An Interest-based Per-Community P2P Hierarchical Structure for Short Video
Sharing in the YouTube Social Network

Haiying Shen, Yuhua Lin and Harrison Chandler
Department of Electrical and Computer Engineering
Clemson University
Clemson, South Carolina 29634
Email: {shenh, yuhual, hchandl} @clemson.edu

Abstract—The past few years have seen an explosion in the
popularity of online short-video sharing in YouTube. As the
number of users continued to grow, the bandwidth required
to maintain acceptable quality of service (QoS) has greatly
increased. Peer-to-peer (P2P) architectures have shown promise
in reducing the bandwidth costs; however, the previous works
build one P2P overlay for each video, which provides limited
availability of video providers and produces high overlay main-
tenance overhead. To handle these problems, in this work, we
novelly leverage the existing social network in YouTube, where
a user subscribes to another user’s channel to track all his
uploaded videos. The subscribers of a channel tend to watch the
channel’s videos and common-interest nodes tend to watch the
same videos. Also, the popularity of videos in one channel varies
greatly. We study real trace data to confirm these properties.
Based on these properties, we propose SocialTube that builds the
subscribers of one channel into a P2P overlay and also clusters
common-interest nodes in a higher level. It also incorporates a
prefetching algorithm that prefetches higher-popularity videos.
Extensive trace-driven simulation results and PlanetLab real-
world experimental results verify the effectiveness of SocialTube
at reducing server load and overlay maintenance overhead and
at improving QoS for users.

I. INTRODUCTION

In the past few years, the prevalence and popularity of
video-on-demand (VoD) services (e.g., YouTube, Bing Video,
Vimeo, Tudou) have grown enormously, fueled by the ability
of users to generate video content using affordable digital
cameras and the ubiquity of high-speed Internet access. On
YouTube, the videos uploaded every day had increased from
135 hours in 2006 to over 50,000 hours in 2011, and the
number of videos watched per day had increased from 100
million in 2006 to over 2 billion in 2011 [1, 2]. Currently,
YouTube attracts 800 million unique visitors each month [2].
The dramatic success of VoD systems, along with rapid
increases in video content and users in VoD systems, however,
comes with a serious scalability problem.

Current VoD systems generally use a client-server architec-
ture, in which videos are stored and downloaded solely from
dedicated servers and there is no requirement on the upload
bandwidth resource on the user side. While the client-server
architecture is simple to implement, it produces prohibitive
bandwidth costs for server owners, and has a low scalability
to handle the rapid increase of users. Back in 2006, YouTube
already paid over $1 million a month on bandwidth; with its
traffic over 20 times what it once was [3]. In 2009, the cost
has grown to $1 million per day [4]. The bandwidth cost has

certainly increased substantially since then. While YouTube’s
finances are kept under wraps, bandwidth cost certainly makes
up a huge portion of their expenses. Furthermore, quality of
service (QoS) often suffers from massive number of requests
to the server during peak usage times. YouTube users face
an average service delay of over six seconds, much higher
than other sites. It would be advantageous, then, to minimize
the bandwidth cost on the server while achieving high QoS
for users. Complementing the client-server architecture with
a peer-to-peer (P2P) architecture that takes advantage of the
extra bandwidth capacity of the huge number of users for P2P
video sharing is a solution.

In a P2P architecture, users can download files from
other users instead of from the centralized server. Previous
works [5-14] have focused on applying the P2P paradigm
to VoD by building one overlay for each video (i.e., per-
video structure). PA-VOD [6] and NetTube [15] are two
representative systems. In PA-VOD, when a user requests a
video, the server directs the request to several other users
currently watching the video. When a user finishes watching a
video, it no longer acts as a provider. Since videos on YouTube
tend to be short, many videos do not have peer providers so
the server must provide the videos instead. NetTube leverages
the video social network property that related videos tend to be
viewed by a user, i.e., users who watch the same video tend to
watch same videos in the future, and builds the viewers of the
same video into an overlay to enable users to find other desired
videos through their neighbors. Nodes maintain a cache of
previously watched videos to boost video availability in the
system. When a node requests a video for the first time, it
sends its request to the server, which directs it to connect to
the providers in the overlay of the video. When a node finishes
watching a video, it remains in its overlay (i.e., maintains links
to other nodes) to act as a video provider. To find a next video
to watch, the node sends a query to its neighbors within two
hops; if the video is not found, the user resorts to the server.
However, the per-video overlays generate a prohibitive cost
of overlay maintenance on nodes. A node that has watched
multiple videos must stay in multiple overlays and maintain
its links in each of the overlays. Also, two nodes may need
to maintain redundant links for different per-video overlays
though one link is sufficient. NetTube also provides limited
availability of peer video providers as the probability that
nodes watched the same video will watch the same videos

You (1)

Fig. 1: Organization of YouTube videos.

is not necessarily high due to many related videos to a video.

To resolve the aforementioned deficiencies in P2P VoD
systems, in this work, we novelly leverage the YouTube social
network, where users are linked by subscription relationships.
Note that unlike NetTube, we use the actual established social
network in YouTube. In YouTube social network, each user has
a channel that features a distinct webpage with all the user’s
uploaded videos. The channel in YouTube makes it easy for
users to browse all videos of a specific user. If user A wishes
to track all videos uploaded by user B, A can subscribe to
B’s channel, then will receive updates on new videos in B’s
channel. A registered user can subscribe to the channels, then
receive updates on new videos in the channel. Once a new
video is uploaded to his/her subscribed channels, a feed of the
uploaded video is provided on his/her YouTube homepage. For
example, the YouTube channel named ReutersVideo features
short video clips relating to recent world news. Whenever
ReutersVideo uploads a new video, a feed of the uploaded
video is provided on each of its subscribed users’ YouTube
homepage. Users can find the video directly on ReutersVideo’s
homepage. YouTube recommends a user’s frequently visited
channels to the user to subscribe. Note the concept of channel
in YouTube is completely different from the channel in P2P
live streaming.

