Mv denotes
the allocable VM set of v. We have dynamic programming
step for minimizing the bandwidth occupancy ratio in lines
19∼25. The lines 20 and 22 are corresponding to (11) and (12).
Compared with TIVC algorithm [7], a key difference exists
when recording the allocation in the traversed subtrees. That is,
for each possible value e + h in S v[i], our algorithm records in
Dv[i, h] the number of VMs assigned to the i-th child of v that
minimizes the maximum bandwidth occupancy ratio of links
in Tv[i], considering that there may be multiple combinations
of e and h achieving same sum e+h. TIVC algorithm, however,
does not make such optimal choice for bandwidth occupancy,
thus it may return suboptimal allocation. Then, as in TIVC
algorithm, if N can be allocated according to Mv, Alloc()
is called recursively according to Dv[i, x] while recording
the statistical information of bandwidth demand under the
allocation for request r on each link, and eventually obtain the

number of VMs per physical machine. The time complexity of
Algorithm 1 is O(|V |∆N2) where |V | is the number of vertices
in T and ∆ is the maximum number of children of any nodes.

Algorithm 1: VM Allocation Algorithm
Input: Datacenter tree topology T , SVC request r =< N, µ, σ >,

bandwidth reservation information of each link including
the mean and variance of each SVC demand on it

1 for level l ← 0 to Height(T) do
2 for each subtree Tv rooted at vertex v at level l do
3 m← the number of v’s children;
4 if l = 0 then // leaf v is a physical machine
5 S v[0] ← {0, 1, . . . ,Cv} ; // Cv is the number of

empty VM slots of v
6 for each value h in S v[0] do
7 Opt[Tv, h] = 0 ; // No link usage between

VMs in the same machine
8 else
9 S v[0]← {0};

10 Tv[0]← v;
11 for i from 1 to m do
12 S v[i]← {0};
13 Tv[i]← Tv[i − 1]

⊕
Tvi ;

14 for each value e in v’s i-th child vi’s allocable VM
set Mvi do

15 for each value h in S v[i − 1] do
16 if e + h is not in S v[i] then
17 minv[i, e + h]← ∞;
18 S v[i]← S v[i] ∪ {e + h};
19 if i = 1 then
20 Opt[Tv[i], e + h]←

max
{
Opt[Tvi , e + h],OLvi

(N, e + h)
}

21 else
22 Opt[Tv[i], e + h]←

max
{
Opt[Tv[i − 1], h],Opt[Tvi , e],OLvi

(N, e)
}

23 if Opt[Tv[i], e + h] < minv[i, e + h] then
24 Dv[i, e + h]← e;
25 minv[i, e + h]← Opt[Tv[i], e + h];
26 Mv ← ∅ ;
27 for each value h in S v[m] do
28 if OLv (N, h) < 1 then // Lv is the uplink of v
29 Mv = Mv ∪ {h} ;
30 Opt[Tv, h]← minv[m, h];
31 if N ∈ Mv then
32 Alloc (r, v,N);
33 return true;
34 return false;
35 Procedure Alloc(r, v, x)
36 if v is a machine then
37 allocate x VMs in v;
38 else
39 for v’s child i from m to 1 do
40 Alloc(r, vi,Dv[i, x]);
41 record bandwidth occupancy for r on v’s i-th link;
42 x = x − Dv[i, x];

V. VM ALLOCATION FOR HETEROGENEOUS
BANDWIDTH DEMAND

In this section, we address the VM allocation problem for
heterogeneous SVC r =< N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN) >,
which means the bandwidth demands of VMs Bi (1 ≤ i ≤

N) may have different probability distributions N(µi, σ
2
i). The

problem is also NP-hard in deterministic case [12].

A. Determining valid allocation

Under an allocation for the heterogeneous SVC model, a
link L on the tree divides N VMs into two VM sets VL1 and
VL2. Accordingly, their bandwidth demands {Bi|1 ≤ i ≤ N} are
divided into two sets, denoted by BL1 and BL2. The aggregate
bandwidth demand for VLi, denoted by B(BLi), follows the
normal distribution N(

∑
Bi∈BLi

ui,
∑

Bi∈BLi
σ2

i). Similar to the
homogenous case, the bandwidth demand for request r on link
L, denoted by BL

r (BL1,BL2), is min(B(BL1),B(BL2)). Then, we
still use Lemma 1 and Inequality (4) to check the validity of
an allocation.

