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Abstract—Data collection by wireless sensor networks is a fun-
damental and critical function for cyber-physical systems (CPS)
to estimate the state of the physical world. However, unstable
network conditions impose great challenges in guaranteeing data
accuracy, which is essential for reliable state estimation of the
physical phenomena. For underlying sensor networks, without
efficiently resolving congestion in data transmission, packet loss
at congested nodes can considerably increase the estimation error.
However, previous congestion control schemes relying on reducing
transmitted data samples also increase the estimation error.
Thus, we propose a Congestion-Adaptive Data Collection scheme
(CADC) to efficiently resolve the network congestion while guar-
anteeing the overall data estimation accuracy. CADC mitigates
congestion by adaptive lossy compression with guarantee that
a given overall data estimation error bound is satisfied. Besides,
since a CPS application may have different priorities for different
data items, we further propose a weighted CADC scheme such
that the data with higher priority has less distortion. Extensive
experimental results demonstrate the effectiveness and efficiency
of our CADC schemes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) enable the sensing of
physical phenomena in a large scale and become fundamental
infrastructures in cyber-physical systems (CPS). The sensor
nodes in a WSN sample the physical phenomena such as
temperature and light, and transmit the data to the base station
(or controllers) for the state estimation of physical phenom-
ena. Such data collection, however, faces great challenges
from unstable network conditions. A WSN usually consists
of hundreds to thousands of sensor nodes, which generate a
tremendous amount of sensed data and deliver it to the base s-
tation using multi-hop wireless transmission. The large amount
of data and unstable wireless links easily lead to network
congestion, which incurs substantial packet loss. The packet
loss can significantly increase the estimation error of CPS,
though the controllers require guaranteed estimation accuracy
of the physical phenomena for reliable control decisions.

To avoid network congestion, many congestion control
schemes for WSNs have been proposed. Most schemes [1]–[5]
are based on rate control, which reduces the data generation
rate at source nodes or compresses the spatio-temporal samples
at the intermediate relay nodes. However, by reducing data
samples to be transmitted to avoid congestion, these schemes
also concurrently increase the estimation error. Therefore, a
congestion control scheme should work around a “sweet spot”
that avoids the congestion while still guarantees the estimation
accuracy of applications.

In this paper, we consider the problem of ensuring required
estimation accuracy while reducing congestion. We assume
nodes transmit data upwards to the sink through a routing
tree [5]. We propose a Congestion-Adaptive Data Collection
scheme (CADC), which determines the maximum tolerable
distortion of data due to compression at each node to guarantee
a given estimation accuracy at the sink. In order to reduce
data distortion by compression, each node novelly uses the k-
means clustering algorithm for lossy data compression with
its maximum tolerable distortion bound. When congestion
occurs, by adaptively adjusting the maximum tolerable dis-
tortion allowed at sensor nodes, CADC makes best effort to
guarantee the given estimation accuracy at the sink and reduce
the congestion.

Besides, we also consider the different priorities of data
measurements. A CPS application may have different priorities
for data items in different value ranges. For example, the safety
monitoring system may be more interested in high temperature
readings, thus the temperature measurements with higher val-
ues are more important and should have lower distortion hence
compression degree. To this end, we propose weighted CADC
scheme, which assigns weights to the measurements according
to their priorities and aims to minimize the weighted estimation
error. We conduct extensive simulations to evaluate our CADC
schemes in comparison with previous schemes. Experimental
results demonstrate the high effectiveness and efficiency of our
schemes.

The rest of paper is organized as follows. Section II
summarizes the related work. Section III illustrates our system
model and objective. Section IV presents our congestion-
adaptive data collection schemes in detail. Section V presents
the performance evaluation of our schemes in comparison
with previous methods. Section VI concludes this paper with
remarks on our future work.

II. RELATED WORK

We present previous works for data collection to the sink
in WSNs in three categories: data compression, routing and
congestion control.

Data compression. Many works have exploited data cor-
relation to compress data in transmission to reduce commu-
nication cost. Cristescu et al. [6] utilized the Slepian-Wolf
coding to compress correlated readings and addressed the
problem of finding the optimal rate allocation for each node
to minimize total data transmission cost. Silberstein et al. [7]
proposed CONCH, which exploits the spatio-temporal data



correlation to suppress unnecessary value transmissions in
continuous data collection to reduce energy cost. Luo et al.
[8] proposed to apply compressive sampling theory to sensor
data gathering to reduce global scale communication cost.
Gupta et al. [9] proposed to select a small subset of sensor
nodes that may be sufficient to reconstruct data for the entire
sensor network within predefined error bound. Wang et al.
[10] proposed an approximate data collection, in which the
network is partitioned into clusters, and cluster heads construct
the local estimation model with prespecified error bounds to
approximate the readings of sensor nodes in the clusters. The
sink then estimates the data based on the model parameters
sent by cluster heads.

Routing. Many routing protocols have been proposed for
data collection to reduce energy cost or latency. Chang et al.
[11] addressed the optimal routing problem with the objective
to maximize the network lifetime. Park et al. [12] developed
an online heuristic for the problem of routing message to
maximize the network lifetime. Lee et al. [13] proposed a
collision-free scheduling method for data collection routing
to optimize energy consumption and reliability. Han et al.
[14] addressed the problem of minimizing the expected total
transmission power for reliable data dissemination in duty-
cycled WSNs. Su et al. [15] aimed at achieving optimal
rate allocation for data aggregation in WSNs with the goal
to maximize resource utilization and proposed a distributed
algorithm for joint rate control and scheduling. Wan et al.
[16] studied the problem of finding the minimum-latency
schedule for data aggregation in wireless networks under the
interference constraint.

