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Abstract—In this paper, we propose a time-efficient and exact
algorithm for the problem of discovering the densest subgraph
in big data. Current algorithms for solving this problem have
three problems: i) they cannot handle the dilemma between the
efficiency of handing big data and the precision of the discovered
densest subgraph; ii) they cannot take advantage of both the
parallel computing on MapReduce and in-memory computing on
one computer; iii) their applicability to different kinds of graphs
has not been discussed. Our proposed algorithm combines the
MapReduce parallel computing with in-memory computing on
one computer together to improve the efficiency and precision
of discovering the densest subgraphs. The algorithm consists
of two computational phases: i) the graph reduction in the
MapReduce framework; ii) the densest subgraph discovery in
memory. Further, we theoretically analyze the correctness of
this algorithm and its applicability in different natural graphs.
We conduct extensive experimental evaluations in a MapReduce
framework on both massive real-world graphs and simulated
graphs to test our algorithm in comparison with other algorithms.
Experimental results show that our algorithm is more time-
efficient and precise than other algorithms.

I. INTRODUCTION

In this paper, we focus on designing a new exact dens-

est subgraph discovery algorithm for big data. The densest

subgraph in a graph is the subgraph in which the vertices

have the highest average degree. The concept of the densest

subgraph is widely applied in defining and identifying commu-

nities, which is a challenging problem in the graph analysis.

The most well-known definitions of the community include

module [1], clique [2], dense subgraph [3], and so on. When

applying these community definitions to real applications, the

module performs well when the dataset is small [1], but it is

intractable when it meets large datasets [4]; the clique is a

strict concept (each pair of the vertices must be connected),

and is rarely applied to real applications; while the densest

subgraph performs well in various applications [5–7], and

is much easier to implement when datasets become large.

Therefore, discovering the densest subgraph plays a significant

role in many applications [5–7], especially considering the

popular graph structure in this era of big data (e.g., WWW

and social networks). Exact [3, 8], approximate [9, 10] and

heuristic algorithms [6, 7, 11] have been proposed for solving

the densest subgraph problem.

However, current algorithms for solving the densest sub-

graph problem have three problems. First, they cannot handle

the dilemma between the efficiency of handing big data and the

precision of the discovered densest subgraph. Exact algorithm-

s [3, 8] can find the exact (i.e., precise) densest subgraph but

are very time-consuming. The approximate algorithms [9, 10]

improve the time-efficiency but reach a 2-approximation of

the density of the discovered densest subgraph, which is still

far from the exact result. Their discovered densest subgraph

may contain disconnected components, which leads to a low

precision result since the densest subgraph should be con-

nected in the applications. Figure 1 shows an example of

the connectivity problem of current approximate algorithms.

Figure 1(a) shows the initial graph. Then, in each step, several

vertices are deleted greedily until all the vertices are deleted

(as shown in Figure 1(d)). During this process, the algorithm

pick the subgraph with the highest density (as shown in

Figure 1(c)) as the outcome. However, the outcome consists

of two isolated components.

Second, the current algorithms cannot take advantage of

both the parallel computing on MapReduce and in-memory

computing on one computer. MapReduce is good at handling

big data due to its parallel computing capacity. Using the

MapReduce to discover the densest subgraph, few rounds (i.e.,

one time of Map and Reduce process) of MapReduce process

generates insufficiently precise result [10] while many rounds

to produce a more precise result lead to low time-efficiency

due to data transmission between computers. On the other

hand, using the in-memory computing on one computer, the

exact densest subgraph discovery algorithms [3, 8] are time

consuming to handle large datasets and lack the capability

to handle large graphs which cannot be fitted in memory,

especially considering that datasets become increasingly larger

in this era of big data. Therefore, it is a challenge to take

advantage of both MapReduce and in-memory computing

on one computer to calculate the exact connected densest

subgraph in a time-efficient manner for big data. Third, the

applicability of current algorithms to different kinds of graphs

has not been discussed. Different kinds of natural graphs have

different structure features. For example, some of the natural

graphs [12] have community structures and some others do

not have community structures [13]. Actually, the densest

subgraph discovery is only meaningful when the natural graphs

have community structure. For the graphs without community

structure, the densities of different subgraphs are close to each

other and the densest subgraph loses its representativeness.

However, current works on exact and approximate algorithm-
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Fig. 1. An example of the process of current approximate algorithms

s [3, 9, 10] fail to discuss the applicability of their algorithms

on different kinds of natural graphs.

In this paper, we design a time-efficient algorithm for

discovering the densest connected subgraph for undirected

massive graphs in a MapReduce framework. Our algorithm

has two phases. In the first phase, it carefully reduces the

dataset in a MapReduce framework without loss of any nodes

existing in the exact densest subgraph. In the second phase, the

reduced dataset can be handled in-memory in one computer by

an exact densest subgraph discovery algorithm [3]. Therefore,

we can find the exact densest subgraph for big data by taking

advantage of both MapReduce and in-memory computing on

one computer. As a result, the first and second problems

mentioned above can be resolved. Furthermore, we theoret-

ically prove the correctness of our algorithm and analyze its

applicability on different complex network models [13, 14].