B. VM Allocation Algorithms

Dynamic programming based allocation algorithm. We can
extend the dynamic programming (DP) approach in Algorithm
1 to find the optimal allocation for the heterogeneous model,
with maintaining the set of all possible VM subsets that can be
allocated in each subtree. Accordingly, in the recursive formula
(11), the allocable VM sets Mvm and M−vm are redefined as
the sets consisting of the VM subsets that can be allocated
in the corresponding subtree Tvm and Tr \ Tvm . However, this
way is much more costly for the heterogeneous model to
find the optimal allocation than for the homogenous model.
In the homogenous case, the number of possible VM subsets
that can be allocated to any subtree is at most N + 1, since
the VMs are homogenous and indistinguishable and the only
variable is the size of the VM subset. In the heterogeneous
case, however, the number of possible VM subsets that can
be allocated to any subtree, i.e., the size of any allocable VM
set, is at most O(2N). Therefore, the algorithm has exponential
time complexity O(|V |∆2N), which can be applied for small N
but is infeasible for large N.
Heuristic allocation algorithm. For the above algorithm, the
dependence of its time complexity on the sizes of the allocable
VM sets indicates that we can reduce the time complexity for
large N by limiting the size of each allocable VM set with
some heuristic. Therefore, we propose a heuristic algorithm,
which identifies an allocable VM set with polynomial size in
N for each subtree during tree traversal.

Our algorithm is derived from the first fit (FF) algorithm.
In FF, VMs are sorted by their bandwidth demands and then
placed sequentially in the first subtree having sufficient band-
width and empty VM slots. In the case of the deterministic
bandwidth demands, let S v = (v1, v2 . . . , vn) be a sequence
of n VMs in ascending order of their bandwidth demands.
To allocate S v to the tree Tr rooted at r, starting from r’s
first child subtree Tr1 , the algorithm greedily and sequentially
places VMs into the child subtrees in order of S v. Once a
VM cannot be allocated to the current subtree, r’s next child
subtree is tried. As a result of the first fit, each used child
subtree is assigned with a substring of S v which is disjoint
with other substrings assigned to sibling subtrees. For example,
suppose n VMs are sequentially allocated to Tr1 , . . . ,Trm , then

Tr1 has VMs {v1, v2, . . . , vd1 }, denoted by < 1, d1 >, Tri has
< di−1 +1, di > (1 ≤ di−1 < di < n, 1 < i < m) and the last used
subtree Trm has < dm−1 + 1, n >. As we can see, it actually
searches the substring of VMs that can be allocated to the
subtrees in a greedy way. The FF heuristic ensures that if an
allocation solution is returned, it must be valid. However, it
either may not find a solution or find suboptimal one because
of its greedy strategy. To improve the chance to find a solution
and its optimality, our algorithm sequentially places VMs
with the above dynamic programming (DP) strategy instead
of greedy strategy.

Given a sequence of N VMs, S N = {1, 2, . . . ,N}, < a, b >
(a ≤ b) is used to represent the set of VMs in the substring
between VM a and VM b, inclusive. Let AN be the set of all
possible substrings of S N and its size is 1 +

(N+1)N
2 (1 for the

empty set). As opposed to the previous DP based allocation
algorithm, in this algorithm the allocable VM set Mv for any
subtree Tv only consists of all the substrings of S N that can be
allocated into Tv, which means Mv ⊆ AN and the size of Mv is
O(N2). To compute the allocable VM set for a subtree, each
substring in AN is checked, and the one that can be allocated
to the subtree is put into the corresponding allocable VM set.
The check is conducted as follows:

(1) For each physical machine v at level 0 of tree topology
T , any substring < a, b >∈ AN can be allocated into v if v
has no less than b − a + 1 empty slots and the uplink Lv has
bandwidth occupancy ratio OLv (N, < a, b >) < 1. OLv (N, <
a, b >) is computed as stated in V-A, given that Lv divides N
into two VM sets < a, b > and S N\ < a, b >;

(2) For each vertex v at level l > 0, its allocable VM set
is calculated in the similar way as line 10-33 of Algorithm 1.
But the difference is that, S v[i] here stores the substrings that
could be accommodated in Tv[i]. For arbitrary k, a ≤ k ≤ b,
if < a, k − 1 > is in S v[i − 1] and < k, b > is in v’s i-th
child vi’s allocable VM set Mvi , the substring < a, b > can be
accommodated in Tv[i]. We define < a, a − 1 >= ∅. Then, the
substrings in S v[m] that do not violate the uplink bandwidth
constraint are put into v’s allocable VM set Mv. Once S N can
be found in Mv, Alloc() is called to allocate S N into the subtree
Tv. The optimization code for bandwidth occupancy ratio is
similar to Algorithm 1. Opt[Tv[i], < a, b >] stores the optimal
value when < a, b > is assigned to Tv[i]. It is obtained by the
min operation to maximum bandwidth occupancy ratios over
all possible k that has < a, k−1 >∈ S v[i−1] and < k, b >∈ Mvi .

Our algorithm has time complexity O(|V |∆N4). With consid-
ering stochastic bandwidth demands, N VMs can be ordered
by 95th percentile of their bandwidth demands. Note that
the allocation algorithm in [12] which specifically aims at
deterministic heterogeneous model cannot be used for our
stochastic model. Although it also involves the dividing of
a VM sequence, the purpose is to divide 2N subsets into
N2 groups in this way, and examine the allocatability of all
subsets in every group. Our algorithm is more efficient with
considering the allocatability of only N2 substrings and returns
an optimized first fit allocation.

VI. EVALUATION

We use simulations of large scale datacenter networks to
demonstrate the benefits of SVC especially for cloud applica-
tion workloads with highly volatile bandwidth demands.

A. Simulation Setup

We simulate a datacenter of three-level tree topology with
no path diversity. A rack consists of 20 machines each with
4 VM slots and a 1Gbps link to connect to a Top-of-Rack
(ToR) switch. Every 10 ToR switches are connected to a level-
2 aggregation switch and 5 aggregation switches are connected
to the datacenter core switch. There are total 1,000 machines at
level 0. The default oversubscription of the physical network is
2, which means that the link bandwidth between a ToR switch
and an aggregation switch is 10Gbps and the link bandwidth
between an aggregation switch and the core switch is 50Gbps.
Workload. The workload models we use for tenant job-
s/applications are similar to those in Oktopus [6]. Each job
is modeled as a set of tasks to be run on individual VMs and
a set of flows of uniform length (L) between tasks. Each task
is a source and a destination for one flow. The completion time
of a job is max(Tc,Tn) where Tc is the job’s compute time and
Tn is the time for the last flow to finish. The number of VMs
needed by each job request, i.e., job size, is exponentially
distributed around a mean of 49 as in [6]. To simulate the
random and dynamic bandwidth demand, we change the data
generation rates of the source tasks in a job j every second,
which are taken from a normal distribution N(µd j , σ

2
d j

). Our
SVC is derived from the distribution of data generation rate.
Alternate abstractions. We compare our homogeneous SVC
abstraction with the virtual cluster (VC) abstraction < N, B >
of Oktopus [6]. Given the normal distribution of the data
generation rate of a job, we use the mean and 95th percentile
of the rate as the requested bandwidth B under VC. The
resulting VC models are called mean-VC and percentile-VC,
respectively. We consider them because we believe that they
are common ways to accommodate the demand uncertainty
under deterministic abstractions. We do not consider TIVC
(temporally-interleaved virtual cluster) since our stochastic
model does not assume any time-varying patterns.