Control congestion. The previous control congestion
schemes can be classified into two classes: centralized rate
control schemes and distributed rate control schemes. Event-
to-Sink Reliable Transport (ESRT) [1] lets the base station
adjust the reporting frequency of sensor nodes such that the
required information can be obtained with minimum energy
considering one-hop communication between nodes and the
base station. Bian et al. [17] proposed a centralized rate
allocation scheme that assigns sending rates to all sensors in
the routing tree based on the wireless link characteristics. Zhou
et al. [2] proposed a source reporting rate control mechanism
(PORT), which is aware of transmission cost of the sources,
and adjusts the source reporting rates with a guarantee that
the sink can still obtain enough information. Paek et al.
[3] proposed the rate controlled reliable transport protocol
(RCRT), where the sink is responsible for congestion detection
and rate allocation of sensor nodes based on AIMD (Additive
Increase - Multiplicative Decrease). CODA [4] is a distributed
rate control scheme for congestion avoidance. In these rate
control based schemes, since decreasing data rate reduces the
number of spatio-temporal samples, they cannot control the
accuracy of the state estimation. To address this problem,
Ahmadi et al. [5] takes into account the estimation error in
the congestion control. Using least-error summarization, their
scheme eliminates congestion while incurs the least possible
overall error in sensing the physical environment.

In this paper, we consider the congestion issue in data col-
lection and aim to design a congestion-adaptive data collection
scheme for WSNs with estimation error bound. Our work is
most related to [5]. However, the scheme in [5] is unaware

of the accuracy requirements of applications, and the data
collection with such congestion control scheme may fail to
achieve the required data accuracy. Instead, our scheme aims to
ensure the pre-specified error bound when congestion occurs.

III. SYSTEM MODEL AND OBJECTIVE

A. System Model

We assume a WSN for data collection, in which N sensor
nodes are deployed to monitor a physical phenomenon of the
environment and periodically send their sensor readings to a
sink. Due to communication limitations of the sensor nodes,
they transmit their sensing data in a multi-hop fashion to
the sink (denoted by r), which is responsible for collecting
and processing the measurements. As shown in Figure 1,
we assume a routing tree rooted at the sink as our network
layer [18], [19], denoted by Tr. The depth of a sensor node
i is defined as the hop distance between node i and the sink,
denoted by hi,r. Node i is the ancestor of node j if j is in the
subtree rooted at i (denoted by Ti).
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Fig. 1: Routing tree.

TABLE I: Notations

Parameter Description

Ti Subtree of the routing tree rooted at node i
r Sink node

u, ui, i Notations for sensor nodes other than the sink

xi Data generated at sensor node i
x̂u
i Value of xi reconstructed by i’s ancestor u based on the

received compressed data

eu Sum of the errors between received values of data at sensor
node u and their actual values

εu Maximum tolerable error at node u (upper bound for eu)

du Sum of the errors between received data at node u and their
values after compression at node u

ηu Maximum tolerable distortion of data due to compression at
node u (upper bound for du)

wi Priority coefficient of xi generated by node i

To describe our scheme, we first assume that network tree
topology is fixed. We will discuss how our scheme adapts to
network topology changes in Section IV-E. Data is forwarded
along Tr to the sink. Each node periodically sends its measured
data and also forwards its received data from children to its
parent. Given this system model, congestion occurs when a n-
ode cannot transmit data messages at the rate they are received
and generated caused by insufficient bottleneck resource [5].
One of the main components in congestion control schemes is
congestion detection. For this purpose, we can use a previously
proposed congestion detection scheme [5]. That is, a node
compares its output buffer size with a threshold, and it is
congested if its buffer size is higher than a threshold.

B. Motivation and Objective

Data quality is critical for the controllers to accurately
estimate the state of the physical phenomenon. However,



congestion control has the two-sided influence on the data
accuracy: (1) congestion elimination reduces data loss and
improves the estimation accuracy, (2) but the ways to control
congestion such as reducing source rate [1]–[4], [17] and
aggregation [5] increase the estimation error. Thus, the design
of congestion control scheme in data-collection networks needs
to achieve the trade-off between the two sides while ensures
that the estimation error resulting from collected data is within
the tolerable range of CPS applications.

With the above motivation, we propose the Congestion-
Adaptive Data Collection scheme (CADC), which reduces
congestion by reducing the data transmission rate with lossy
compression, while still guaranteeing the data accuracy re-
quired by CPS applications.

In CADC, when congestion occurs at a node, to reduce the
congestion, its children nodes reduce their data transmission
rates by lossy compression on the data to be forwarded,
which however causes data distortion. Formally, we denote
the measurement of sensor node i as xi, and denote the value
of xi reconstructed by i’s ancestor u based on the received
compressed data as x̂u

i , which may not equal to xi due to
compression. We define the estimation error and data distortion
as follows:

Definition 3.1: (ESTIMATION ERROR) Estimation error
(error in short) at node u represents the sum of errors between
its received data values from its subtree Tu and their actual
values, i.e.,

eu =
∑
i∈Tu

(x̂u
i − xi)

2. (1)

|Tu| denotes the number of sensors in Tu.