Finally, we conduct extensive experimental evaluations in a

MapReduce framework on both massive real-world graphs

and simulated graphs to test our algorithm in comparison

with other algorithms. Experimental results show that our

algorithm is capable of discovering the connected densest

subgraph. Also, it is more time-efficient and precise than other

algorithms.

In summary, our paper has the following contributions:

1) This work is the first that proposes and handles the prob-

lem of discovering connected densest subgraph. Current

densest subgraph detection algorithms cannot guarantee

the connectivity of the detected densest subgraph.

2) We provide a time-efficient exact algorithm to discover

the connected densest subgraph for large datasets by

taking advantage of both MapReduce and in-memory

computing on one computer. The graph reduction phase

deletes vertices with degrees below a certain threshold

recursively. Our algorithm is more efficient since it

reduces two rounds in one recursion in the current

algorithm [10] to one round.

3) We theoretically analyze the correctness of this algorith-

m and its applicability in different natural graphs with

and without community structures.

4) We conduct extensive experiments on massive real world

and simulated natural graphs. Experimental results show

the effectiveness and efficiency of our algorithms on

natural graphs with community structures in comparison

with current algorithms.

The rest of this paper is organized as follows. Section II

describes the design of our densest subgraph discovery algo-

rithm. Section III proves the validity of the algorithm. Sec-

tion IV presents extensive experimental evaluation on massive

real-world graphs and simulated graphs. Section V presents

a concise review of the related work. Section VI summarizes

this paper with remarks on our future work.

II. TIME-EFFICIENT CONNECTED DENSEST SUBGRAPH

DISCOVERY ALGORITHM

Before we present the details of the time-efficient connected

densest subgraph discovery algorithm, let us first introduce the

concept of the density of an undirected graph. Let G = (V,E)
be an undirected graph. For a subset S ⊆ V , the induced edge

set is defined as E(S) = E ∩ S2 and the induced degree of a

node vi ∈ S is defined as degS(vi) = |{vj |(vi, vj) ∈ E(S)}|,
where | · | means the number of elements in the set.

Density of an undirected graph [10] Let G = (V,E) be an

undirected graph. Given S ⊆ V , its density ρ(S) is defined as

ρ(S) = |E(S)|
|S| .

The maximum density ρ∗(S) of the graph is

ρ∗(S) = max
S⊆V
{ρ(S)}.

Since our algorithm takes advantage of both the parallel

computing on MapReduce and in-memory computing on One

computer, we call our algorithm M-O algorithm for short in

the rest of the paper.

A. The Design of the Algorithm

The natural graphs usually follow a power-law degree dis-

tribution [13]. Intuitively, for graphs with such a feature, most

of the vertices with low degrees have very small probabilities

to be in the densest subgraph. Therefore, the basic idea of the

M-O algorithm is trying to reduce the initial size of the dataset

by deleting the vertices with very low degrees in order to fit

the reduced dataset in the memory of one computer. Then,

the algorithm applies the min-cut max-flow technique [3] to

find the densest subgraph in the remaining graph on one

computer. With only one round of the MapReduce process

and in-memory computing on one computer without the data

transfer between computers, the M-O algorithm achieves high

time-efficiency.

Based on this intuition, the M-O algorithm has

two phases: 1) the graph reduction phase, and
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Algorithm 1: The pseudocode of the M-O algorithm.

1: Given: G = (V,E);
2: S ← V , ρmax ← ρ(S);
3: while S > threshold do

Sc ← {vi ∈ S|degS(vi) ≤ ρmax};
S ← S\Sc;

if ρ(S) > ρmax then
ρmax ← ρ(S);

end

end

4: G0 = (S0, E(S0))← GS = (S,E(S));
5: Given: G = (V,E);
6: l← 0, u← n;

7: while (l − u) ≥ 1
n(n−1) do

g ← l+u
2 ;

Construct N = (VN , E(VN ));
Find min-cut (S, T );
if S = {s} then

u← g

end

if S �= {s} then

l← g;

V1 ← S − {s};
end

end

8: return subgraph of G derived by c(S, T );

2) densest subgraph discovery phase. Figure 2

illustrates the flowchart of the M-O algorithm.
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Fig. 2. Flowchart of the M-O
algorithm

Algorithm 1 presents the pseu-

docode of the M-O algorithm. For

a given G = (V,E), we first

delete all the vertices, which have

degrees equal or smaller than the

maximum density of remaining

graph during the deleting process

streamingly (blocks 1-3). After the

size of the datasets is reduced to

a suitable size (i.e., threshold in

Figure 2) that can fit into the mem-

ory of a computer for the densest

subgraph discovery phase, we ap-

ply min-cut max-flow technique to

find the densest subgraph in the re-

maining graph (blocks 5-7). Block

8 returns the results. In Section III,

we prove the correctness and ap-

plicability of the M-O algorithm.

Next, we introduce the min-cut max-flow based exact dens-

est subgraph discovering algorithm. The edges in the initial

graph are assigned with capacity 1. A min-cut of a graph is

a cut (a partition of the vertices of a graph into two disjoint

subsets) whose cut edge set (consisting of edges that cross

the two disjoint subsets) has the smallest sum of capacities.