B. Simulation Results

We compare our SVC with Oktopus within two scenarios:
first, we consider a large batch of tenant jobs placed in a
FIFO queue waiting to be allocated to run; second, tenant jobs
dynamically arrive over time and are accepted only if they
can be allocated at the moment of arrival. In each scenario,
we simulate 500 tenant jobs. The compute time of each job is
randomly chosen from [200, 500]. For the data generation rate
of job j, µd j is randomly chosen from {100, 200, 300, 400, 500}
and σd j is ρµd j where ρ is a deviation coefficient to reflect
the degree of the traffic demand uncertainty and its value is
randomly chosen form (0,1) by default. The default risk factor
ε is 0.05.

1 2 3 4
mean-VC 3.14E+03 4.55E+03 6.49E+03 9.22E+03
percentile- 4.54E+03 8462 1.11E+04 1.72E+04
SVC(є=0.5) 4.18E+03 5.25E+03 8.11E+03 1.13E+04
SVC(є=0.2) 4452 5416 8479 1.23E+04

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 3 4

To
ta

l C
O

m
pu

ta
tio

n
Ti

m
e

(s
ec

)
x 104

Network Oversubscription

mean-VC

percentile-VC

SVC(є=0.05)

SVC(є=0.02)

Fig. 5: Completion time
with varying oversub.

300

320

340

360

380

400

420

440

460

480

500

0.1 0.5 1 1.5 2

Av
er

ag
e
ru
nn

in
g

tim
e

pe
r j

ob

deviation coefficient

mean-VC

percentile-VC

SVC(є=0.05)

SVC(є=0.02)

Fig. 6: Average completion
time per job with varying
deviation coefficient.

0

5

10

15

20

25

30

20 40 60 80 100

Re
je

ct
ed

 R
eq

.(%
)

Load (%)

mean-VC

percentile-VC

SVC(є=0.05)

SVC(є=0.02)

Fig. 7: Percentage of re-
jected requests with varying
datacenter load.

0 2000 4000 6000 8000
0

10

20

30

40

50

60

70

Time (sec)

N
um

 o
f c

on
cu

rr
en

t j
ob

s

SVC
percentile−VC

Fig. 8: Concurrent jobs for
60% load.

1) Batched jobs: For batched jobs, we use the same job
scheduling policy as in [6]: jobs are placed in a FIFO queue,
and once a job completes, the topmost job(s) that can be
allocated is scheduled to run. Fig. 5 shows the total completion
time of 500 jobs in a batch. Fig. 6 shows the average running
time per job with increasing the deviation coefficient ρ in
order to increase the demand variance. Comparing these two
figures, we note that mean-VC has the best performance over
other models for the total completion time of batched jobs, but
have the worst performance for the average running time per
job, which is critical for on-line processing for dynamically
arriving jobs. This is because that when large increase of
data traffic appears, the fixed bandwidth demand reserved by
mean-VC for each VM becomes the bottleneck, which further
increases the flow latency and the job completion time. Other
models reserve extra bandwidth, and thus incur less running
time per job. Compared with mean-VC, percentile-VC is just
the opposite. Percentile-VC reserves 95th percentile amount
of bandwidth with considering the demand distribution, thus
it achieves constant and smallest running time under different
deviation coefficients in Fig.6. However, the 95th percentile
bandwidth has to be reserved, which can be large especially
under high demand variance. Because percentile-VC reserves
large amount of bandwidth for each job, the job concurrency
in the datacenter is greatly limited, causing that percentile-VC
has worst performance for batched jobs in the total comple-
tion time. In contrast, mean-VC reserves smallest bandwidth
compared with others and has largest concurrent jobs which
effectively reduces the total completion time.

The comparison results above between percentile-VC and
mean-VC actually shows the trade-off between the job con-

currency and job running time. The increase in reserved
bandwidth reduces the flow latency and thus the job running
time, but also decreases the job concurrency, causing longer
waiting time of jobs. However, both the percentile-VC and
mean-VC cannot achieve such trade-off. But as we can see
from Fig.5 and 6, our SVC model actually achieves the trade-
off. Compared with Percentile-VC, SVC significantly increases
the job concurrency indicated by smaller total completion
time of batched jobs, while obtaining comparable job running
time which is much less than mean-VC. The reason for
the improvement is that, in SVC, multiple jobs share the
bandwidth with total bandwidth demand not exceeding the link
capacity with a high probability (0.95 when ε = 0.05), which
ensures that sufficient bandwidth is reserved statistically while
each job can also exploit the unused bandwidth. With smaller
ε, SVC provides better bandwidth guarantee and thus smaller
job running time but reduces the job concurrency, which means
that we can tune ε to achieve the desired trade-off.

