
CloudFog: Towards High Quality of Experience in Cloud Gaming

Yuhua Lin and Haiying Shen
Department of Electrical and Computer Engineering
Clemson University, Clemson, South Carolina 29634

Email: {yuhual, shenh}@clemson.edu

Abstract—With the increasing popularity of Massively Mul-
tiplayer Online Game (MMOG) and fast growth of mobile gam-
ing, cloud gaming exhibits great promises over the conventional
MMOG gaming model as it frees players from the requirement
of hardware and game installation on their local computers.
However, as the graphics rendering is offloaded to the cloud,
the data transmission between the end-users and the cloud
significantly increases the response latency and limits the user
coverage, thus preventing cloud gaming to achieve high user
Quality of Experience (QoE). To solve this problem, previous
research suggested deploying more datacenters, but it comes
at a prohibitive cost. We propose a lightweight system called
CloudFog, which incorporates “fog” consisting of supernodes
that are responsible for rendering game videos and streaming
them to their nearby players. Fog enables the cloud to be
only responsible for the intensive game state computation and
sending update information to supernodes, which significantly
reduce the traffic hence the latency and bandwidth consump-
tion. To further enhance QoE, we propose the receiver-driven
encoding rate adaptation strategy to increase the playback
continuity and the deadline-driven sender buffer scheduling
strategy to ensure that the segments arrive at the players within
their response latency. Experimental results from PeerSim and
PlanetLab show the effectiveness and efficiency of CloudFog
and our individual strategies in increasing user coverage,
reducing response latency and bandwidth consumption.

Keywords-Cloud gaming; P2P network; Online gaming;
Quality of experience

I. INTRODUCTION

Massively Multiplayer Online Game (MMOG) (e.g.,
World of Warcraft, Second Life) allows users to inhabit in
the same virtual world and interact with each other. It is
characterized by a huge number of simultaneous players.
Indeed, its customer base has grown from a few thousands
to tens of millions of players. At the height of its pop-
ularity, World of Warcraft currently has over 12 million
users. Generally, MMOG uses the centralized client/server
infrastructure, in which players need to install games, receive
the game information from the servers, update game status
and render new game videos [1]. MMOG requires players
to have sufficiently powerful computers, which excludes
users with thin clients such as tablets and smartphones.
Buying and maintaining servers to support the tremendous
number of players is cost-prohibitive to the game service
provider. Nowadays, the number of smartphone users has
been increasing rapidly and mobile gaming is also seeing the
fastest growth among the gaming models [2]. The number

of smartphones in use worldwide reached one billion during
the third quarter of 2012, and will increase by another billion
by 2015 [3]. Thus, thin-client MMOG is an inevitable trend
of current MMOG and a cost-efficient system to support
thin-client MMOG is desirable for game service providers.

Cloud gaming, as a flourishing gaming model, is a solu-
tion for thin-client MMOG, which frees players (we use
players, clients, nodes and users interchangeably in this
paper) from the requirement of hardware and game installa-
tion on their local computers. Nowadays, the cloud gaming
is becoming a flourishing gaming model, with OnLive [4]
and Gaikai [5] as two pioneers in cloud gaming. In cloud
gaming, games are stored and run on remote servers, and
game videos are streamed to end-users through broadband
Internet connections. Cloud gaming also saves the cost of
game service providers. They can buy cloud resource based
on the actual demands in the large-scale system. Also, game
service providers do not have to develop multiple versions
of the same game to meet different operating systems (e.g.,
Linux, Windows, Mac), and spend money on software piracy
protection.

Mobile gaming is seeing the fastest growth [2] in the
gaming area. The advantages of cloud gaming makes it a
very promising model to cater to the dramatically rapid
growth of MMOG and online mobile gaming considering
their very large user scale and thin clients. Though the
advantages of cloud gaming makes it a very promising
model to cater to thin-client MMOG, it currently faces
severe challenges (i.e., latency, network connection, user
coverage and bandwidth cost) that prevent it from be-
coming a leading gaming model. First, response latency
is a critical factor in user quality of experience (QoE).
By offloading computation to a remote host, cloud gaming
suffers from long response latency; the delay in sending the
user action information and game video between the end-
user and the cloud. Second, cloud gaming services post a
strict requirements of high-speed network connection for a
relatively high constant downlink bandwidth (e.g., 5Mbit/s
recommended by OnLive). Third, the shortage of datacenters
limits user coverage. Players begin to notice a response delay
of 100ms [6]; 20ms attributed to playout delay on client
side and processing delay on the cloud, 80ms attributed to
the network latency. The playout delay of a client includes
the time to send action information, receive and play the

game video. Choy et al. [7] found that Amazon’s EC2
(with 13 datacenters) can provide a median latency of 80ms
or less to only fewer than 70% of their 2500 tested end-
users in the US. They also found that substantial increase in
the total number of datacenters is required to significantly
increase user coverage. Existing cloud infrastructure is not
sufficient for hosting cloud gaming, as a sizeable portion
of the population would experience significantly degraded
QoE. Fourth, besides server time, bandwidth costs represent
a major expense when renting on-demand resources. An
average traffic of 27TB per 12 hours leads to about $130k
monthly fee for bandwidth with Amazon EC2’s price (i.e.,
$0.085 per GB) [8]. Considering the MMOG’s huge user
scale, these costs can significantly affect the feasibility of
thin-client MMOG [9] on the cloud.