We use c(S, T ) to denote the min-cut of a graph that splits

the graph to two partitions, S and T . The capacity of min-cut

c(S, T ) is the sum of the capacities of the cut edge set. Then,

the densest subgraph can be found by recursively constructing

a new graph based on the current graph and finding the min-cut

c(S, T ) on the new graph. In each iteration of the recursion,

we first construct a new graph by adding two vertices, s and

t. We build an edge between each vertex vi and s and assign

each edge with capacity e, where e is the number of edges in

the initial graph. We also build an edge between each vertex vi
and t and assign each edge with capacity e+2g−dvi where g is

an estimated value of the density of the densest subgraph and

dvi
is the degree of vi in the initial graph. Second, we update

the upper bound p of g by the current value of g if S = {s}
and update the lower bound l of g by the current value of g

if T = {t}. Third, we assign g with value p+l
2 and start the

next iteration. The recursion is stopped when (l−p) < 1
n(n−1)

where n is the number of vertices in the new graph. Then, the

partition S−{s} is the densest subgraph. For more details of

the min-cut max-flow technique, please refer to [3].

B. Implementation on MapReduce

In the graph reduction phase, we delete a batch of vertices

every time, which can be implemented in parallel computing

frameworks such as MapReduce [15]. MapReduce is running

based on the data structure in < key; value > pairs. Current

densest subgraph algorithm [10] takes two rounds of MapRe-

duce processes for deleting the vertices with degrees smaller

than a certain value. In the first round, it tags all the vertices

that need to be deleted. Then, in the second round, it deletes

all the tagged vertices. Our algorithm is more time-efficient

in that it can delete the vertices with degrees smaller than a

certain value in one round of MapReduce process as shown

in Algorithm 2.

Algorithm 2: MapReduce implementation of the graph

reduction

1: Mapper
Input: < v;u > and (or) < v; ũ >

emit Input;
end

Reducer
Input: < v;neighborlist >
clean the neighbor list;

calculate the degree of v;

if degree(v) > threshold then

foreach v in neighborlist do
emit < v;ui >;

end

else

foreach v in neighborlist do
emit < ui; ṽ >;

end

end

end
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The input of the first round of our MapReduce program is

the edge list, which records each edge connecting vertices u

and v in the graph twice; that is, < u; v > and < v;u >.

The Map function outputs the neighbor list of each vertex

in the form of < v;u1, u2, ..., un >, where v is an arbitrary

vertex and u1, u2, ..., un are the other ends in the neighbor

list of vertex v (block 1). The Reduce function outputs edges

in the form of < v;u1 >,< v;u2 >, ..., < v;un > if the

degree of v is larger than the threshold, which is ρmax in

Algorithm 1. Otherwise, it outputs edges in the form of <

u1; ṽ >,< u2; ṽ >, ..., < un; ṽ >. ṽ indicates that vertex v

should be deleted later on in the neighbor list of each node

ui (i = 1, 2, ..., n) (block 2).

This output of the Reduce function is the input of the next

round of our MapReduce program, which consists of the edge

list and the edges that should be deleted recorded as < u; ṽ >.

In the next round, the Map function outputs the neighbor list

of each vertex in the form of < v;u1, u2, ..., un, ũi >, where

ũi indicates that vertex ui should be deleted (block 1). In the

Reduce function, for an input of neighbor list of a vertex v,

we first delete the vertices which have been tagged as ũ in

last round in the neighbor list of vertex v and reproduce its

neighbor list in the remaining graph. Then, we output edges in

the form of < v, u1 >,< v, u2 >, ..., < v, un > if the degree

of v is larger than the threshold. Otherwise, we output edges

in the form of < u1; ṽ >,< u2; ṽ >, ..., < un; ṽ > (block 2).

This process of the round repeats until the size of the data is

suitable for in-memory computing.

Our MapReduce strategy only uses one MapReduce round

for deleting the vertices tagged in the previous round and

tagging the vertices that should be deleted in the next round

at the same time. Therefore, our algorithm only uses one

MapReduce round for one recursion of data reduction.

The M-O algorithm applies advanced MapReduce strategy

for the graph reduction phase, so that it can further improve

the time efficiency.

III. THEORETICAL ANALYSIS

In this section, we analyze the correctness and applicability

of the M-O algorithm. There are a number of requirements

that the M-O algorithm needs to meet to verify its correctness

and applicability.

1) Correctness

a) Requirement 1: The process of the graph re-

duction cannot delete any vertices in the densest

subgraph.

b) Requirement 2: The final densest subgraph dis-

covered by the M-O algorithm must be connected.

2) Applicability

a) Requirement 1: The graph size must be reduced

to a suitable size that can fit in the memory of one

computer for in-memory computing.

b) Requirement 2: The number of rounds of the

graph reduction should be as small as possible to

achieve high time-efficient.

Furthermore, the performance of the M-O algorithm is

dependent on the graph topology. Therefore, we further discuss

the applicability of the M-O algorithm to different kinds of

natural graphs.

A. Correctness of the Reduction

First, we prove that the strategy of the graph reduction of

the M-O algorithm does not delete any vertices in the densest

subgraph.

Lemma 3.1: Suppose GS = (VS , E(VS)) is the densest

subgraph of graph G, then we have degVS
(vi) ≥ ρ(VS) for

any vertex vi ∈ VS .