2) Dynamically arriving jobs: In cloud the tenants requests
usually arrive over time. In our simulation the job arrival
follows a poisson process with rate λ, then the load on a
datacenter with M total VMs is λNTc

M where N is the mean
job size and Tc is the mean compute time. As in previous
works [6], [7], if a job cannot be allocated upon its arrival,
it is rejected. We compare the job rejection rates under SVC
with different risk factor ε = 0.02, 0.05, as well as the mean-
VC and percentile-VC. In Fig. 7, we can see that under low
load of 20%, all methods have zero or close to zero request
rejection rates. As the load increases, they have relationship
mean-VC < SVC(ε = 0.05) < SVC(ε = 0.02)< percentile-
VC. With considering the demand uncertainty, the effective
bandwidth amount SVC reserves is larger than the mean
of bandwidth demand, as we can see from (5), thus SVC
has higher rejection rates than mean-VC. For SVC, smaller
risk factor ε incurs higher bandwidth reservation, and causes
higher rejection rate, which also indicates that ε = 0.02
provides stronger bandwidth guarantee to stochastic bandwidth
demands. For percentile-VC, combined with the results of job
completion times stated earlier, we can see that percentile-VC
achieves similar completion time to SVC(ε = 0.05) but at the
cost of higher rejection rate. The reason is because it provides
deterministic but exclusive bandwidth to accommodate the
varying traffic demands. Instead, SVC uses the bandwidth
statistically shared with other tenant jobs under probabilistic
bandwidth constraint (1), so it is possible to have higher job
concurrency. To understand this, we record the number of
concurrent jobs under percentile-VC and SVC (ε = 0.05)
when a new job arrives at the system. Fig. 8 show that SVC
consistently achieves about 10% higher job concurrency than
percentile-VC.

3) Allocation Algorithms: We compare our allocation algo-
rithms for homogeneous SVC models with an adapted TIVC
algorithm [7]. We adapt the TIVC algorithm [7] by replacing
the condition of valid allocation by ours shown in (4) for
computing the allocable VM sets, and additionally maintaining
the information of the stochastic bandwidth demands of every

0.983 0.986 0.989 0.992 0.995 0.998 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max bandwidth occupancy ratio

 c
u

m
u

la
ti

ve
 p

ro
b

ab
ili

ty
 d

is
tr

ib
u

ti
o

n

TIVC, load=20%

SVC, load=20%

TIVC, load=60%

SVC, load=60%

Fig. 9: The Cumulative
probability distribution of
sampled max bandwidth oc-
cupancy ratio.

20 40 60 80 100
SVC 0.22 4 12.6 20 22
TIVC 0.2 3.6 12 19.5 23

`

0

5

10

15

20

25

30

20 40 60 80 100

Re
je

ct
ed

 R
eq

.(%
)

Load (%)

SVC

TIVC

Fig. 10: Percentage of re-
jected requests with varying
datacenter load.

SVC allocation on each link (e.g., the means and variances of
BL

1 , . . . , B
L
K in Fig. 2), so it can be used for SVC allocation.

However, the adapted TIVC algorithm does not involves the
optimization on bandwidth occupancy cost. By the compar-
isons, we show the benefit of the optimization of bandwidth
occupancy cost addressed by our SVC algorithms.