The great promises of cloud gaming and the obstacles it
faces motivate us to explore approaches to efficiently handle
the challenges. Though previous study suggested deploying
more datacenters [6], building and maintaining a large
number of datacenters is cost-prohibitive. In this paper, we
propose a lightweight system called CloudFog. We introduce
a concept called “fog”, formed by powerful supernodes,
that are close to end-users and connect them with the cloud.
Considering that desktop systems, being idle around 95% of
the time [10], are underutilized in most organizations, the
supernodes can be from these idle resources or from players’
computers. In CloudFog, the intensive computation [1] of
the new game state of the virtual world is conducted in the
cloud. The cloud sends update messages to supernodes, the
supernodes update the virtual world, render game videos
for different players and stream videos to the players. Thus,
users without high speed network connection to cloud or
out of the coverage of the cloud can be supported by nearby
supernodes, and the cloud does not need to transmit entire
game videos to far-away users. This strategy can increase
user coverage, shorten response latency, ensure relatively
high-speed network connection for high QoE and reduce
bandwidth cost. Specifically, CloudFog incorporates the
following strategies to handle the challenges and enhance
QoE. Strategies (2) and (3) are based on the phenomenon
that different games have different tolerance on packet loss
rate and response delay [11].

(1) Fog-assisted cloud gaming infrastructure. We
leverage the hardware and bandwidth capacity of
some idle machines from players and organizations,
and deploy them as supernodes. These supernodes
constitutes the ”fog”, which are responsible to stream
game videos for nearby players.

(2) Receiver-driven encoding rate adaptation. In order
to ensure the playback continuity even in network
congestion, when a supernode streams a game video
to a player, it adaptively changes the encoding rate of
the video based on the segment size in the player’s

buffer according to the game’s tolerance on delay and
packet loss.

(3) Deadline-driven sender buffer scheduling. To meet
response latency requirement of each game, supernodes
give higher priority to lower delay-tolerant game videos
to send out, and drop packets from different game
videos based on their packet loss tolerant degree.

This is the first work that uses lightweight approaches
to handle the aforementioned challenges for cloud gaming
to support thin-client MMOG. The remainder of the paper
is organized as follows. Section II presents an overview on
the related work. Section III describes the detailed design
of CloudFog. The performance evaluation is presented in
Section IV. Section V concludes this paper with remarks
on our future work.

II. RELATED WORK

MMOG on the client-server architectures has gained
much attention in the research communities in recent
years. Common approaches of MMOG divide the virtual
environment into regions and assign each region to
different servers [1]. Bezerra et al. [12] proposed a kd-tree
mechanism to partition the game environment into regions,
and perform load balancing among multiple servers based on
the distribution of avatars in the virtual world. Many works
proposed to leverage the bandwidth contribution of peer-
to-peer (P2P) networks to reduce server load [13]. Ahmad
et al. [13] presents a P2P live video system to help players
share screen-captured video of their games. Chen et al. [14]
proposed a content-oriented pub/sub system that exploits the
network condition and end-systems to enable efficient player
management and decentralized information dissemination.
These P2P and information dissemination methods cannot
be directly applied to the context of cloud gaming, in
which each player receives its own game video that cannot
be shared with other players. Also, the players with thin
clients may not be able to conduct rendering, computation
and storage [7], which are offloaded to the cloud.

Previous works developed different cloud gaming
systems. GamingAnywhere [15] is the first open cloud
gaming system with high extensibility, portability, and
reconfigurability. Zhao et al. [16] designed a game cloud
with a visualized cluster of CPU/GPU servers to reduce
game latency of thin computers. Wang et al. [17] proposed
to shift the burden of executing gaming engine from mobile
devices to cloud servers, and developed a mobile gaming
user experience model to characterize user experience.
Hemmati et al. [18] presented a content adaptation encoding
scheme, in which only the most important objects from the
perspective of the player’s activity are encoded in the scene
and irrelevant or less important objects are omitted. Edge-
Cloud [19] augments the cloud infrastructure with a number
of servers with specialized resources located near end-users
to increase user coverage, these servers are responsible for

2

Cloud

Fog
1. User
input

2. Game
video

Packets of view‐
independent work

Packets of
view‐dependent

work

3. Game
video

1. User input

…

…...