Proof: We prove it by contradiction. Suppose there is

at least one vertex vi ∈ VS and degVS
(vi) < ρ(VS),

then we delete vertex vi from GS , and get graph GS− =
(VS\{vi}, E(VS\vi)). The density of graph GS− is:

ρ(VS\{vi}) =
|E(VS\vi)|

|VS\{vi}|

=
ρ(VS)|VS | − degVS

(vi)

|VS | − 1

Since degVS
(vi) < ρ(VS), we have:

ρ(VS\{vi}) >
ρ(VS)(|VS | − 1)

|VS | − 1
> ρ(VS)

This contradicts with the precondition. Therefore, we have

degVS
(vi) ≥ ρ(VS) for any vertex vi ∈ VS .

Theorem 3.1: After we delete all the vertices with degrees

no more than the maximum density of the remaining graph

of G in block 3 of Algorithm 1 to obtain GS , the densest

subgraph of G is in GS .

Proof: We prove it by contradiction. Suppose there is one

densest subgraph Gx = (Vx, E(Vx)), where Gx �⊂ GS , then

there is a vertex subset I where I ⊂ Vx and I �⊂ Vs. There

is a time in the deleting process that the first vertex vi in I is

deleted from the current Vs (denoted by Vs
+). Therefore, we

have:

ρ(Vx) ≤ degVx
(vi) ≤ degVs

+(vi) < ρ(Vs
+)

This implies that ρ(Vx) < ρ(Vs
+), and at this moment, we

have Vx ⊂ Vs
+. Hence, from the definition of the densest

subgraph, we know that Gx is not a densest subgraph of

G. This contradicts with the assumption. Therefore, for any

densest subgraph Gx of G, we have Vx ⊂ VS .

Theorem 3.1 guarantees that the graph reduction in the M-O

algorithm cannot delete any vertices in the densest subgraph.

B. Connectivity of the Solution

Theorem 3.2: Suppose G1 = (V1, E(V1)) is the densest

subgraph of graph G discovered by the M-O algorithm where

G could be a connected or disconnected graph, then we can

get that G1 = (V1, E(V1)) is a connected graph.

Proof: We prove it by contradiction. Suppose G1 =
(V1, E(V1)) is a disconnected graph which consists of two

isolated subgraphs, G3 = (V3, E(V3)) and G4 = (V4, E(V4)),
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then we have the capacity of the min-cut from which we

derived G1 equals:,

c(S, T ) =
∑

i∈S,j∈T

cij

= m|V2|+ (m|V1|+ 2g|V1| −
∑
i∈V1

di) +
∑

i∈V1,j∈V2

cij

= m|V |+ 2|V3|(g −

∑
i∈V3

di −
∑

i∈V3,j∈V2

1

2|V3|
)

+2|V3|(g −

∑
i∈V4

di −
∑

i∈V4,j∈V2

1

2|V4|
)

where V2 is the other part of the min-cut. Since g is the density

of ρ(V1), suppose ρ(V3) ≤ ρ(V4), then we have:

c(S, T ∪ V3) = m|V |+ 2|V3|(g −

∑
i∈V3

di −
∑

i∈V3,j∈V2

1

2|V3|
)

< c(S, T )

Since the min-cut from which we derived G1 should be a

min-cut in the densest subgraph discovery phase of the M-O

algorithm, this contradicts with the precondition. Therefore,

G1 = (V1, E(V1)) is a connected graph.

Theorem 3.2 guarantees that the densest subgraph discov-

ered by the M-O algorithm is connected.

C. Applicability of the M-O Algorithm

There are two main factors that influence the time efficiency

of the M-O algorithm. One is the number of rounds required

for the graph reduction. The other is the remaining graph size

after the graph reduction. These two factors are closely related

to the topology of the initial graph. For example, the graph in

Figure 3(a) cannot be reduced, while the graph in Figure 3(b)

only takes one round for a great size reduction. In this section,

we analyze the relationship between the performance of the

M-O algorithm and the topologies of natural graphs. In order

to study the relationship, we use the BA network [13] and

BTER network [14] (which are two typical complex networks)

for our study. The BA network has the feature of power

law degree distribution but has no community structures. The

BTER network not only has the feature of power law degree

distribution, but also has the community structures. We theo-

retically analyze the performance of the M-O algorithm on the

BA network and BTER network to show its performance on

the complex networks with or without community structures.

Theorem 3.3: Suppose G = (V,E(V )) is a BA network

and GS = (VS , E(VS)) is the densest subgraph of BA network

G, then we have

ρ(VS) = ρ(V ) = m.

where m is the number of edges each vertex created when the

vertex first joined the network.

Proof: Suppose there is a process that we can get the

densest subgraph GS = (VS , E(VS)) by deleting vertex set

�

(a) Unsuitable for reduction

�

(b) Suitable for reduction

Fig. 3. Examples of different graph topologies

Vd = {v1, v2, v3, v4, ..., vn}, then we have:

ρ(VS) =
|E(VS)|

|VS |

=

|E(V )| −
∑

vi∈Vd

degd(vi)

|V | − |Vd|

where degd(vi) is the degree of vi when vi is deleted from

the remaining graph.

Since each vertex created m edges with other vertices when

the vertex first joins the network, we have
∑

vi∈Vd

degd(vi) ≥

m|Vd|. Therefore, we have:

ρ(VS) =
|E(VS)|

|VS |
≤ m

Also, when the network tends to be very large, we have:

ρ(V ) =
|E(V )|

|V |
=

m|V |

|V |
= m

Therefore, we have:

ρ(V ) = ρ(VS) = m

Since the density of the densest subgraph is equal to the

density of the whole network, there are no denser subgraphs

in the network. Therefore, Theorem 3.3 indicates that BA

network has no communities based on the density criteria.