As shown in Figure 1, YouTube classifies videos into
interest categories (e.g., Gaming, Sports, and Comedy), and
organizes each category (interest and category are interchange-
able terms in this paper) by individual videos or channels. A
user can browse either videos or channels in each category.
Therefore, channels are granular classification of categories.
For example, a user interested in the category of Science and
Technology can go to the page of this category to find popular
content and the most-subscribed channels within that category.
Based on these YouTube social network structural features,
for low maintenance cost and high QoS, rather than building
a per-video structure, we propose SocialTube, which builds
an interest-based per-community (i.e., channel) hierarchical
structure to connect nodes subscribed to the same channel and
also connect users interested in the same category in the higher
level. The utilization of the real social network in YouTube
is the key to the design of SocialTube. First, the subscribers
to the same channel tend to view the videos in the channel.
Second, nodes with similar interests tend to view similar set
of videos [6] and each channel involves a few interests. Third,
the popularity of videos in a channel varies.

We first conduct an extensive analysis on YouTube data to
verify the key social network properties of short-video sharing
on YouTube. Based on these properties, we design a two-level
hierarchical overlay; subscribers of the same channel are built

into one lower-level cluster, and users watching channels in
the same category are built into another higher-level cluster.
Each node has limited links in both overlays. This design
reduces overlay maintenance overhead by limiting the number
of overlays a user joins, and enables users to locate a peer
video provider through a limited number of hops. In addition,
as the popularity of videos in one channel varies greatly,
SocialTube lets nodes prefetch higher-popularity videos in the
channel to improve the availability of videos. This is the first
work that leverages the YouTube social network to develop an
enhanced P2P video sharing system. Trace-driven simulation
and PlanetLab experimental results show the efficiency and
scalability of SocialTube in comparison with PA-VOD and
NetTube.

The contributions of this paper are summarized as follows:
(1) We analyze extensive YouTube trace data to verify the
features of the YouTube social network. (2) Based on the
features, we introduce the design of our system, and (3) We
provide trace-driven simulation and PlanetLab experimental
results to show the efficiency and scalability of our system
design.

The remainder of this paper is arranged as follows. Sec-
tion II presents an overview of the related work. Section III
presents the analysis on our crawled trace data from YouTube.
Section IV presents the details of the design of SocialTube.
Section V presents the trace-driven experimental results in
simulation and PlanetLab testbed. Section VI concludes this
paper with remarks on future work.

II. RELATED WORK

Most of today’s VoD applications rely on centralized servers
to provide video sharing service, which is not scalable as the
amount of video content and the number of clients have been
dramatically increasing. Other popular VoD systems, such as
PPLive [16], PPStream [17] and UUSee [18], are based on the
tracker service and program source provided by centralized
servers and uploading contributions from peers. Huang et
al. [19] provided an insightful design analysis of PPLive for
future system design. There have also been significant research
efforts on optimizing sharing efficiency [20-24], where servers
are in charge of both providing and helping users locate video
resources, and most videos are shared among peers.

There are also several exploits in utilizing P2P video sharing
to ameliorate the bandwidth cost for YouTube-like services.
An early work called nVoD [25] incorporates an unstructured
network that can make best use of network resources while
providing high QoS. Huang et al. [6] analyzed a nine-month
trace of MSN Video (predecessor of Bing) and proposed a
peer-assisted VoD system that localizes P2P traffic within an
ISP. GridCast [26] identifies that the single uploading scheme
leads to idling in P2P networks and that multiple video caching
can better reduce the server load. Chatzopoulou et al. [27]
revealed a Poisson distribution of user arrival rates and an
inverse correlation between video watching time and video
popularity. BitTube [28] combines the client-server and P2P
models, and supports the transition across the spectrum for

04500 1 1.

34000 0 v

©3500 2038 20.8

93000 c <

22500 208 £06

22000 It 0.4

51500 504 .

31000 50.2 502

£ 500 10},

§F 0l a2 103 108 105 116 107 100 g e
eb07 Feb08 Feb09 0 1000000 2000000 10" 10" 10° 10° 10" 10° 10° 10 10° 10* 10% 10° 10* 10° 10° 10

Date Frequency of views Number of subscribers Number of subscribers

Fig. 2: # of videos added over
time.

Fig. 3: View frequency of
videos in different chan-
nels.

pure client-server mode to BitTorrent mode. Li et al. [29] stud-
ied major features of the P2P VoD overlay networks and com-
pared them with P2P file sharing and live streaming systems.
Zhou et al. [30] proposed a unifying request scheduling model,
in which a single request can be served by a number of peers.

A number of previous works analyzed the characteristics of
YouTube [31, 32]. NetTube [15] attempts to identify users that
watch the same video to group them into the same overlay for
P2P video sharing. It also utilizes the existing related video
list in YouTube to help nodes prefetch certain videos in order
to reduce the waiting time before playback. Cheng et al. [33]
provided an extensive analysis of the YouTube’s video social
structure to study video correlation. They showed that the
videos in YouTube exhibit clear small-world characteristics.
P2P VoD overlays can be broadly classified into two cate-
gories [34]: tree-based [5] and mesh-based [6—14]. As Cheng
and Liu [15] pointed out, these protocols are only suitable
for relatively long videos, typically of 1-2 hours (for movies)
or even longer (for continuous TV broadcast). Also, a video
is served by a separate overlay, with little interaction among
overlays. YouTube-like short videos need new solutions for
P2P video sharing.

SocialTube is different from previous works in that it
is the first that uses the channel-subscription relationship
connected user social network in YouTube for efficient P2P
video sharing. Based on the structural features of YouTube
that enable users to view videos based on either videos or
channels within each category, SocialTube builds an interest-
based per-community hierarchical structure (in contrast to per-
video structure), which leads to low maintenance overhead and
high QoS in P2P video sharing.

III. TRACE ANALYSIS

It is obvious to see the properties of the YouTube social
network below based on normal user behaviors on YouTube.
The subscribed users of a channel tend to watch the videos in
the channel. The video popularity varies greatly. Also, each
channel focuses on a certain number of categories and users
subscribe to channels within their interests. These properties
of user behavior and interests are normally true and conform
user daily life behavior. We are still interested in studying
and verifying these properties through analyzing a sample of

Fig. 4: # of subscribers to
different channels.