Definition 3.2: (DATA DISTORTION) Data distortion at
node uk represents the sum of errors between its received data
values from its subtree Tuk

and their corresponding values after
compression received by its parent u, i.e.,

duk
=

∑
i∈Tuk

(x̂u
i − x̂uk

i )2. (2)

The data accuracy requirement of a CPS application is
characterized by the maximum tolerable estimation error at
the sink node r, denoted by εr.
Objective: Our objective is to avoid congestion while ensuring
that the resulting estimation error at sink r, denoted by er, is
less than εr, i.e., er ≤ εr.

IV. CONGESTION-ADAPTIVE DATA COLLECTION

A. CADC Scheme Overview

To achieve the above-stated objective, CADC determines
two parameters for each node u, maximum tolerable error (εu)
and maximum tolerable distortion (ηu). εu and ηu are the upper
bounds for estimation error eu and data distortion du at node
u (defined by Definitions 3.1 and 3.2), respectively. That is,

eu ≤ εu, du ≤ ηu. (3)

Consider a node u and its children u1, . . . , un in the routing
tree (Figure 1). In CADC, node u uses εu to determine ηuk

of
each of its children (uk). Node uk compresses its data based on
ηuk

to reduce its data transmission rate for congestion control.

The value of ηuk
for each child ensures eu ≤ εu. Finally, the

estimation error at the sink is no more than the fixed maximum
tolerable estimation error at the sink (er ≤ εr), which means
that CADC helps to satisfy the constraint of the desired data
accuracy of CPS applications.

CADC dynamically and distributedly determines proper
values of maximum tolerable error (εu) and maximum tolerable
distortion (ηu) for every node u based on the network status
and a given εr. During data collection, CADC first determines
the initial values of εu and ηu for each node u, and then dynam-
ically updates them based on the current network congestion
status and reduce the congestion accordingly. If a node u is
congested, it asks each child ui to transmit data in a lower rate
to avoid congestion through data compression. But if the data
compression with such a lower rate incurs data distortion larger
than ηui , node u attempts to increase ηui to accommodate
such compression without violating the constraint of maximum
tolerable error εu. Only if there is no way to achieve the desired
ηui while satisfy εu, u requests its parent to update εu. Such
parameter update could repeat along the path to the sink to
make the error at the sink less than the given error bound εr.
This case means that the overall system is highly congested
and er ≤ εr cannot be satisfied in any way. Then, the sink
will inform the applications of the off-specification of data.

In the following, we present the details of the three parts
of CADC.

• Given εr, how to determine the maximum tolerable
error (εu) and distortion (ηu) for every node u to
realize our objective (Section IV-B)?

• How can a node compress its data based on its ηuk

while minimizing the data distortion (Section IV-C)?

• How to conduct congestion control and update εu and
ηu to achieve our objective in dynamic network status
(Section IV-D)?

• How to adapt to dynamic network topology (Section
IV-E)?

B. Determination of Maximum Tolerable Error and Distortion

As we can see, in CADC, a fundamental problem is:
Given maximum tolerable error εu at any node u and current
network status, how to determine maximum tolerable errors
(εuk

) and maximum tolerable distortions (ηuk
) for u’s children,

u1, ..., un, such that eu ≤ εu. After the problem solution is
found, given a εr on the sink, the (εu, ηu) of each of its
children u can be determined. Then, the (εuk

, ηuk
) of each

of u’s children are determined and so on. Finally, the (εi, ηi)
of each node i are determined in the top-bottom manner to
achieve our objective. In this section, we address this problem
in two cases:

• Non-priority case, in which all of the sensor mea-
surements are equally important for an application
(Section IV-B1).

• Priority case, in which the measurements have differ-
ent priorities (Section IV-B2).



1) Non-Priority Case: The estimation error eu at node
u equals the accumulated errors from each of its children
u1, ..., uk, ...un:

eu =
∑

i∈Tu

(x̂u
i − xi)

2

=
∑

i∈Tu1

(x̂u
i − xi)

2 + ...+
∑

i∈Tun

(x̂u
i − xi)

2

The error contribution of child uk, denoted by cuk
, equals∑

i∈Tuk
(x̂u

i − xi)
2. Based on the definition of cuk

, we use

Cauchy-Schwartz inequality to get:

cuk
=

∑
i∈Tuk

(x̂u
i − xi)

2

=
∑

i∈Tuk

((x̂u
i − x̂uk

i ) + (x̂uk
i − xi))

2

=
∑

i∈Tuk

(x̂u
i − x̂uk

i )2 +
∑

i∈Tuk

(x̂uk
i − xi)

2

+ 2
∑

i∈Tuk

(x̂u
i − x̂uk

i )(x̂uk
i − xi)

≤
∑

i∈Tuk

(x̂u
i − x̂uk

i )2 +
∑

i∈Tuk

(x̂uk
i − xi)

2

+ 2

√ ∑
i∈Tuk

(x̂u
i − x̂uk

i )2.
∑

i∈Tuk

(x̂uk
i − xi)2

= duk
+ euk

+ 2
√

duk
· euk

(4)

where euk
is the estimation error at child uk and duk

is data
distortion due to data compression of uk.