Then, it is meaningless to discover the densest subgraph in

a BA network. At the same time, from the definition of BA

network, we know that each vertex has a degree at least m

since each vertex created m edges once it participated the

network. Therefore, the graph reduction in the M-O algorithm

is useless for reducing the size of a BA network since all

the vertices have a degree equal or larger than the density

of the densest subgraph. However, since it is meaningless to

discover the densest subgraph on a BA network, the useless

graph reduction in the M-O algorithm on BA networks does

not influence the applicability of this algorithm.

Lemma 3.2: Suppose G = (V,E(V )) is a BTER network

which approximately satisfies log y = β − γ log x, where x

is the degree of the vertices with the same degree and y is

the number of vertices with degree x, then we can delete∑ ζ(γ−1)
ζ(γ)

x=1
1

xγ

ζ(γ) of the total vertices in the first round of the
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graph reduction. Here, γ is the exponent parameter of degree

distribution of the BTER network and ζ(γ) is the Riemann

zeta function [16] of γ.

Proof: Since 0 ≤ log y = β − γ log x, we have x ≤ e
β
γ .

Then, we have:

ρ(V ) =
|E(V )|

|V |

=

∑e
β
γ

x=1
eβ

xγ × x

2
∑e

β
γ

x=1
eβ

xγ

=

∑e
β
γ

x=1
1

xγ−1

2
∑e

β
γ

x=1
1
xγ

When e
β
γ → +∞, according to the Riemann zeta func-

tion [16], we have:

ρ(V ) =
ζ(γ − 1)

2ζ(γ)

The number of the vertices with degrees smaller than ρ(V )

equals
∑e

β
γ

x=1
eβ

xγ ×x. Therefore, the percent of deleted vertices

in V equals:

∑ ζ(γ−1)
2ζ(γ)

x=1
eβ

xγ

∑
e

β
γ

x=1

eβ

xγ

=

∑ ζ(γ−1)
2ζ(γ)

x=1
1
xγ

ζ(γ)

Theorem 3.4: Suppose G = (V,E(V )) is a BTER network

which approximately satisfies log y = β − γ log x, where x

is the degree of the vertices and y is the number of vertices,

then we can delete

∑(ζ(γ−1)−
∑

ρ
−1(V )

x=1
x1−γ)/(ζ(γ)−

∑
ρ
−1(V )

x=1
x−γ)

x=1 x−γ

ζ(γ)−
∑ρ

−1(V )
x=1 x−γ

of the total vertices in the ith round of the graph reduction

where ρ−1(V ) is the ρ(V ) in the (i− 1)th round.

Proof: Since vertices with a same degree form into an

isolated subgraph in a BTER network, then we can consider

that the deleted vertices do not influence the degrees of the

remaining vertices. Therefore, we have:

ρ(V ) =

∑e
β
γ

x=1
eβ

xγ × x−
∑ε

x=1
eβ

xγ × x

2(
∑e

β
γ

x=1
eβ

xγ −
∑ε

x=1
eβ

xγ )

=
ζ(γ − 1)−

∑ε
x=1 x

1−γ

2(ζ(γ)−
∑ε

x=1 x
−γ)

where ρ(V ) is the current density.

Therefore, the percent of deleted vertices in V equals:

∑(ζ(γ−1)−
∑

ε

x=1
x1−γ)/(ζ(γ)−

∑
ε

x=1
x−γ)

x=1 x−γ

ζ(γ)−
∑ε

x=1 x
−γ

In the real-world graphs, γ is usually around 2 [1]. There-

fore,
ζ(γ−1)
2ζ(γ) is very large since ζ(1) = +∞ and ζ(2) ≈ 1.645.

Theorem 3.4 indicates that a great percentage of vertices can

be deleted in the first few rounds of the graph reduction

and also the graph reduction is decreasingly efficient as the

percentage of deleted vertices increases. For example, when

γ = 1.2, about
1+ 1

22.2

1.49 ≈ 0.82 of the vertices are deleted in the

first round of the graph reduction. This result is also consistent

with the experiment result in Section IV.

From our analysis, we have the following conclusions:

1) The complex network without community structures

(e.g., BA networks) is uniformly distributed, which

makes the densest subgraph discovery meaningless since

the density of the densest subgraph equals the density of

the whole network in such kind of complex networks.

2) For the complex network with community structures

(e.g., BTER networks), the M-O algorithm not only can

reduce such kind of complex networks to a suitable size

that can be fitted in memory, but also can reduce it to a

suitable size in only a few rounds.

IV. PERFORMANCE EVALUATION

In this section, we conducted comprehensive performance

evaluation of the M-O algorithm and compared it with the

MapReduce based approximate algorithm [10] (called Approx-

MR for short). ApproxMR is a greedy algorithm for discover-

ing the densest subgraph for undirected graphs. It greedily

deletes a batch of vertices with degrees less than certain

thresholds recursively and records the density of the remaining

graph until the remaining graph is empty. The densest remain-

ing graph in this deleting process is the discovered densest

subgraph. ApproxMR can guarantee a 2-approximation for the

density of the accurate densest subgraph, ρ∗(S). ApproxMR

is implemented in MapReduce for parallelism.