Fig. 5: Channel views vs.
subscriptions.

YouTube data.

Previous research has shown that sampling a graph by
ending a breadth-first search before its completion tends
to overestimate node degree and underestimate the level of
symmetry between nodes, but other metrics remain true to
the entire graph [32]. Therefore, we crawled a sample of the
graph using a breadth-first search. The process of crawling
YouTube for user subscriptions and video upload data was
completed as follows. A random user was added to a queue
of users to crawl; information on all of the videos the user has
uploaded was collected, including the video id, the total views
of the video, the upload date, and the video length. The user’s
subscriptions were collected using the API and added to the
queue; then, the user was deleted from the queue. This process
continued until the queue was empty. All the information was
collected using the YouTube Data APIL In total, 2,301 users
and 261,110 videos with upload dates ranging from 18 Jan.
2006 - 17 Sept. 2010 were crawled.

A. Scalability

Does a VoD system face a problem of scalability? Figure
2 shows the number of videos added over time in YouTube,
taken from a single crawl of YouTube by Cheng et al. [15].
The figure shows an obvious increase in the number of
videos posted over a period of two years. If the the growth
rate continues to increase, the amount of bandwidth required
merely for uploading videos could make operating such a site
unprofitable. Further, with such an increasing number of video
uploads, the QoS for watching videos will decline as fewer
resources will be dedicated to serving videos.

O1: As usage of VoD service increases, VoD providers will
face rapidly increasing demand for server bandwidth, reducing
QoS for users.

B. Channel Popularity

First, we examine the popularity of channels in YouTube.
Figure 3 shows the cumulative distribution function (CDF)
of average video view frequency per channel, where video
view frequency is the number of total views divided by the
number of days the video has been online. Around 20% of
channels receive less than 390 views per days; 80% receive
less than 233,285 views per day; and the top 10% receive
more than 783,240 views per day. This result implies that

1 1 2.5
" " — High
0.8 00.8 £2.0, - Medium
c o 9
c % >15 © + Low
£06 0.6 st — Zipf-high
e S]
504 04 g1.0
& o Eos
3
802 0.2 30.
0 5000 10000 15000 20000 '
0. kY
10 100 102 10° 10° 10° 10°10* 10% 10° 10* 10° 10° 107 10° 10° 40000 100000 160000 0 5 10 15 20 25

Number of videos Views

Fig. 6: # of videos per channel. Fig. 7: # of views per video.

the popularity of channels varies widely, enabling users that
frequently visit the videos in the same channel to share videos
among each other can relieve the server of delivering videos
in high-popularity channels with high video view frequencies.
Thus, a channel-based P2P structure can greatly reduce the
bandwidth load of the server.

Figure 4 shows the distribution of the number of subscribers
to channels. The number of subscribers is another way to
measure the popularity of a channel. The bottom 25% of
channels have less than 10 subscribers, while the top 25% have
over 1,390 subscribers. This figure is a further evidence that
a channel-based P2P structure would be useful in a YouTube-
like application. Such a structure would enable subscribers
of the same channel to share their frequently visited videos
between each other, reducing the bandwidth load on the server
and improving the video retrieval efficiency.

Figure 5 shows the relationship between a channel’s number
of subscriptions and its total number of views. The distribution
of the points clearly indicates a strong, positive correlation
between the number of subscriptions and the total number
of views. This figure confirms that users are driven to select
videos based on their subscription. Again, this indicates the
desirability of a channel-based P2P structure to enable these
users with shared channel subscriptions to efficiently retrieve
videos without the use of a server. Figure 6 shows the number
of videos in each channel. 50% of channels have 9 or fewer
videos; however, the top 25% of channels have over 36 videos,
and the top 10% of channels have over 116 videos.

02: Building a P2P structure based on channels would
produce reduced server load and enable efficient video retrieval
for users.

C. Video Popularity

We then examine the distribution of video popularity, which
is measured as the number of views. Figure 7 shows the
distribution of views. We see that 50% of videos have 5,517
views or less and 10% of videos have more than 385,000
views. This figure shows that a large portion of videos draw
a small number of views, and about 10% of videos get a
large number of views. This viewing behavior is suitable for
implementing a P2P architecture for video sharing. In the P2P
architecture, providers for very popular videos can be readily
found, providers for moderately popular videos can also be

Number of favorites Video number

Fig. 8: # of times videos are
marked as favorites.

Fig. 9: Video popularity
variation within channels.

found from peers, and the server is needed to complement the
P2P structure in locating the providers for unpopular videos.

Figure 8 shows the number of times each video has been
marked as a favorite by users. The bottom 20% of videos
have been marked as favorites less than 5 times, 75% of
videos have been marked as favorites less than 2,115 times,
and the top 10% of videos have been marked as favorites
more than 9,865 times. Chatzopoulou et al. [35] showed that
the Pearson Correlation Coefficient between the number of
times a video has been marked as a favorite and its number of
views is more than 0.8. Similar to Figure 7, Figure 8 indicates
that a small set of videos receive most of the attention from
users, so these videos can be readily shared among peers in an
overlay without server dependence, while the sever is needed
for locating unpopular videos.

One common strategy to reduce delay between video play-
back is to enable a user to prefetch chunks of videos that the
user is likely to watch. In order to enhance this technique,
a metric is needed to select videos for prefetching in order
to increase the probability that the prefetched videos will be
watched. Figures 7 and 8 show that the popularity of videos
varies, which indicates that nodes can prefetch the highly
popular videos to reduce video startup delay and improve
QoS. Figure 9 shows the number of views on videos within
a very popular channel, a moderately popular channel, and an
unpopular channel, with popularity based on the total number
of views for the channel. We observe that the actual number
of views in the most popular channel roughly follows the Zipf
distribution. The figure verifies that not all videos in a channel
are equal with respect to popularity regardless of the popularity
of the channel; then, prefetching popular videos in a channel
would improve performance for most users in the channel.