…...

2. Update information

…

Supernode
Normal node

Figure 1: Fog-assisted cloud gaming infrastructure.

computing new game state and rendering game video for
players. The difference between EdgeCloud and CloudFog
lies in the responsibility of newly added servers. In Edge-
Cloud, the addition of a small number of servers are used to
store and compute game status and render new game videos;
while in CloudFog, the storage and computation are carried
out on the cloud, servers are only used to render new game
videos and stream them back to the players. As the rendering
work does not require high hardware configuration, given the
same amount of revenue, CloudFog can deploy more servers
than EdgeCloud by using proper incentives to motivate
players or organizations to contribute their spare machines.

In spite of the previous research efforts on cloud gam-
ing, except deploying more datacenters which is costly, no
other approaches have been proposed to handle its critical
challenges. We propose light-weight strategies to tackle the
challenges to support thin-client MMOG.

III. SYSTEM DESIGN OF CLOUDFOG

A. Fog-assisted Cloud Gaming Infrastructure

Previous studies [6], [7] revealed that the uploading from
the players to the cloud does not seriously affect the response
latency, and downstream latency is an important factor for
QoE [6], which is affected by the game video streaming rate.
Thus, we aim to reduce the downstream latency by reducing
the traffic transmitted from the cloud. In our design, game
videos are streamed from nearby supernodes to players,
instead of from remote game servers. As the computation of
a virtual world for MMOG has a very high demand on server
capacities [1], cloud is responsible for this task. Figure 1
shows our fog-assisted cloud gaming infrastructure. The fog
is formed by supernodes, and normal nodes are connecting
to their nearby supernodes. The normal nodes that cannot
find nearby supernodes directly connect to the cloud.

We use ni to denote a normal node, and snj to de-
note a supernode in the system. When each supernode is
initially deployed, it is pre-installed with the game client.
During the game playing, when node ni makes an action
(e.g., launching a strike or moving to a new place), this

information is sent to the cloud server. The server collects
action information from all involved players in the system
and performs the computation of the new game state of
the virtual world (including the new shape and position of
objects and states of avatars). The cloud then sends the
update information to the supernode of ni (snj), which
updates its virtual world accordingly. snj then renders game
video for ni based on n′is viewing position and angle. snj
finally encodes the game video and stream it to ni. As a
player is close to its supernode in network distance, and
the traffic from the cloud is significantly reduced, so the
game video transmission delay is much shorter than that of
downloading game video directly from the cloud as in the
current cloud computing systems.

1) Requirements and Incentives for Supernodes: Ren-
dering game video is relatively less hardware demanding
than computation and communication in MMOG [19]; most
modern computers with discrete graphics cards are sufficient
to meet the rendering requirement. The nodes with sufficient
hardware are chosen as supernodes. As shown in [10], most
desktop systems are idle around 95% of the time in most
organizations. So the supernodes can be contributed by
different organizations that have idle computer resources,
and game players that have powerful computers can also
be selected as supernode candidates. Besides, game ser-
vice providers can deploy their own supernodes by placing
servers in different areas to support players. A game client of
MMOG usually takes about 5-6GB, and it is pre-installed in
the supernode. The supernodes are required to be: 1) reliable,
as malicious supernodes may distribute spam or virus that
may degrade player experience or harm players’ machines;
and 2) stable, supernodes need to provide stable support
and notify the central server of game service providers
before leaving the system. To satisfy these requirements,
organizations and individual players need to provide cre-
dentials to game service providers, game service providers
will verify the information of supernode contributors and
have contracts with them. Contributing a machine as a
supernode generates costs of running the machine (e.g.,
electricity and maintenance costs). Therefore, to incentivize
other organizations and players to contribute supernodes, an
incentive mechanism is needed to reward supernodes based
on the amount of upload bandwidth they contribute. The
reward can be in the form of real money or virtual money for
online games, and we use cs to denote the reward for each
bandwidth unit contributed by a supernode. An organization
or a player considers to contribute a supernode only when it
brings about certain profit, which is calculated by subtracting
its running costs from its earned rewards. We use Ps(j) to
denote the profit gained by supernode snj :

Ps(j) = cs × cj × uj − costj , (1)

3

where cj represents snj’s upload capacity, uj denotes snj’s
bandwidth utilization, and costj denotes the cost paid by
snj’s contributor in the same unit of cs. Ps(j) quantifies the
profit of contributing a supernode. Contributing a supernode
is lucrative when Ps(j) is greater than a certain threshold
(different contributors set their own thresholds based on
their expectations on profits). Then, the supernode’s owner
is motivated to contribute this supernode. We will evaluate
the effectiveness of this incentive mechanism in Section IV.