In the experiments, we first used the real-world datasets

listed in Table I [17] to test the performance of the M-O

algorithm in comparison with ApproxMR. In Section IV-B,

we evaluated the graph reduction phase, which focuses on two

aspects: i) how many percent of vertices can be reduced from

the initial graph size, and ii) how many MapReduce rounds

are needed to reach a suitable size for the densest subgraph

discovery phase. The first aspect evaluates the effectiveness of

the graph reduction phase, which determines the feasibility of

the densest subgraph discovery phase. If the dataset size after

reduction is still big, the M-O algorithm cannot handle it in

the second phase. The second aspect evaluates the efficiency

of the M-O algorithm since one round of MapReduce process

is time consuming. In Section IV-C, we evaluated the density

and the running time of the discovered densest subgraph. In

Section IV-D, we measured the connectivity of the discovered

densest subgraph. Finally, in Section IV-E, we used simulated

datasets to evaluate the M-O algorithm in comparison with

ApproxMR.

A. Experiment Environment and Datasets

We run the M-O algorithm on Hadoop [18] with 4 PCs;

each PC is equipped with 2.1GHz Intel core i3 processor

with 2 cores, and a 2GB memory. The M-O algorithm was

implemented in Python. We used the datasets in Table I in the

experiments, which are from the SNAP library [17].
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TABLE I
DESCRIPTION OF REAL-WORLD DATASETS

ID Name Description |V | |E| Type

Dataset 1 Wiki-Vote [21] Wikipedia who votes on whom network 7,115 207,378 small

Dataset 2 CA-GrQc [22] Collaboration network of Arxiv General Relativity 12,008 237,010 small

Dataset 3 Email-Enron [23] Enron company email list 36,692 367,662 small

Dataset 4 CA-HepPh [24] Arxiv High Energy Physics paper citation network 34,546 421,578 small

Dataset 5 slash [25] Slashdot social network from November 2008 77,360 905,468 small

Dataset 6 com-youtube [26] Youtube online social network 1,134,890 2,987,624 large

Dataset 7 com-lj [26] LiveJournal online social network 3,997,962 34,681,189 large

Dataset 8 com-orkut [26] Orkut online social network 3,072,441 117,185,083 large
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Fig. 4. The size of the datasets before and after the reduction
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Fig. 5. The size of the datasets before and after the reduction for large
datasets

We classified the datasets to two different types (small

and large); small datasets can be fitted in the memory of

one computer and large datasets are too large to be fitted

in memory. We would like to see the different performances

of the M-O algorithm on small datasets and large datasets.

The table lists the name, the description, the number of

vertices (|V |), the number of edges (|E|) and the type of each

dataset. In the datasets, Wiki-Vote is the only directed graph.

However, directed graphs have similar natural graph features

as undirected graphs [19]. Therefore, we just treat Wiki-Vote

as an undirected graph in order to enrich our datasets as the

current work [20].

B. Efficiency of Graph Reduction

In this section, we evaluate the performance of the graph

reduction phase from the two aforementioned aspects.

1) Comparison of sizes before and after reduction: Table II

shows the comparisons of the number of vertices and the

number of edges of the datasets before and after the graph

reduction phase by the M-O algorithm. In order to show the

reduction performances clearly, we also show Figure 4 and

Figure 5, which plot the ratio of the number of vertices and

the number of edges before and after the reduction for the

small datasets and large datasets, respectively. From Table II,

Figure 4 and Figure 5, we see that the number of vertices after

reduction is less than 1% of the initial number of vertices on

average. Especially, for the large datasets (e.g., com-youtube

and com-lj), the number of vertices after reduction is only

about 0.1% of the initial number of vertices on average. The

number of edges is also reduced to an average of 18% of the

initial size for the small datasets. For the large datasets, the

number of edges is only about 1% of the initial size. The

reduction performance is even better for the large datasets.

This large size reduction makes it possible to run the densest

subgraph discovery phase in one computer, since the time

complexity of this phase is determined by the number of

vertices and edges.

Take the large dataset com-youtube as an example, after the

reduction, the number of vertices is 0.1% of the initial dataset

and the number of edges is 3% of the initial dataset. If we

use the push-relabel algorithm [27] for the densest subgraph

discovery phase, which is the fastest algorithm for the min-

cut max-flow problem with time complexity O(|V ||E|2),
then discovering the densest subgraph only takes 0.00009%

(|V ||E|2 = 0.1% × 3% × 3%) of the time for discovering

the densest subgraph in the initial graph which can be easily

calculated based on the time complexity. For the memory

consumption, we only use about 3% of the memory for the

initial graph since 97% (1 − 3% = 97%) of the edges have

been deleted. Therefore, the large dataset reduction in the first

graph reduction phase makes the dataset possible to be handled

in the second densest subgraph discovery phase in the M-O

algorithm.

2) The number of MapReduce rounds vs. data size: Fig-

ure 6 shows the percentage of the vertex size and the edge

size of the remaining graph versus the number of MapReduce

rounds in the graph reduction phase. It is interesting to see that

the huge reductions only happened in the first a few rounds

(5 rounds for most of the datasets). Also most of the datasets

tend to be stable after 10 rounds of MapReduce processes.