03: A channel-based VoD system can use video view
counts as a metric to determine video prefetching, thus mini-
mizing the delay between successive video views.

D. Channel Clustering and User Interest

As YouTube organizes channels in the same interest together
under the interest category, a user that has this interest may
subscribe several channels in this category. Figure 10 shows
the top channels for different categories in YouTube as ver-
tices, with links representing shared subscribers; a threshold
value of 5 shared subscribers was used to filter out excessive

1. 1. 1
%)
%0-8 08 0.8
c =
5 506
20.6 L,D_O.6 0.
U] %)
0.4 Yo4 504
[T [T
[a)
o2 0.2 002
0 2 4 6 8 10121416 00 02 04 06 08 10 0 2 4 6 8 1012141618
Number of interests Fraction of interests in common Number of video categories
Fig. 10: A graph of channels Fig. 11: # of interests in Fig. 12: Similarity between Fig. 13: Number of fa-
connected by shared users. each channel. user interests and subscribed vorite video interests in

edges in the graph. In the figure, groups of channels form
distinct clusters, indicating a clear tendency for users to
subscribe to channels based on interests.

04: Channels have strong clustering features that can be
exploited to efficiently find providers across channels in P2P
short video sharing.

Figure 11 shows the number of video categories each
channel contains. This figure verifies that channels are gen-
erally focused on a small number of video categories. We
determined each user’s personal interests (denoted by C,) by
examining the categories of the user’s favorite videos. We use
C. to denote the categories of the videos in the channels to
which a user has subscribed. Then, the similarity of a user is

computed as % Figure 12 plots the CDF of the similarity

metric. The similarities range from [0, 1], with 25th, 50th,
and 75th percentiles of 0.21, 0.40, and 0.63, respectively. This
result confirms that users tend to subscribe to channels that
match their interests. Figure 13 shows the number of personal
interests each user has. Around 60% of users have less than
10 interests; the highest number of interests for a user is 18.
This result confirms that most users are interested in a limited
number of categories of videos.

The results show that building a higher-level overlay for
clustered channels in a category (i.e., connecting users with
the same interest) can help users to find providers for their
desired videos across channels without resorting to the server.
Also, each user only needs to maintain a limited number of
overlay links due to his/her limited number of interests.

0S5: Channels tend to focus on a small number of video
categories; users tend to subscribe to channels that match their
interests.

IV. SYSTEM DESIGN

SocialTube is designed based on the properties of the
YouTube social network presented in Section III. Like Net-
Tube, SocialTube requires users to maintain a cache of all
videos watched during the period of time between logging
in and logging off (termed a session) to increase video
availability; since videos are generally small, this does not
unduly burden users. The design of SocialTube is summarized
as follows, and the details of which are presented in the
subsequent sections.

channels’ interests. each channel.

o Hierarchical per-community structure. In this struc-
ture, same-channel subscribers form an overlay in the
lower level and same-interest nodes (channels) form a
cluster in the higher level. Thus, subscribers to the same
channel and nodes sharing the same interest can share
videos between each other.

o Channel-facilitated prefetching. Since the videos in one
channel have different popularity, nodes prefetch popular
videos in their channels in order to minimize startup delay
and improve video availability.

A. Hierarchical Per-Community Structure

We consider three goals in designing the P2P structure.

e Server load minimization. Requests made to the central
server should be minimized; distributing requests to nodes
reduces the overhead and bandwidth cost on the server,
and video downloading delays due to server overload.

o System maintenance overhead. Each node should only
need to maintain a limited number of connections to
peers; otherwise it must afford a high maintenance cost
caused by churn.

o Peer video provider availability. As the videos are
searched in a distributed manner, quickly finding peer
video providers is important to reducing startup delay
and improving QoS.

Figure 14 shows an example of the SocialTube network
structure. In the lower level, nodes in each channel (i.e., ¢;-
cs) are formed into an overlay represented by a small circle.
The channels in the same interest category (i.e., Category
1, 2) are formed into a higher-level cluster, where nodes in
each channel are connected across the channels. Because a
subscriber always watches videos in its subscribed channel,
clustering the subscribers in the same channel helps improve
peer video provider availability and minimize server load. As
users also tend to view videos in their interests, they may want
to watch videos in the channels they did not subscribe. The
higher-level overlay clustering all users of channels within one
interest category helps users to find peer video providers.

Since the subscribers of a channel tend to watch the videos
in the channel, if they are randomly connected, a node can
still find a video owner within a limited number of hops ac-
cording to the video social network small world property (i.e.,

Fig. 14: A diagram of the network structure of SocialTube.

videos have strong correlations with each other) [33]. Thus,
SocialTube limits the number of a node’s links to a threshold
Nj in its lower-level channel overlay, and limits the number
of a node’s links to a threshold Ny, in its higher-level channel
cluster. We call a node’s links in its lower-level channel overlay
inner-links and a node’s links in its higher-level channel cluster
inter-links; the neighbors connected by the links are called
inner-neighbors and inter-neighbors, accordingly.

We explain how a node joins in the system and searches
videos in SocialTube below. As shown in Figure 14, when
node ug initially requests a video in a channel, it contacts
the server. If the node has subscribed to the channel and
there are node(s) existing in the channel overlay, the server
randomly chooses a node in the channel overlay, say ug, for
ug to connect to. The server also randomly chooses a node
in each channel in this channel’s higher-level overlay, say u4
and w13, for ug to connect to. If there is no node existing in
the channel overlay or ug has not subscribed to the channel,
the server randomly chooses a node in each channel overlay
(including a node with the video) in the higher-level overlay of
the video’s interest and recommends them to ug. In the former
case, ug also becomes the first node in the channel overlay.
Thus, for non-channel-subscribers, SocialTube still helps them
to locate peer video providers by using the high-level interest-
based overlay. They can easily find videos from their common-
interest peers.