As the maximum tolerable error (εuk
) and maximum tol-

erable distortion (ηuk
) are the upper bounds of euk

and duk
,

respectively, we define maximum tolerable error contribution
of uk:

cmuk
= ηuk

+ εuk
+ 2

√
ηuk

· εuk
. (5)

To guarantee eu =
∑

uk:ukis child of u

cuk
≤ εu, the determina-

tion of ηuk
and εuk

needs to ensure∑
uk:ukis child of u

cmuk
≤ εu ⇒

∑
uk

(ηuk
+εuk

+2
√
ηuk

· εuk
) ≤ εu

(6)
In this way, since duk

≤ ηuk
and euk

≤ εuk
, we can achieve

that eu =
∑

uk
cuk

≤ εu. As a result, Formula (6) gives the
principle to initialize and update parameters (εu, ηu) for each
node u. We present the parameter initialization below, and
present the parameter update in CADC’s congestion control
in Section IV-D.

Initialization of εuk
and ηuk

: With a priori knowledge
of network congestion status, we can properly initialize the
maximum tolerable error and distortion (εuk

, ηuk
) for each

node uk. In the rooting tree for data collection, a subtree with
a larger size tend to suffer more congestions because it needs to
forward a larger amount of data to the sink. As a result, a larger
subtree may introduce higher estimation error into the data to
the upper node due to CADC’s lossy compression. Thus, the
root of a larger subtree needs a larger maximum tolerable error
to allow more data compression within the subtree to mitigate
the congestions. Based on this rationale, node u initializes the

(εuk
, ηuk

) for each of its children uk according to the size of
each child’s subtree.

Based on Formula (6), to guarantee eu ≤ εu, we let

ηuk
+ εuk

+ 2
√
ηuk

· εuk
= αkεu (0 < αk < 1) (7)

where
∑

k=1,...,n αk = 1 such that

eu ≤
∑
uk

(ηuk
+εuk

+2
√
ηuk

· εuk
) =

∑
k=1,...,n

αkεu = εu. (8)

We choose αk by

αk =
|Tuk

|∑
k=1,...,n |Tuk

| (9)

where |Tuk
| is the size of subtree Tuk

, such that any node with
a larger subtree size can have a higher maximum tolerable
error. To find subtree sizes |Tuk

| in Equation (9), we use the
same procedure as in [18]. Particularly, each sensor node sends
its subtree size in its packet header. Each parent node sums up
subtree sizes of its children and adds one to it to find its own
subtree size, with subtree size of leaf nodes being 1.

After αk (hence αkεu) is determined, based on Equa-
tion (9), node u needs to determine ηuk

and εuk
to satisfy

Equation (7). In order to maximize the estimation accuracy,
we let every node send raw data without data compression
initially, i.e., ηuk

= 0. Later on, CADC adjusts ηuk
to avoid

congestion when it occurs. With ηuk
= 0 initially, from

Formula (7), we have εuk
= αkεu. In CADC’s congestion

control (Section IV-D), when congestion occurs at node u,
if eu ≤ εu still can be satisfied by data compression for
congestion control, ηu does not need to update and only
ηuk

needs to update. Therefore, setting εuk
to the possible

maximum value (εuk
= αkεu) can avoid frequent updates later

on. As a result, we find a solution for the problem indicated
at the beginning of this section. Using this solution, given a
εr at the sink, CADC can determine the (εu, ηu) of each node
in the system in the top-down matter to guarantee er ≤ εr.

2) Priority Case: In this section, we consider the scenario
in which the data has different priorities. For example, for a
fire detection or cooling application, high temperature values,
which may indicate abnormality, have higher priority than
low temperature values. High-priority data should suffer less
distortion, so that the event can be more accurately modeled
and quickly detected. We use priority coefficients to show the
importance degree of different data items. We assume that the
priority coefficient is a function of data value, which is known
to all sensor nodes. Approximate values will have the same
or close priority coefficients. Then, when a sensor receives a
data value, it determines its priority coefficient based on the
priority function and the data value. We need to determine
maximum tolerable error and distortion with the goal that the
higher-priority data has less estimation error in order to achieve
more accurate state estimation for CPS control. If priority
coefficients are equal for all data, the problem is reduced to
the previous non-priority case.



We define weighted estimation error and weighted data
distortion below with the consideration of data priority.

ewu =
∑

i∈Tu
wi(x̂

u
i − xi)

2, (10)

dwuk
=

∑
i∈Tuk

wi(x̂
u
i − x̂uk

i )2, (11)

where xi denotes the data measured by node i with priority
wi, x̂

u
i denotes the value of xi received by node u, and uk is a

child of u. Accordingly, we define weighted error contribution
of u’s child node uk as
cwuk

=
∑

i∈Tuk
wi(x̂

u
i − xi)

2. Similarly, we have

cwuk
=

∑
i∈Tuk

wi((x̂
u
i − x̂uk

i ) + (x̂uk
i − xi))

2

=
∑

i∈Tuk

wi(x̂
u
i − x̂uk

i )2 +
∑

i∈Tuk

wi(x̂
uk
i − xi)

2

+ 2
∑

i∈Tuk

wi(x̂
u
i − x̂uk

i )(x̂uk
i − xi)

≤
∑

i∈Tuk

wi((x̂
u
i − x̂uk

i )2 +
∑

i∈Tuk

wi(x̂
uk
i − xi)

2

+ 2.