Figure 7 further shows the results for large datasets. After

about 10 rounds of reductions, we can reduce the number of

vertices to around 0.1% of the initial number of vertices and
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TABLE II
COMPARISON OF DATASETS BEFORE AND AFTER REDUCTION

Datasets
# of vertices # of edges

Before After After/Before Before After After/Before

wiki-vote 7,115 727 10% 207,378 71,518 34%

CA-GrQc 12,008 123 1% 237,010 4,812 2%

Email-Eron 36,692 592 1% 367,662 44,182 12%

CA-HepTh 34,546 77 0.2% 421,578 1,964 0.4%

slash 77,360 1,417 1% 905,468 98,556 10%

com-youtube 1,134,890 1,685 0.1% 2,987,624 130,062 3%

com-lj 3,997,962 4,136 0.1% 34,681,189 650,724 1%

com-orkut 3,072,441 25,776 0.8% 117,185,083 9,800,872 8%
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Fig. 6. The size of reduced vertices and edges vs. the # of rounds
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Fig. 7. The size of reduced vertices and edges vs. the # of rounds for large
datasets

reduce the number of edges to around 1% of the initial number

of edges. Although we can continue the graph reduction for

more rounds for large datasets, the extra graph reduction does

not help much in reducing the size of the dataset. Figure 7

indicates that the reduction performance is even better for

the large datasets in which the data size can be reduced to

less than 1% of the initial size in less than 10 rounds. This

result indicates that the M-O algorithm is efficient in the graph

reduction phase since the data can be reduced to the suitable

size in only a few rounds.

C. Density and Running Time of the Discovered Densest

Subgraph

In this section, we evaluate the performance of discovering

the densest subgraph of the M-O algorithm in comparison with

ApproxMR in terms of the density and the running time of the

discovered densest subgraph. In ApproxMR, parameter ε is a

slack variable for controlling the tradeoff between precision

and efficiency. We set ε = 0 as in paper [10] to reach its best

performance. Table III shows the density of the discovered

densest subgraph in the M-O algorithm and ApproxMR. We

TABLE III
THE DENSITY OF THE DISCOVERED DENSEST SUBGRAPH

Datasets M-O ApproxMR

Wiki-Vote (small) 49.2 43.9

CA-GrQc (small) 22.4 22.4

Email-Eron (small) 37.3 35.3

CA-HepTh (small) 15.5 15.5

slash (small) 41.9 38.7

com-youtube (large) 38.6 34.4

com-lj (large) 47.4 35.3

com-orkut (large) 189.1 176.2

bold the result for the better performance in comparison in

all tables in the evaluation. As shown in the table, the M-

O algorithm performs better almost for all the datasets while

ApproxMR only performs as well as M-O algorithm on very

small datasets (e.g., CA-GrQc and CA-HepTh). However, for

small datasets, we do not need to apply the approximate

algorithm since the exact algorithm can achieve both high

efficiency and accuracy.

To compare the running time of the M-O algorithm and

ApproxMR, we not only measured the numbers of MapReduce

rounds of the MapReduce process but also measured the actual

execution time in seconds. Table IV shows the comparison of

the numbers of rounds and the execution time. Based on the

analysis in Section IV-B, we set the numbers of rounds to 7

which is enough to get suitable reduced size of dataset for in-

memory computing for all the datasets. As shown in the table,

the M-O algorithm is terminated by 7 rounds while ApproxMR

is terminated by at least 10 rounds. Also, the M-O algorithm is

much faster than ApproxMR. From Table IV, we can conclude

the M-O algorithm is more time-efficient than ApproxMR.

D. Connectivity of the Discovered Densest Subgraph

In this section, we measure the connectivity of the densest

subgraph discovered by the M-O algorithm and ApproxM-

R. Figure 8 shows the percentage of connected subgraph-

s among the 8 discovered densest subgraphs from the 8

real-world datasets in the M-O algorithm compared to Ap-

proxMR. Only 87.5% of the densest subgraph discovered

by ApproxMR in all the datasets are connected. Although

most of the densest subgraphs discovered by ApproxMR

are connected, the lack of connectivity guarantee still in-
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TABLE IV
THE NUMBER OF ROUNDS AND THE EXECUTION TIME OF THE

ALGORITHMS

Datasets
Rounds Time (second)

M-O ApproxMR M-O ApproxMR

Wiki-Vote (small) 7 12 187 367

CA-GrQc (small) 7 16 172 482

Email-Eron (small) 7 10 192 312

CA-HepTh (small) 7 14 183 423

slash (small) 7 16 207 514

com-youtube (large) 7 18 310 740

com-lj (large) 7 24 2,756 4,014

com-orkut (large) 7 18 11,126 26,175

fluences its application. All the densest subgraphs discov-

ered by the M-O algorithm are connected. This experimen-

tal result is consistent with our proved conclusion in Sec-

tion III. This result confirms that the M-O algorithm can

guarantee the connectivity of the discovered densest subgraph.
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Fig. 8. Connectivity comparison

E. Evaluation on Simulat-

ed Natural Graphs

The previous experimen-

tal results show that the M-

O algorithm performs well

on real-world datasets. We

then measure its perfor-

mance on simulated natu-

ral graphs generated by the

BTER model [14] for discovering the densest subgraph.