After joining in the system, ug starts searching its desired
video. It first searches its channel overlay and then searches
its higher-level interest overlay within TTL hops. Specifically,
it first asks its inner neighbor(s), ug, along with a TTL. If
ug does not have the video, it forwards the request to its
inner-neighbors (u7) in the channel overlay, and each neighbor
decrements TTL and forwards the request to its neighbors if
it does not have the video and TTL# 0. If a request receiver
has the video (say ug), it provides the video directly to ug.
Then, ug connects to the video provider and ignores other
responses. In this way, newly joined node ug builds its links to
other nodes in the lower-level channel overlay until the number
reaches N;. Thus, ug connects to nodes that tend to watch the
same videos as ug later on. If ug cannot find its desired video
within TTL along inner-links in its channel overlay, it sends

its request to its inter-neighbors (uy4 and wi3). Within each
channel overlay, the request is forwarded along TTL hops. If
a video provider is found, say us, it provides the video to
ug, and ug connects to us if the number of its inter-links is
less than Nj,. If a video cannot be found in the inter-channel
querying, ug resorts to the server for the video. The TTL is
used to limit the forwarding hops of messages and hence the
video searching overhead. Later on, node ug searches videos
using the same method as presented previously. In order to
ensure that the server is able to accurately assist new users
in joining the system, users should report their changes of
subscribed channels. However, the server is required to keep
track of much less information in SocialTube than in NetTube,
where users need to report the changes of videos they watch.

In figure 14, user ug is currently watching videos in channel
co, SO it maintains links to users ug and ug in cy. It also
maintains links to users u4 and us in channel ¢q, and uq3 in
channel c3. ug maintains no links to users outside of his/her
channel or category. When ug wants to watch vy, it sends a
query to ug and ug. If neither peer has the video, they forward
the request to their neighbors in cy. If the video cannot be
located in the channel overlay after TTL, ug sends a query
to uyg, us and wyg in ¢; and c3, who forward the query to
their channel peers until TTL= 0. If the video has still not
been located, ug sends the request to the server. This process
is detailed in Algorithm 1.

Algorithm 1: Pseudo-code of the SocialTube process
executed by node u;.

//Cy: channel peers of w;; K;: category peers of u;
Begin: u; selects v; to watch
if C; is empty {
u; requests peers from the server
if no peers exist in the channel overlay of v;
server sends video v; to u;
else {
C'; < list of peers in channel
K; < list of peers in category
REQUEST(C;,K5)

}
else REQUEST(C;,K;)

REQUEST(C;,K;) {
u; sends query with TTL to C;
if query is successful
return
else u; sends query with TTL to K;
if query is successful
return
else
u; requests video from server
}

A node leaves all of its overlays in SocialTube when it
logs off the system (i.e. close the YouTube webpages). The
next time when the node logs in, it first tries to connect to
its previous neighbors. If none of the inner-neighbors exist in

the lower-level channel overlay or none of the inter-neighbors
exist in the higher-level overlay, the node contacts the server
to build links as if it is first joining in the SocialTube system.
SocialTube adopts the methods used in P2P networks for
structure maintenance. That is, each node periodically probes
its neighbors. If a node finds that its neighbors have left the
system abruptly or have failed, it removes its links to these
neighbors and adds more neighbors as described previously.
For graceful departures, before a node leaves the system, it
notifies all of its neighbors, which will update the links to the
departing node.

B. Channel-Facilitated Prefetching

The average bitrate of a YouTube video is 330 kbps [33];
most Internet users have typical download bandwidths of at
least twice that bitrate, and are able to fully download a video
before finishing playback [15]. During the time in which a user
is watching a fully downloaded video, the first chunk from
his/her possible future requested videos can be downloaded in
order to reduce the playback delay of future videos. This tech-
nique has been widely used in previous VoD systems [15, 6].
The authors of PA-VoD discussed the system states, in which
prefetching can benefit system performance [6]. In NetTube, a
node randomly chooses the videos its neighbors have watched
to prefetch. This is based on the rationale that a user tends to
watch related videos. However, there are many related videos
for a given video; thus, these randomly prefetched videos do
not have a high probability of being watched later on. A
challenge here is to use limited cache space to store the videos
that are most likely to be watched. To handle this challenge,
SocialTube implements a simple, channel-based prefetching
decision algorithm. We know that videos within a channel
have greatly varying popularities and users tend to select a
next video in the same channel. In order to exploit these facts,
in SocialTube, a node prefetches the first chunks of highly
popular videos in its subscribed channels, which enhances the
probability that a prefetched video is watched by the node.
YouTube website displays the most viewed videos and most
subscribed channels, which means that the centralized server
in YouTube keeps track of the visit rate of each video and
each channel. Thus, the server provides the popularities of
videos in each channel to its subscribers periodically. Then,
the node prefetches the first chunks of M videos at the top of
the ordered list based on video popularity. The value of M is
determined by each node’s cache size.

In SocialTube’s prefetching algorithm, the accuracy of the
prefetch decision is correlated to the relative view count of
the prefetched video. Assume the probability that a video is
watched next is pp = Z—f, where v;, is the number of views
on a video of rank %k and v; is the total number of views
in a channel. From Figure 9, we know that views tend to
follow Zipf’s distribution with the characteristic exponent s =

1. Then, v, = (#kl/)vt, where N is the number of videos

in the channel .':1nd7})=,y€1 is simply the standard Zipf’s distribution
function. For a channel with 25 videos, the probability that
a single prefetch is accurate (py) equals 26.2%. Since users

60 -
—SocialTube .

0 50

c 4 L= NetTube e

B 30 -

- .

o2 O

o] i

E10 —=

5 3

Z o
0 2 46 8 10 1

Number of videos watched

Fig. 15: Overlay maintenance overhead.

are often able to prefetch 3-4 videos during a single video
playback, the prefetch accuracy rises to 54.6%.