To evaluate the performance of algorithms on the link
bandwidth occupancy cost, we assume the cloud scenario for
dynamically arriving jobs as above. We sampled the maximum
of bandwidth occupancy ratios among all links every time
when a new job arrives. Fig. 9 shows the empirical cumulative
probability distribution of maximum bandwidth occupancy
ratio in the datacenter under different loads 20% and 60%
for our homogeneous SVC allocation algorithm and adapted
TIVC algorithm. From the figure we can easily see that SVC
algorithm achieves better bandwidth occupancy overhead than
TIVC under both loads. Under load 20%, among all the
maximum bandwidth occupancy ratios, SVC has 50% samples
less than 0.996 but TIVC has only about 10%. When the load
increases to 60%, the link bandwidth occupancy cost becomes
higher for both algorithms. SVC and TIVC have 80% and
95% of maximum bandwidth occupancy ratios distributed on
[0.997,1], respectively.

We further evaluate the request rejection rates of SVC and
adapted TIVC under different loads and show the result in Fig.
10. We note that SVC and TIVC have almost the same rejec-
tion rates, which means the optimization of link bandwidth
occupancy cost in SVC affects little on the optimization goal
of TIVC to maximize the ability to accommodate future tenant
requests. We also compared our heterogeneous SVC allocation
algorithm with the first-fit algorithm in the same way. We omit
the details because the results show the similar relationship
between SVC and first-fit for the distribution of maximum
bandwidth occupancy ratio and request rejection rates as
in Fig. 9 and 10. With the optimization on the bandwidth
occupancy cost, heterogeneous SVC algorithm achieves better
bandwidth occupancy overhead and similar rejection rates
compared with the first-fit algorithm.

VII. Conclusion

In this paper we explore a new virtual network abstraction,
SVC, which models the uncertainty of bandwidth demands
of cloud applications. Based on SVC, we introduce a cloud

network sharing framework which provides probabilistic band-
width guarantee to the tenants. To enforce the framework,
we propose dynamic programming based VM allocation al-
gorithms which not only achieve good locality of VMs but
also minimize the maximum of bandwidth occupancy ratio
on links. Simulation results demonstrate that SVC yields
better performance for cloud application workloads with high-
ly volatile bandwidth demands, and achieves the trade-off

between the job concurrency and the job running time. For
simplicity, we assume normal distribution for the bandwidth
demand in this paper, but SVC can straightforwardly use other
types of probability distributions. Our future work includes
characterizing the probability distributions of bandwidth de-
mands from a variety of real workloads, and implementing
and evaluating SVC in a real cloud environment.

Acknowledgements
This research was supported in part by U.S. NSF grants

IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947, CNS-
0917056 and CNS-1025652, Microsoft Research Faculty Fellowship
8300751.

References
[1] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Mapreduce in the clouds

for science,” in Proc. of IEEE CloudCom, 2010, pp. 565–572.
[2] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in

the cloud: observing, analyzing, and reducing variance,” Proc. of VLDB
Endow., vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proc. of ODSI, 2010, pp. 1–16.

[4] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in Proc. of the 8th USENIX conference on
Networked systems design and implementation (NSDI), Berkeley, CA,
USA, 2011, pp. 23–23.

[5] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proc. of Co-NEXT. New York, NY,
USA: ACM, 2010, pp. 15:1–15:12.

[6] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. of ACM SIGCOMM. New
York, NY, USA: ACM, 2011, pp. 242–253.

[7] D. Xie, N. Ding, Y. C. Hu, and R. R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” in Proc. of ACM SIGCOMM, 2012, pp. 199–210.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92–99, Jan. 2010.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. of ACM
IMC, 2009, pp. 202–208.

[10] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,” in
Proc. of ACM SIGCOMM,2012, pp. 187–198.

[11] T. Lam and G. Varghese, “Netshare: Virtualizing data center networks
across services,” University of California, Tech. Rep. CS2010-0957,
2010.

[12] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards
bandwidth guarantee in multi-tenancy cloud computing networks,” in
Proc. of IEEE ICNP, 2012, pp. 1–10.

[13] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of IEEE INFOCOM, 2010, pp. 1–9.

[14] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in Proc. of IEEE
INFOCOM, 2011, pp. 71–75.

[15] S. Nadarajah and S. Kotz, “Exact distribution of the max/min of
two gaussian random variables,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 16, no. 2, pp. 210–212, 2008.