1) Efficiency of graph reduction: Natural graphs usually

follows a power law degree distribution with exponent param-

eter γ ∈ (1, 3) [1]. Therefore, we show the percentage of the

size of vertices in the remaining graph versus the number of

rounds with different value of γ in (1, 3) and different numbers

of vertices separately in Figure 9.

Figure 9(a) shows the results of the simulated datasets with

different degree power law parameter γ when we set the

number of vertices in the datasets (denoted by n) to 1000. As

γ increases, the required number of rounds for reducing the

dataset to a suitable size for in-memory computing slightly

increases. Figure 9(b) shows the results of the simulated

datasets with different number of vertices n when we set

γ = 2.5 which is a most common value for the normal natural

graphs [1]. For all the simulated datasets with different sizes,

the size of the dataset reduces quickly at the beginning and

reaches less than 1% of the initial size only in 10 rounds.

The sizes are reduced even faster for the datasets with bigger

n. These phenomena are consistent with the phenomena in

real-world datasets as in Figure 6 and Figure 7. Therefore, we

conclude that the M-O algorithm is suitable for the big natural

graphs with power law degree distribution and community

features (which is different from the BA network introduced

in section III).

2) Density of the Discovered Densest Subgraph: Fig-

ure 10 shows the density of the discovered densest sub-
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Fig. 9. Performance of the graph reduction on simulated datasets

graph of the M-O algorithm and ApproxMR on each of

the 50 randomly simulated graphs. As shown in the fig-

ure, we can see clearly that our algorithm can find denser

subgraph comparing with ApproxMR. These results match

the experimental results on real-world datasets in Table III.
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Fig. 10. The density of the discov-
ered densest subgraph in 50 simulated
datasets

3) Connectivity of

the discovered densest

subgraph: We compare the

connectivity of 50 densest

subgraphs discovered by

the M-O algorithm and

ApproxMR in Figure 8. All

of the densest subgraphs

discovered by the M-O

algorithm are connected,

but there are 22% of the

densest subgraphs discovered by ApproxMR which are

disconnected.

V. RELATED WORK

The problem of discovering the densest subgraph in undi-

rected graphs was first proposed by Goldberg [3] who gave

a solution with time complexity O(logn). The algorithm

transforms the initial problem to a series of the min-cut

max-flow problems. Later, several subproblems were derived

from the traditional densest subgraph discovery problem. A

similar polynomial time complex algorithm for discovering

the densest subgraph in a directed graph was proposed by

Khuller et al. [8]. The exact algorithms work well when the

dataset size is small, but lack the capability to handle big data.

Therefore, various approximate and heuristic algorithms were

proposed to meet the computing time and space challenges of

big data. Charikar [9] proposed a simple greedy algorithm for

solving the original densest subgraph problem, which leads

to a 2-approximation to the optimum. Later, this algorithm

was improved in a MapReduce framework [10]. Samir et

al. [8] developed fast polynomial time algorithms for several

variations of the dense subgraph problem for both directed

and undirected graphs. When it comes to heuristic algorithms.

A shingling technique based dense subgraph discovering algo-

rithm is designed by Gibson et al. [7] in the application of link

spam in World Wide Web. In our previous work [11], we also

designed a heuristic densest subgraph discovering algorithm

313



based on the unique feature of natural graphs. However, our

new algorithm focuses on the exact solution based on solid

theoretical analysis, while our previous heuristic algorithm

focuses on the time efficiency only with a tradeoff of precision

of results.

Furthermore, all the above algorithms fail to distinguish

their applicability to different kinds of graphs. However, it

is well-known that the degree distribution of many real-

world networks follow a power-law [13], which means that

although there may be millions of nodes, most of the nodes

are impossible to be in the densest subgraph. In this paper, we

discuss the applicability of our exact algorithm to different

kinds of graphs. Also, we take advantage of the power-law

feature to design our algorithm for discovering the densest

subgraph discovering.

VI. CONCLUSION

In this paper, we proposed the M-O algorithm which

combines the MapReduce computing with the in-memory

computing on one computer together to improve the efficiency

and precision of discovering the densest subgraph. The M-

O algorithm consists of two computation phases: 1) the

graph reduction in the MapReduce framework, and 2) densest

subgraph discovery in memory. We then theoretically proved

the correctness and the connectivity of the discovered densest

subgraph of the two computational phases. We proved that 1)

the density of the BA network (the complex network without

community structures) is uniform; 2) the density of BTER

network (the complex network with community structures) is

nonuniform; and 3) the M-O algorithm is well adapted to

the graphs with nonuniform density. Finally, we conducted

extensive experimental evaluations on both real-world datasets

and simulated graphs to compare the performance of the M-

O algorithm with ApproxMR. Experimental results shows

that 1) only 87.5% of the densest subgraphs discovered by

ApproxMR are connected, while all the densest subgraphs

discovered by the M-O algorithm are connected; 2) the graph

reduction phase reduces the number of vertices to about 1%

of the initial size and about 0.1% for large datasets; this

large-size reduction makes it possible to run the densest

subgraph discovery phase on one computer; and 3) the M-

O algorithm uses fewer MapReduce rounds than ApproxMR

on the computing process. The experiment conclusions are

consistent with our theoretical results.
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