√ ∑
i∈Tuk

wi(x̂u
i − x̂uk

i )2
∑

i∈Tuk

wi(x̂
uk
i − xi)2

= dwuk
+ ewuk

+ 2
√

dwuk
· ewuk

(12)

Equation (12) is derived with the assumption that the prior-
ity coefficient of data xi at parent u and child uk remains the
same in CADC. This is reasonable because the compression
method in CADC (Section IV-C) constrains the distortion of
data in compression, and the data will most likely have the
same or close priority coefficient after compression, which is
confirmed in our experiments in Section V. As we can see
from Formula (12), it has the same form as the non-priority
case. Thus, in the priority case, we can use the same principle
for determining the (weighted) maximum tolerable error and
distortion, and choose the same initial values.

C. Data Compression Scheme

To reduce the congestion, the nodes compress the received
data based on their maximum tolerable distortion (ηu) before
transmitting the data to their parents. Sensor readings may
be redundant because nodes in the same neighborhood can
have approximate readings in WSNs. Unlike the previous
compression methods that do not focus on minimizing data
distortion in compression, our data compression scheme aims
to select most representative data samples that minimize the
data distortion. Accordingly, we use the k-means clustering
algorithm (k-means in short) [20] for data compression. Given
a set of data points V in real d-dimensional space R

d and an
integer k, k-means clustering is to partition the points into k
clusters; each with a center (i.e., cluster head) not necessarily
belonging to the set of points, with the goal of minimizing
the mean squared distances of each point to its nearest cluster
head. Formally, it is to minimize

C(V ) =
∑
x∈V

(x− c(x))2, (13)

where C(V ) is the cost of clustering and c(x) is the center of
the cluster that data x belongs to. C(V ) actually reflects the
data distortion.

Thus, in CADC, to compress the data, a node conducts
the k-means clustering on its received and generated data and
sends the values of cluster heads and corresponding cluster
sizes to its parent. CADC represents data in the form of tuples
< (v1, n1), . . . , (vi, ni), . . . , (vm, nm) >, where vi is the sam-
ple value, and ni is the number of sensor readings (each from a
sensor node) with value vi. n = 1 if the data represents a single
sensor reading. For example, if a node receives a set of sensor
readings {(3, 1), (4, 1), (6, 1), (8, 1), (10, 1), (12, 1)} from 6
nodes, with 2-means clustering, this dataset is partitioned to
two clusters {3, 4, 6} and {8, 10, 12}, with centers equal to
4.33 and 10, respectively. Then, the compressed dataset is
represented by {(4.33, 3), (10, 3)}.

In order to apply the k-means clustering method to the
priority case, we modify the cost function C(V ) for k-means
clustering to

C(V ) =
∑
x∈V

w(x)(x− c(x))2, (14)

where w(x) is the priority coefficient of data x. Thus, data
with higher priority will have less distortion.

In the congestion control (Section IV-D), CADC uses the
k-means clustering algorithm for data compression through
two methods under the constraint that the data distortion after
compression (i.e., cost of clustering) C(V ) is less than a given
bound. In the first method, a node needs to reduce the available
data into k samples with a given value of k. For this purpose,
we can directly use an existing k-means clustering algorithm
such as Lloyd’s algorithm [20]. In the second method, a
node needs to find minimum k for data compression. For this
purpose, we can simply enumerate all possible values of k
from 1 to the total number of data points. For each value of
k, we use Lloyd’s algorithm to find k clusters and the cost of
clustering. Once the cost of clustering becomes no more than
the given bound, the algorithm returns current k and cluster
heads.

D. Congestion Control

In this section, we introduce the procedure of conges-
tion control in CADC, including adaptive adjustments of the
maximum tolerable error and distortion (εu, ηu), and the
corresponding congestion control.

Consider an arbitrary node u and its children u1, ..., un

with maximum tolerable error and distortion, εui
and ηui

(i = 1, ..., n). When node u is congested, to avoid the
congestion, u needs to reduce its input data arrival rate rinu to
less than its output transmission rate rou by asking its children
to reduce their transmission rates through data compression.
When rinu < rou, node u’s buffer size will decrease and the
congestion can be resolved finally. Node u first computes

the ratio of rinu to rou,
rinu
rou

, and then sends a congestion

notification with this ratio to each of its children. Since rinu
is the sum of data transmission rates of all u’s children,
decreasing each child’s current transmission rate by a factor

of at least
rinu
rou

can reduce rinu to less than rou. To do this, each



child decreases its current data compression ratio by rinu /rou
times. The data compression ratio is the ratio of the number
of compressed samples to the number of available data tuples
to be transferred. The compression ratio is 1 if the node sends
data without compression.

We use γ′
i and γi to denote the previous and new da-

ta compression ratio of node ui: γi = γ′
i/

rinu
rou

. For the

dataset of available data tuples to be forwarded at node
ui < (v1, n1), . . . , (vi, ni), . . . , (vm, nm) >, we use Ni =∑m

j=1 nj to denote the total number of data readings in the
dataset. Node ui compresses data with compress ratio γi by
using the k-means clustering with k = Niγi (Section IV-C).
Such data compression with γi will lead to data distortion
(denoted by dγi

) computed by Formulas (13) and (14) in
the non-priority and priority cases, respectively. Recall that
to ensure er ≤ εr, node ui has maximum tolerable distortion,
ηui , defined over all the |Tui | data readings from its subtree
Tui . Thus, node ui needs to compress data with distortion
not exceeding Ni

ηui

|Tui
| , where

ηui

|Tui
| is the average maximum

distortion allowed for each data reading from each node in
the subtree Tui

. Ni
ηui

|Tui
| means the distortion allowed for the

dataset with Ni readings. Then, if dγi
≤ Ni

ηui

|Tui
| , ui just

sends the compressed samples to the parent. If dγi > ni
ηui

|Tui
| ,

which means that the compression ratio required to reduce
the congestion cannot satisfy the distortion constraint hence
er ≤ εr, the parameters (εu, ηu) for congestion control then
must be updated. Next, we explain how to update parameters
to ensure er ≤ εr while reduce congestion in this case.