C. Comparing SocialTube with NetTube

NetTube [15] builds users watching the same video into
an overlay (i.e., per-video overlay). While this P2P structure
increases video availability in peers, it comes at the cost
of high maintenance overhead. In addition, two nodes may
be connected by redundant links; each link corresponds to
one video overlay, generating unnecessary maintenance cost.
Also, the probability that two same-video viewers will watch
the same video later on is not necessarily high. Rather than
building per-video overlays, SocialTube builds per-community
overlays that form subscribers of the same channel into a
overlay and groups common-interest channels into a higher-
level cluster. In SocialTube, a node maintains a limited number
of connections to other nodes in the same channel, and to
other nodes in different channels that share the same interest
with the channel. Unlike NetTube, SocialTube builds one link
between two nodes that always watch the same multiple videos
(in a channel), thus avoiding redundant links. As two nodes
in the same channel are more likely to watch the same videos
and common-interest nodes tend to watch the same videos,
SocialTube improves the availability of peer video providers
of NetTube. Thus, SocialTube significantly reduces the overlay
maintenance overhead and improves QoS of NetTube.

We then provide a brief analysis of the maintenance over-
head of SocialTube compared with NetTube, which is mea-
sured as the number of connections a user must maintain.
Let u,. be the number of users in a channel and u; be the
total number of users within all channels in an interest. In the
unstructured P2P structure with random links between nodes,
to achieve an optimal tradeoff between the number of lookup
hops and the number of links a node maintains, we can set
N; = log(u.) and Nj, = log(u;). Then, the maintenance
overhead is log(u.) + log(u;). For comparison, we consider
the overhead of NetTube. Let m be the number of videos
a user watches from different overlays in a session, and u
be the number of users watching a video. Assume a node
connects to log(u) in an overlay for a video. Then, the number
of connections a user must maintain in NetTube is mlog(u).

Figure 15 compares the estimated overhead for different
values of m, with values for u, u., and wu; arbitrarily cho-
sen to be 50, 500, and 250,000, respectively. Clearly, for
small values of m, NetTube has very low overhead. As m

increases, however, the overhead of NetTube increases linearly
while the overhead of SocialTube stays constant. The figure
demonstrates the high scalability and low overlay maintenance
overhead of SocialTube.

In conclusion, the design of SocialTube achieves the afore-
mentioned three goals. 1) Users have a high probability of
finding next videos in the channel overlay or in the higher-level
interest-based overlay without going to the server, minimizing
server load and increasing peer video provider availability, and
2) overhead is reduced since each user only maintains a limited
number of neighbor links in per-community overlays (in
contrast to the per-video overlays in NetTube that accumulates
excessive links as users watch more videos).

V. PERFORMANCE EVALUATION

To measure the performance of SocialTube in comparison
with PA-VoD [6] and NetTube [15], we conducted trace-
driven experiments using PeerSim [36], a well-documented
event-driven simulator, and PlanetLab [37], a real-world
testbed for distributed networks. The simulation can test a
large-scale network while PlanetLab can provide a real-world
testing environment (e.g., real video transmission delay).

Simulation settings were derived from our trace of YouTube
channels as presented in Section III. We used the video length
distribution, video popularity distribution, and video category
distribution directly in our simulations. NetTube [15] assumes
that a node always views the videos in its interests in experi-
ments, which is not true. A user may view videos not in her/his
interests sometimes in real life. To more accurately simulate
realistic viewing behavior, users perform the following video
selection mechanism. When a node chooses a video to view,
it has a 75% chance of selecting a video in the same channel,
a 15% chance of selecting a video in the same category, and a
10% chance of selecting a video in a different category. Other
percent values keeping the same magnitude relationship will
not change the relative performance differences between the
three methods. Each node is assumed to watch ten videos in
one session. One experiment consists of 25 sessions for each
user. Each node leaves the system after each session and joins
in the system for the next session; the off time periods for a
user’s sessions are determined using a Poisson distribution [27]
with mean of 50s. Thus, all experimental results presented
below are for the environment with churn. Nodes store their
cached videos for their next session. The number of inner-links
and inter-links per node were set to 5 and 10, respectively.
The TTL was set to 2. Nodes probe their neighbors every 10
minutes for overlay maintenance. Other default experimental
settings are shown in Table L.

In PlanetLab experiment, we use 250 globally distributed
nodes. As this number of users is much smaller than in the sim-
ulation, experimental settings were scaled down accordingly.
The number of categories was set to 6, with each category
having 10 channels and each channel having 40 videos, for a
total of 2,400 videos. The number of inner-links and inter-links
per node were set to 5 and 10, respectively. One experiment

TABLE I: Experiment default parameters.

Parameter Default value
Simulation duration 3 days

Number of nodes 10,000

Number of videos 10,121

Number of channels 545

Video size YouTube video size distr.
Number of chunks per video 20

Video bitrate 320 kbps

Server bandwidth 500 mbps

consists of 5 sessions for each user, and the off time periods for
a user’s sessions are determined using the Poisson distribution
with mean of 20 minutes. The node at 130.127.39.152 was
chosen to be the server. All other settings are the same as
those in the simulation. In our experiments, we are interested
in the following metrics:

o Startup delay. This is the time period a user must wait
after (s)he selects a video before the video playback
starts, including the time it takes to query peers or the
Server.

o Normalized peer bandwidth. This is the percent of video
chunks provided by peers out of the total video chunks
provided. It measures the effectiveness of a P2P video
sharing system at reducing server bandwidth.

e Maintenance overhead. This is the number of links a node
must maintain in the overlays. This metric measures the
maintenance overhead of the P2P overlays.

The metric that the prefetching strategy affects is only
startup delay, which was measured with and without the
prefetching strategy in our experiments. Prefetched chunks of
short videos are very small in size (about 150 KB), so the
prefetching cost can be negligible.

A. Server Bandwidth Reduction

First, we examine the effect of SocialTube at reducing server
load. Figure 16(a) and Figure 16(b) show the 1%, 50", and
99" percentiles of the normalized bandwidth contribution by
peers on PeerSim and PlanetLab, respectively. We see from
Figure 16(a) that 50% of nodes in SocialTube, NetTube, and
PA-VoD receive more than 0.63, 0.53 and 0.31 normalized
peer bandwidth, respectively; 99% of nodes in SocialTube,
NetTube, and PA-VoD receive more than 0.46, 0.32 and 0.14
normalized peer bandwidth, respectively. Since users in PA-
VoD do not maintain a cache of watched videos, video avail-
ability from peers is restricted. In NetTube and SocialTube,
users keep a cache of previously watched videos to share with
others, so the likelihood that a video can be found in a peer
is much greater.

