

New Bandwidth Sharing and Pricing Policies to Achieve a Win-Win Situation for Cloud Provider and Tenants

Haiying Shen and **Zhuozhao Li**

Dept. of Electrical and Computer Engineering Clemson University, SC, USA

Outline

- Motivation and Introduction
- Our Proposed Price Model
 - Payment of tenants
 - Network bandwidth sharing policies
 - Analysis of our price model
- Performance Evaluation
- Conclusions

Motivation

- Cloud Computing
 - Integrates computation storage and network resources in a virtualized environment
 - CPU and memory storage are guaranteed and charged in current IaaS
 - Bandwidth is an essential resource in Clouds, but not guaranteed in current cloud computing platforms

Problems

- Unpredictable network performance
- Require us to develop explicitly allocation policies of network resources in cloud computing

Introduction

- Three Requirements (FairCloud [Sigcomm'12])
- Minimum Guarantee
 - Essential for predictable network performance
- High Utilization
 - Maximizing network utilization in the presence of unsatisfied demands
- Network Proportionality
 - Allocated network resources are proportional to tenants' payments
- Tradeoffs
 - Tradeoff between these requirements
 - Hard to meet all the three requirements simultaneously

Introduction(cont.)

- Utility-the difference between the total cost and total revenue
- Utility of cloud provider

$$U_c = \sum_i p_i N_{v_i} - bB^a - \sum_{t_i} F_c(H_{t_i}) - cK$$

• Utility of tenant *t_i*

 $U_{t_i} = g_{t_i} B_{t_i}^a - \sum_i p_i N_{v_i} - F_{t_i}(H_{t_i})$

where g_{t_i} is the earned utility of each allocated bandwidth unit

 N_{v_i} Number of sold VMs, p_i is the price of VM i

 B^a The allocated bandwidth to all tenants, b unit bandwidth price is charged by tier-1 ISPs

 M_{v_i} The min-guarantee bandwidth for VM v_i

 H_{t_i} The unsatisfied bandwidth for tenant t_i

 $F_c(H_{t_i})$ Utility loss of the cloud provider due to reputation degradation and potential revenue loss

 $F_{t_i}(H_{t_i})$ Utility loss of tenant t_i due to unsatisfied bandwidth from cloud provider

K cK is the reservation cost of reserving bandwidth *K*

New Bandwidth Price Model

- Develop a policy that can flexibly meet the three requirements and achieve the ultimate goal
- Ultimate Goal
 - To increase the benefits of the cloud provider and tenants, that is, to increase the utility of both cloud provider and tenants
- Transforms the competitive environment to a cooperative environment
 - Competitive environment: tenants compete for bandwidth allocation
 - Cooperative environment: tenants cooperate to share bandwidth
- Notations
 - D_l total bandwidth demand from VMs on link l
 - C_l bandwidth capacity of link l
 - $v_j \text{ VM } j$

Congested and Uncongested Links

- Congested links
 - Defined only when $D_l > C_l$ rather than $D_l \ge C_l$
 - Because when $D_l = C_l$, the link can exactly satisfy each VM's demand
 - When $D_l = C_l$, the link is fully utilized, which satisfies the expectation of the cloud provider
 - $D_l = C_l$, ideal situation for both cloud provider and tenants
- Obviously, we expect to achieve $D_l = C_l$ on the link when using our price model.
- Uncongested links
 - $D_l < C_l$
 - $D_l = C_l$

Payment of Tenants

- A tenant's payment consists of three parts of bandwidth
 - M_{t_i} the sum of minimum bandwidth guarantee of tenant t_i 's VMs
 - $B_{t_i}^c$ consumed bandwidth on congested links of tenant t_i
 - $B_{t_i}^u$ consumed bandwidth on uncongested links of tenant t_i
 - P_{t_i} the total payment of tenant t_i
- $P_{t_i} = \alpha M_{t_i} + \beta B_{t_i}^c + \gamma B_{t_i}^u$
 - α , β , γ is the unit price of minimum guaranteed bandwidth, congested bandwidth and uncongested bandwidth, respectively
- We specify $\alpha > \beta > \gamma$

Relationship between α , β , and γ

- α> β, γ
 - Reserved bandwidth is more valuable than non-reserved bandwidth
 - Each tenant would try to buy more minimum bandwidth
 - More reserved but unused and wasteful bandwidth
 - Reduce cloud provider's profit
 - Poor network performance because of the competition for minimum bandwidth between tenants
 - Reserve no more bandwidth than tenants actually need
- β>γ
 - Tenants are incentivized to use uncongested links
 - Tenants are not encouraged to use congested links
 - Ideal situation $D_l = C_l$ (Network is fully utilized and bandwidth demands are satisfied) is defined as uncongested link
 - Specifically, $\beta = \gamma \frac{D_l}{C_l}$, the more congested, the more payment