When dγi
> Ni

ηui

|Tui
| , node ui tries to compress data

as much as possible with data distortion not exceeding data
distortion constraint Ni

ηui

|Tui
| by finding the minimum number

of cluster heads for k-means clustering under the constraint
(Section IV-C). This data compression makes data distortion
smaller than dγi , so the compression ratio is still larger than
γi required to avoid congestion. Such data compression can
mitigate congestion but cannot eliminate it. In order to avoid
the subsequent congestions, i.e., achieve γi, ui requests its
parent to increase its maximum tolerable distortion (ηui

) such

that dγi
≤ Ni

ηui

|Tui
| . In this case, ηui

≥ dγi

|Tui
|

Ni
. To avoid

frequent such requests and parameter updates, ηui
can be set

to the historically largest value.

To do that, each node maintains two parameters: maximum
necessary distortion (η∗ui

) and maximum necessary error (ε∗ui
).

η∗ui
keeps track of the maximum distortion required to remove

congestion within a fixed time window. If no congestion occurs
in a time window, η∗ui

= 0. ε∗ui
is derived based on Formula

(4) based on η∗ui
. Given dγi , node ui computes its η∗ui

and ε∗ui
:

η∗ui
(tγi) = max

tγi−w≤t≤tγi

{η∗ui
(t), dγi

|Tui
|

Ni
} (15)

ε∗ui
=

∑
uik

(η∗uik
+ ε∗uik

+ 2
√
η∗uik

× ε∗uik
) (16)

where tγi is the current time, w is the time window, and

η∗uik
+ ε∗uik

+2
√
η∗uik

× ε∗uik
is the upper bound of uik ’s error

contribution cuik
according to Formula (4).

Node ui asks its parent u to update its ηui
and εui

to η∗ui

and ε∗ui
, respectively, such that the desired data compression

ratio γi can be achieved to avoid congestion. At node u, the
parameters (εui , ηui ) always need to satisfy Formula (6) in
order to ensure eu ≤ εu, that is,∑
uk:ukis child of u

(ηuk
+εuk

+2
√
ηuk

· εuk
) ≤ εu ⇒

∑
uk

cmuk
≤ εu

However, the increase of (ηui
, εui

) to (η∗ui
, ε∗ui

) may violate
Formula (6). Note that though u’s other children are assigned
(εuk

, ηuk
) hence maximum tolerable error contribution (cmuk

),
they may generate no or a little error if they experience no
or little congestion, i.e., (η∗uk

, ε∗uk
) are 0 or small values.

Thus, node u can reduce the cmuk
of uncongested children and

increase the cmuk
of congested children to satisfy Formula (6).

Accordingly, node u first attempts to change (εuk
, ηuk

) to (η∗ui
,

ε∗ui
) for each of its children. It then calculates its ε∗u based on

updated η∗uk
and ε∗uk

by Equation (16), and then compare ε∗u
and εu to decide the next step as follows:

(1) If ε∗u ≤ εu, it means that updating each child uk’s
parameters with εuk

= ε∗uk
and ηuk

= η∗uk
can guarantee

Formula (6), because
εu ≥ ε∗u

=
∑

uk:ukis child of u

(η∗uk
+ ε∗uk

+ 2
√
η∗uk

× ε∗uk
)

=
∑

uk:ukis child of u

(ηuk
+ εuk

+ 2
√
ηuk

× εuk
).

(17)

Therefore, u then updates each child uk’s parameters with
εuk

= ε∗uk
and ηuk

= η∗uk
Consequently, node ui has ηui =

η∗ui
, allowing the data compression with ratio γi at ui.

(2) If ε∗u > εu, it is obvious that the previous updating
solution cannot guarantee Formula (6). Thus, node u attempts
to update each child uk’s parameters with εuk

= ε∗uk
and

ηuk
= η∗uk

, by requesting its parent node u′ to assign ε∗u
as u’s maximum tolerable error (εu) so that Formula (6) can
be satisfied. Node u′ updates maximum tolerable distortion
and error of its children in the same way of u updating
parameters of u’s children by considering two cases ε∗u′ ≤ εu′

and ε∗u′ > εu′ . If ε∗u′ > εu′ , u′ will further request update
from its parent node. This process can repeat along the path
towards the sink until reaching either a node that successfully
reassigns these parameters for all its children, or the sink. If
the request reaches the sink, the sink informs its application
of the lower data accuracy than the specified value.

After congested node u’s children decrease their compres-
sion ratios to reduce their transmission rates, the input data
arrival rate to u starts to decrease until it is not congested
anymore. Once the congestion is eliminated, node u notifies its
children that it is not congested anymore and they can increase
their compression ratios. However, in order to avoid oscillation,
children do not abruptly increase their compression ratio to
1 (which means no compression). Instead, a node gradually
increases its compression ratio by γi(t+1) = γi(t)+ ρ times,
where ρ is a constant value.