SocialTube forms same-channel users into a lower-level
overlay and further forms common-interest users into a higher-
level overlay, so users have a high probability to find chunk
providers in the overlays. NetTube clusters nodes based on
each video they watch. Though nodes watching a video are
likely to watch the same video subsequently, this probability
is not always high, so nodes have relatively lower probability
to find chunk providers in the same overlay. Note that in
Figure 16(b), the 15 percentiles peer bandwidth contribution

09
08 T
0.7
0.6
05
04 1
03
0.2
01

07
0.6
05
04
03 T
02

«

PA-VOD

Normalized peer bandwidth
Normalized peer bandwidth

PA-VOD SocialTube NetTube SocialTube NetTube

60 , 50 :

“ —SocialTube —SocialTube

..... 10

R NetTube | . g_ e NetTube
c T 4 ot cT
e ® g o
c Uy & co
o £ ¢<
=] s =0
cduw €y
=t = 0
S0 LLE 80 1 /[
2 10 - z

o & o &

0 2 4 6 8 10 0 2 4 6 8 10
Number of videos watched Number of videos watched

(a) The PeerSim simulator. (b) The PlanetLab real-world testbed.

Fig. 16: The bandwidth contribution of peers.

1000 14000

@ 12000

o
S
S

o

S

S
1=
S
S
153

8000
6000
4000

"H LN

PAVOD SocialTube SocialTube NetTubew/ NetTube
WPF wfoPF PF w/oPF

Startup dealy (ms)
=
S

Startup dealy (m

~
[=3
S

Iﬁ m
PA-VOD SocialTube SocialTube NetTube NetTube
W/PE wfoPF w/PF wfoPF

o

(a) The PeerSim simulator. (b) The PlanetLab real-world testbed.

Fig. 17: Startup delay and effectiveness of prefetching.

for NetTube, and PA-VoD have reached 0, partly due to the
unstable network environment on PlanetLab (e.g., connection
failure and network congestion). However, the 15! percentiles
peer bandwidth contribution of SocialTube is around 0.07. The
results in both figures demonstrate the success of SocialTube
in reducing the dependency on the server for video retrieval.
Figure 16(b) confirms Figure 16(a) that SocialTube outper-
forms NetTube and PA-VoD in reducing server bandwidth.

B. Startup Delay

We then examine the effect of SocialTube at improving
QoS for users. Figure 17(a) and Figure 17(b) show the
startup delay of NetTube and SocialTube with and without
prefetching, and of PA-VoD on PeerSim and PlanetLab. For
NetTube, users prefetch the first chunks of 3 videos randomly
from their friends’ watched videos. For SocialTube, users
prefetch the first chunks of 3 top popular videos within the
channel it currently is watching. PA-VoD does not implement
a prefetching scheme. We see that PA-VoD generates a long
startup delay. Also, SocialTube generates shorter startup delay
than NetTube with and without their own prefetching strategy,
respectively. PA-VoD has the worst performance because it
frequently fails to find peers to serve videos and must instead
rely on the server; when this begins to overload the server,
videos are delayed. In NetTube, queries travel two hops, and
if a video is not found, the server is contacted. In SocialTube,
a query for a video is forwarded with TTL=2 in the channel
overlay; if the video is not found, the query is then forwarded
with TTL=2 in the higher-level category overlay. Though a

(a) The PeerSim simulator. (b) The PlanetLab real-world testbed.

Fig. 18: Overlay maintenance overhead.

query is forwarded for more hops in the P2P overlay before
being sent to the server, SocialTube reduces more requests sent
to the server, avoiding overloading the server. As a result, it
produces shorter startup delay than NetTube.

The figures also shows that the individual prefetching
strategies of SocialTube and NetTube help reduce startup
delay. SocialTube’s prefetching strategy reduces greater startup
delays than NetTube’s. This is because SocialTube’s channel-
based prefetching targets the videos that users are most
likely to watch next; NetTube’s strategy prefetches randomly
from neighbors’ watched videos. The experimental results
confirm the effectiveness of SocialTube’s channel-facilitated
popularity-based prefetching strategy.

C. Overlay Maintenance Overhead

Figure 18(a) and Figure 18(b)show the average maintenance
overhead at different intervals during a video-watching ses-
sion. Figure 18(a) shows that SocialTube users maintain 15
links at all times through their sessions after the initial phase;
NetTube users, on the other hand, start out with few links
but rapidly accumulate more as their sessions continue. At
the end of the session, the average NetTube user has 35 more
links than the average SocialTube user. This result confirms the
validity of Figure 15; namely, users in NetTube initially have
a small overhead, but it increases rapidly as the user session
continues. From these results, we see that NetTube fails to
constrain the overhead of maintaining the P2P system, while
SocialTube reduces server bandwidth with much less overhead
incurred to the users. Experimental results on PlanetLab in
Figure 18(b) confirms that SocialTube demands significantly
lower maintenance overhead than NetTube.

VI. CONCLUSIONS

With the incredible growth in demand for short video
sharing online, challenges of scalability and cost with the
client-server architecture have prompted the design of P2P
architectures to provide high quality VoD service to users. This
work is the first that leverages the YouTube social network to
develop an enhanced P2P video sharing system. In YouTube
social network, users subscribed to a channel tend to view
the videos in the channel; users with similar interests tend to
view similar set of videos and each channel involves a few

interests; and the popularity of videos in a channel varies
greatly. We confirmed these properties through analyzing a
sample of YouTube data. Based on these properties, we
designed SocialTube, an interest-based per-community P2P
system for short video sharing. SocialTube has a two-level
overlay structure: subscribed users of the same channel form
into one lower-level cluster, and users watching channels in
the same interest form into another higher-level cluster. This
enables users to efficiently find videos within their channel
and interest clusters without resorting to the server, and
reduces overlay maintenance costs over previous per-video
overlays. SocialTube also has a channel-facilitated popularity-
based prefetching strategy to minimize video startup delay.
Trace-driven simulations and the experiments on the PlanetLab
real-world testbed have proven the superior performance of
SocialTube over previous systems. In our future work, we will
study the impact of the different number of links per node on
the video sharing performance and explore the value that can
achieve an optimal tradeoff between the system maintenance
overhead and availability of peer video providers.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
I1S-1354123, CNS-1254006, CNS-1249603, CNS-1049947,
CNS-0917056 and CNS-1025652, Microsoft Research Faculty
Fellowship 8300751.