Network Bandwidth Sharing Policy

- Consider both min-guarantee and proportionality
- When $D_l \leq C_l$, the link is uncongested
 - Each VM achieves allocation exactly equal to what they request
- When $D_l > C_l$, the link is congested
 - Each VM first receives its min-guarantee
 - Receives its share on the residual bandwidth based on the weight of VM (proportional allocation policy)

Proportional Allocation Policy

- Network proportionality, congestion proportionality, and link proportionality(FairCloud[Sigcomm'12])
- Weights of VMs are determined by the min-guarantees of VMs
- E.g. link proportionality
 - Assume two VMs communicating with each other
 - The weight of this pair of VMs on one link would be:

$$W_{v_{i},v_{j}} = M_{v_{i}} \frac{M_{v_{j}}}{\sum M_{v_{i,k}}} + M_{v_{j}} \frac{M_{v_{i}}}{\sum M_{j,k}}$$

where $\sum M_{v_{i,k}}$ is the sum of the min-guarantees of all VMs that v_i communicates with through this link

Analysis of Our Price Model

Utility of the cloud provider

$$U_{c} = \sum_{i} p_{i} N_{v_{i}} - bB^{a} - \sum_{t_{i}} F_{c}(H_{t_{i}}) - cK$$
$$= \sum_{t_{i}} \{ ((\alpha - c)M_{t_{i}} + \beta B_{t_{i}}^{c} + \gamma B_{t_{i}}^{u}) - b(B_{t_{i}}^{c} + B_{t_{i}}^{u}) - F_{c}(H_{t_{i}}) \}$$

Reduce unsatisfied demand rate

- Utility of the tenants $U_{t_i} = g_{t_i} B_{t_i}^a - \sum_i p_i N_{v_i} - F_{t_i} (H_{t_i}) = g_{t_i} B_{t_i}^a - (\alpha M_{t_i} + \beta B_{t_i}^c + \gamma B_{t_i}^u) - F_{t_i} (H_{t_i})$
 - Reduce payment
 - Reduce unsatisfied demand rate
 - Receive more allocation \rightarrow higher cost

Volunteering

- $\beta B_{t_i}^c + \gamma B_{t_i}^u$
 - Encourage to use uncongested links
 - $\beta \propto \frac{D_l}{C_l} \rightarrow \text{reduce the total demand on the links} \rightarrow \text{encourage}$ to use less congested links
 - Congested link is changed to uncongested link \rightarrow the unit price β is changed to $\gamma \rightarrow$ volunteer to reduce VMs' unimportant demands to make link uncongested

Performance Evaluation

- Simulation and trace-driven experiments
 - A tree topology with 16 servers and two tenants A and B
 - Each server has one VM from each tenant
 - Each server connects to four switches

-
$$A_i \leftrightarrow A_{i+8}, i = 1, 2, ..., 8$$
 and $B_i \leftrightarrow B_j, i \neq j$

$$- \alpha = 1, \gamma = 0.3, \beta = \frac{D_l}{C_l} \gamma$$

Random min-guarantee and bandwidth request for each VM

Comparing Methods

min-w/o	Proportional allocation policy (PS-P, FairCloud [Sigcomm'12])
min-P-w/o	First min-guarantee and proportionality allocation policy (i.e., our allocation policy) without using the least congested links price model.
min-P-w/	First min-guarantee and proportionality allocation policy (i.e., our allocation policy) with using the least congested links price model.
min-P-w/V	min-P-w/ in which tenants further are incentivized to volunteer to reduce unimportant demands.

Simulation

Trace-driven experiment

Conclusion: min-P-w/V<min-P-w/<min-P-w/o< min-w/o Conclusion: min-P-w/<min-w/o

Conclusions

- New Bandwidth Pricing Model
 - Incentivizes tenants to use uncongested links and constrain congestion
 - Encourages tenants to increase their utility
 - Increases network utilization and reduces unfulfilled bandwidth demands

Future Work

Consider rewarding tenants for reducing demand to maintain the uncongested link states

Thank you! Questions & Comments?

Zhuozhao Li

zhuozhl@clemson.edu

Ph.D. Candidate

Pervasive Communication Laboratory

Clemson University