E. Adaptivity to Dynamic Network Topology

The setting of maximum tolerable errors and distortions
(εu, ηu) in CADC depends on the topology of the routing



tree. However, since the routing tree can dynamically change
because of common failures of nodes and links in WSNs,
CADC needs to adaptively adjust the parameters of (εu, ηu).

To handle the failures of nodes or links, the routing tree is
rebuilt, in which some nodes leave a subtree and join in another
subtree along with the subtrees rooted at them. Suppose that
node u leaves original parent u′ and chooses another node u′′

as its new parent because the failure of u′ or the link between u
and u′. CADC lets the setting of (εuk

, ηuk
) remain the same for

all nodes in u’s subtree Tu. In order to have the same maximum
tolerable error at node u in the new subtree Tu′′ , based on
Equation (6), u′′ needs to increase its maximum tolerable error
to εu′′ + εu + ηu + 2

√
εu.ηu. Thus, u′′ requests update from

its parent, following the same updating procedure in Section
IV-D.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CADC
in the non-priority and priority cases through simulations in
comparison with previous schemes. In particular, we measured
the estimation error incurred at the sink, data delivery ratio and
the network overhead under different network conditions. Data
delivery ratio is measured by the percentage of nodes whose
sensor readings are received by the sink (i.e., represented by
compressed samples received by the sink). Network overhead
is measured by the total number of packet (i.e., data tuple)
transmissions of all nodes in a round of data collection, in
which each node generates one sensor reading. We compared
CADC with the following data collection schemes with con-
gestion control, which do not have maximum error bound at
the sink.

(1) Spatio-Temporal data collection (ST) [5]. It uses adap-
tive summarization as a compression scheme to mitigate con-
gestion while aims to minimize the estimation error. Assume
node uk has m data values. The first level summarization uses
every two consecutive values to obtain m

2 samples. Continuing
this process yields k-th summarization, which computes the
average of every 2k consecutive values to obtain

⌈
m
2k

⌉
samples.

(2) Spatio-Temporal data collection with sorted adaptive
summarization (ST-SortAdpSum). It is a variant of ST with
sorting available data at each node before performing adaptive
summarization. It is easy to see that under the same data
distortion constraint, sorted adaptive summarization leads to
fewer samples (i.e. higher compression) and consequently a
lower transmission rate.

(3) ESRT [1]. It is a rate based congestion control scheme,
which mitigates the congestion by adjusting the reporting rate
of sensor nodes.

(4) Pure congestion elimination (PureElimination). It is a
congestion control scheme, which just uses lossy compression
to mitigate congestion. In particular, we let it use the adaptive
summarization method to compress data to the extent that can
eliminate congestion.

A. Experimental Setup

In our simulation, a random routing tree for the WSN
was generated. The average number of children for any node
was set to 3. The sensor reading of each node was random-
ly generated, following the Gaussian distribution with mean

μ = 50 and variance σ2 = 5 [21], [22]. In the priority
case, we determine the priority coefficient of value x by the
interval x belongs to. The entire range of data value is divid-
ed into small ranges (−∞, μ/5), [μ/5, μ/4), [μ/4, μ/3),. . .,
[μ/2, μ/1), [μ, 2μ), [2μ, 3μ), . . ., [4μ, 5μ), [5μ,+∞), each
is associated with the corresponding priority coefficient in
{20, 30, 40, 50, 60, 70, 80,
90, 100}. We implemented the above four schemes, which op-
erate on the same routing tree in order to perform comparable
experiments. We assume there is no non-congestion-induced
loss for all links to emulate a reliable wireless medium. The
measurement results for each scheme are the average values
over 3000 runs.

B. Validity of CADC

In this test, unless otherwise specified, the network size
was set to 20 and the maximum tolerable error at the sink
was set to 2000. We varied the maximum tolerable error at
the sink from 500 to 1200 with 100 increase in each step.
We also evaluated CADC under different network sizes in
{100, 200, 400, 600, 800, 1000}. We used both k-means clus-
tering and adaptive summarization as our compression scheme
in CADC, referred to as CADC-Kmeans and CADC-AdpSum,
and compared their performance. We tested CADC in both the
non-priority and priority cases. In the method names, we use
the suffix “-P” for the priority case and use “-N” for the non-
priority case.

1) Estimation Error Incurred At the Sink: We first verify
the validity of CADC for achieving our primary objective to
keep estimation error at the sink below the given assigned
maximum tolerable error. Figure 2(a) shows the error incurred
at the sink (er) versus the maximum tolerable estimation
error at the sink (εr) for different CADC methods. We see
that in both the non-priority and priority cases, the error
incurred at the sink is lower than the maximum tolerable
error. Also, as the maximum tolerable error increases, the
incurred error increases. We further observe that in each case,
the k-means compression generates higher errors than the
adaptive summarization. The reason lies in the fact that k-
means achieves higher compression ratio and hence lower
transmission rate than the adaptive summarization. Since the
samples received at the sink with k-means are less than
those with the adaptive summarization, k-means gives higher
estimation error. However, this error is still under the maximum
tolerable error, and the lower transmission rate and hence
energy-efficiency is an evidence of superiority of k-means over
adaptive summarization for data compression.

2) Data Delivery Ratio and Network Overhead: Due to
network congestion, packets carrying data tuples may be
dropped and the sensor readings they represent are lost in the
transmission. Figures 2(b) and 2(c) show these two metrics
versus the maximum tolerable error at the sink (εr). We
see that as εr increases, the delivery ratio increases and
the number of packet transmissions decreases. With a higher
maximum tolerable error at the sink, data is allowed to be
compressed with a higher compression ratio, which mitigates
the congestion and thus reduces the number of missing sensor
readings caused by congestion. A higher compression ratio
also reduces the total number of packets transmitted in the
network.
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Fig. 2: Performance vs. the maximum tolerable error.
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Fig. 4: Performance vs. the number of nodes.