REFERENCES

YouTube Press Timeline.
http://www.youtube.com/t/press_timeline.

YouTube Press Statistics.
http://www.youtube.com/t/press_statistics.

Your tube, whose dime?
http://www.forbes.com/2006/04/27/video-youtube-
myspace_cx_df_0428video.html.

YouTube costs Google $2 million per day.
http://www.inquisitr.com/24740/youtube-costs-google-2-
million-per-day/.

V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread:
Heterogeneous Unstructured Tree-Based Peer-To-Peer Multi-
cast. In Proc. of ICNP, 2006.

C. Huang, J. Li, and K. W. Ross. Can Internet Video-On-
Demand Be Profitable? In Proc. of SIGCOMM, 2007.

J. Wang, C. Huang, and J. Li. On ISP-friendly Rate Allocation
For Peer-Assisted VoD. In Proc. of ACM Multimedia, 2008.
D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: an Efficient Peer-
To-Peer Scheme For Media Streaming. In Proc. of INFOCOM,
2003.

M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-Bandwidth Multicast in
Cooperative Environments. In Proc. of SOSP, 2003.

C. Ho, S. Lee, and J. Yu. Cluster-based Replication For P2P-
Based Video-on-Demand Service. In Proc. of ICEIE, 2010.

B. Mathieu, P. Paris, G. Guelvouit, and S. Rouibia. A Secure
and Legal Network-Aware P2P VoD System. In Proc. of ICIW,
2010.

K. Wang and C. Lin. Insight into the P2P-VoD System:
Performance Modeling and Analysis. In Proc. of ICCCN, 2009.

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

10

(13]

[14]
(15]

[16]
(17]
[18]
[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

PRIME: Peer-to-Peer Receiver-
In Proc. of the INFOCOM,

N. Magharei and R. Rejaie.
drlven MEsh-Based Streaming.
2007.

C. Wu, B. Li, and S. Zhao. Multi-Channel Live P2P Streaming:
Refocusing on Servers. In Proc. of the INFOCOM, 2008.

X. Cheng and J. Liu. NetTube: Exploring Social Networks for
Peer-to-Peer Short Video Sharing. In Proc. of INFOCOM, 2009.
PPLive. http://www.pplive.com.

PPStream. http://www.ppstream.com.

UUSee. http://www.uusee.com.

Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang.
Challenges, Design and Analysis of a Large-scale P2P VoD
System. In Proc. SIGCOMM, 2008.

X. Zhang, J. Liu, B. Li, and T. Yum. CoolStreaming/DONet:
A Data-Driven Overlay Network For Peer-To-Peer Live Media
Streaming. In Proc. of INFOCOM, 2005.

X. Liao, H. Jin, Y. Liu, L. Ni, and D. Deng. AnySee: Peer-to-
Peer Live Streaming. In Proc. of INFOCOM, 2006.

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating Trees From Overlay Multicast.
In Proc. of IPTPS, 2005.

T. Locher, S. Schmid, and R. Wattenhofer. eQuus: A Provably
Robust And Locality-Aware Peer-To-Peer System. In Proc. of
P2P, 2006.

J. Venkataraman and P. Francis. Chunkyspread: Multi-Tree
Unstructured Peer-To-Peer Multicast. In Proc. of IPTPS, 2006.
S. Annapureddy, C. Gkantsidis, P.R. Rodriguez, and L. Mas-
soulie. Providing Video-On-Demand Using Peer-To-Peer Net-
works. In Proc. of IPTV Workshop in WWW, 2006.

B. Cheng, L. Stein, H. Jin, X. Liao, and Z. Zhang. GridCast:
Improving Peer Sharing for P2P VoD. ACM TMCCA, 2008.
H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understand-
ing User Behavior in Large-scale Video-on-Demand Systems.
SIGOPS Oper. Syst. Rev., 2006.

B. Liu, Y. Cui, B. Chang, B. Gotow, and Y. Xue. BitTube:
Case Study of a Web-Based Peer-Assisted Video-On-Demand
System. In Proc. of ISM, pages 242-249, 2009.

B. Li, M. Ma, Z. Jin, and D. Zhao. Investigation of a Large-
scale P2P VoD Overlay Network by Measurements. Peer-to-
Peer Networking and Applications, 5(4):398-411, 2012.

Y. Zhou, T. Fu, and D. Chiu. A Unifying Model and Analysis of
P2P VoD Replication and Scheduling. In Proc. of INFOCOM,
pages 1530-1538, 2012.

M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon.
I Tube, You Tube, Everybody Tubes: Analyzing the Worlds
Largest User Generated Content Video System. In Proc. of
IMC, 2007.

A. Mislove, M. Marcon, K. Gummadi, P. Dreschel, and B. Bhat-
tacharjee. Measurement and Analysis of Online Social Net-
works. In Proc. of IMC, 2007.

X. Cheng, C. Dale, and J. Liu. Statistics and Social Network
of Youtube Videos. In Proc. of IWQoS, pages 229-238, 2008.
J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities and
Challenges of Peer-to-Peer Internet Video Broadcast. In Proc.
of the IEEE, 2008.

G. Chatzopoulou, C. Sheng, and M. Faloutsos. A First Step
Towards Understanding Popularity in YouTube. In Proc. of
INFOCOM, 2010.

Peersim: A peer-to-peer simulator.
http://peersim.sourceforge.net/.

Planet lab. http://www.planet-lab.org/.