From the two figures, we also see that k-means has a
higher data delivery ratio and a lower number of total packet
transmissions than adaptive summarization in both non-priority
and priority cases. This is because k-means can achieve
higher compression ratio than adaptive summarization under
the same distortion bound. This experimental result supports
the superiority of k-means over adaptive summarization.

Figure 4(a) shows that the delivery ratio decreases with the
network size. Figure 4(b) shows that the total number of packet
transmissions increases with the network size. This is because
that a larger network has more data to collect, which leads to
more transmissions but also generates a higher probability to
cause congestion, leading to delivery ratio decrease. The two
figures also show the superiority of CADC with k-means on
reducing transmission rate and achieving higher delivery ratio
compared to CADC with adaptive summarization.

3) Performance in the Priority Case: We then validate that
in the priority case, CADC indeed incurs lower distortion to
high priority data. We measured the average overall distortion
incurred to data with different priorities as shown in Figure
3. We see that the experimental results confirm that data with
higher priorities does have less distortion. Recall that when
data is transmitted hop by hop along the routing tree from the
sensing node to the sink, each forwarding hop may compress
the data. After compression in a hop, some data values are
changed, and if a value belongs to a different range, its priority
coefficient may be changed. In our experiments, most of data
has the same priority coefficients at different hops in the
forwarding path. This is because the k-means method clusters
the most approximate data points, which have same or close
priority coefficients. This validates our assumption in Section
IV-B2 that the data compression does not change the priority
of data in different hops.
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Fig. 5: Performance comparison: error at the sink.

C. Performance Comparison

We compared CADC with the ST, ST-SortAdpSum, ESRT,
and PureElimination schemes. We varied the number of nodes
by {100, 200, 400, 600, 800, 1000} and set the maximum tol-
erable error (εr) at the sink to 2000. Figures 5(a) and 5(b)
show the error incurred at the sink of different schemes in the
non-priority and priority cases, respectively. We see that this
metric result increases as the number of nodes increases in all
schemes. CADC succeeds in constraining the error incurred
at the sink below the maximum tolerable error except at the
largest network size, which generates high congestion. In this
case, the sink alerts the application to increase εr. The incurred
error of CADC is considerably lower than those of other
schemes. In other schemes, the incurred error keeps increasing
with the number of nodes, and it exceeds the maximum
tolerable error when the number of nodes is larger than 500.
These schemes produce uncontrollable errors, because they
mitigate the congestion without being aware of any error bound
requirement at the sink. These experimental results indicate the
advantage of CADC in constraining the estimation error below
εr at the sink.

Figures 6(a) and 6(b) show the total number of packet
transmissions versus the number of nodes in the non-priority
and priority cases, respectively. We see that the total number
of packet transmissions increases as the number of nodes
increases. The number of transmissions of CADC is lower
than that of ESRT because of the data compression in CADC.
It is higher than that of ST because the maximum tolerable
error in CADC limits the compression degree, while ST does
not have estimation error constraint, which results in a high
compression ratio. PureElimination has the lowest transmis-
sion rate because it eliminates congestion abruptly, while ST
mitigates congestion gradually.

Figures 7(a) and 7(b) show the data delivery ratio versus
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Fig. 6: Performance comparison: network overhead.
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Fig. 7: Performance comparison: delivery ratio.

the number of nodes in the non-priority and priority cases,
respectively. We see that the delivery ratio in all schemes
generally decreases with network size. This is due to the
increase in total number of packet transmissions. In both cases,
PureElimination, ST and ST-SortAdpSum produce higher de-
livery ratios than CADC-KMeans and CADC-AdpSum, which
have higher delivery ratios than ESRT. These observations can
be explained by the experimental results of network overhead
(total transmission rate) in Figures 6(b) and 6(a). The total
transmission rate has inverse relationship with the delivery
ratio. That is, a higher total transmission rate (hence higher
network overhead) leads to a higher probability of congestion
occurrence and hence lower delivery ratio.

VI. CONCLUSION AND FUTURE WORK

In CPS, it is critical to guarantee estimation accuracy of the
physical environmental phenomena. Although many conges-
tion control schemes have been proposed to reduce congestion
in order to increase estimation accuracy, they also concurrently
increase the estimation error due to data sample reduction.
Also, none of them can guarantee the data accuracy at the sink.
To guarantee the estimation accuracy while control congestion,
we presented a Congestion-Adaptive Data Collection scheme
(CADC). Based on a given maximum tolerable error bound at
the sink, CADC reduces transmission rate of data while keeps
the estimation error below the given bound. It novelly uses the
k-means clustering algorithm to reduce transmission rate in
order to reduce data distortion. CADC also distinguishes data
with different importance degrees so that more important data
has less distortion, which benefits the accurate environmental
phenomena monitoring. Extensive experimental results show
the superior performance of our schemes in comparison with
previous schemes. In our future work, we will implement
CADC and investigate its performance in the real testbed.
We will also investigate extending CADC with other types of
accuracy measurement, since the CPS applications may have
error requirement for the results of specific state estimation
functions not limiting to square error over all the data.
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