2) Economic Benefits for Game Service Providers: The
game service provider needs to guarantee that the money
spent on rewarding supernodes is smaller than the bandwidth
costs saved by the contribution of supernodes. We use
N(t) to denote the number of existing users at time t. For
simplicity, we omit t in the notations. Given the streaming
rate of game video R, the total system demand for bandwidth
equals N×R. Suppose there are m supernodes, each having
cj upload capacity with utilization uj . Then, supernode
bandwidth contribution equals Bs =

∑m
j=1 cj × uj . We

use Λ to denote the bandwidth usage for the cloud to send
update information to one supernode, and use n to denote the
number of users that supernodes support. Then, in CloudFog,
the bandwidth consumption for one player action for nodes
connecting to supernodes equals Λ ×m, and that for users
directly connecting to the cloud equals (N − n)R. The
bandwidth reduction (B−r) of CloudFog compared to current
cloud computing system equals:

B−r = N ×R− Λ×m− (N − n)R

= n×R− Λ×m
(2)

Suppose cc is the revenue gained by saving each server
bandwidth unit, the goal of the game service provider is to
maximize the saved cost by leveraging supernode bandwidth
contribution, which can be formulated as below.

Cg = max(cc ×B−r − cs ×Bs)
= max{cc[n×R− Λ×m]− cs ×Bs} (3)

s.t.

m∑
j=1

cj × uj ≥ n×R (4)

uj ≤ 1, ∀j ∈ {1, 2, ...m} (5)

Equation (4) guarantees that the total supernode band-
width contribution must reach the required node support
bandwidth, while Equation (5) restricts the utilization of a
supernode’s upload bandwidth within its bandwidth capacity.
In Equation (3), we see that given a specific number of n
(i.e. the coverage of normal nodes is determined), saved cost
Cg increases when m decreases; that is, a smaller number
of supernodes lead to higher cost saving. For the game
service provider, it should consider the pay and gain before

deploying a supernode. Suppose a new supernode snj is
deployed in an area; as a result, the coverage of players
supported by supernodes is increased by ν new players. We
use Gs(j) to denote the game service provider’s revenue
gain by deploying snj , and Gs(j) is estimated by:

Gs(j) = cc[ν ×R− Λ]− cs × cj × uj . (6)

If Gs(j) > 0, the cost of deploying supernode snj is
surpassed by the benefit of bandwidth saved from the ν new
players supported by snj . After supernodes are determined,
we need to map players to their closest supernodes. We
present the details in the next section.

3) Supernode Assignment: We use Ci to denote su-
pernode snj’s capacity, which is defined as the maximum
number of normal nodes snj can support. The cloud stores
the information of supernodes in the system in a table
including their IP addresses and available capacities. Since
node locations and coordinates can be determined by IP
addresses [20], [21], the distance between a user and su-
pernode can be calculated using the coordinate information.
When a player joins the system, the cloud finds its physically
close supernodes by referring to the table and calculating the
distance between the player and all supernode candidates.
Then the close supernodes of a user can be located based
on their IP addresses.

After newly joined node ni receives its close supernode
candidates from the cloud, it tests the transmission delay to
all of them, then removes candidates with transmission delay
greater than its threshold Lmaxi . The node can measure
its response latency requirement based on the genre of its
game [22], and then determines its Lmaxi

accordingly. This
threshold is used to ensure that its supernode is capable
of providing quick streaming support to it. Node ni then
chooses the supernode with the shortest transmission delay
and available capacity as its supernode, and records other
supernodes as its backups. If ni cannot find qualified su-
pernode measured by Lmaxi

and Ci, ni directly connects to
the cloud.

B. Receiver-driven Encoding Rate Adaptation

A player stores its received segments into its buffer while
playing the game video. To guarantee the continuity of
the video playback, the player needs to continuously fetch
segments from the buffer and play. Game video bitrate
affects the number of video segments received by a player
during a unit time period, hence the player’s playback
continuity. Thus, we can adjust game video bitrate based
on the size of buffered segments. The game video can be
encoded to different bitrates based on the requirements on
pixel size (resolution), hence the video quality level. A video
segment with a higher quality level (i.e., a higher bitrate)
leads to longer transmission latency. As shown in Figure 2,
500kbps corresponds to 384x216 resolution, and such a
segment leads to 50ms latency. We use qi (i ∈ [1, ..., Q])

4

Quality
level

Video
resolution

Video
bitrate

Latency
requirement

Latency
tolerance
degree

5 1280×720 1800 kbps 110 ms 1

4 720×486 1200 kbps 90 ms 0.9

3 640×480 800 kbps 70 ms 0.8

2 384×216 500 kbps 50 ms 0.7

1 288×216 300 kbps 30 ms 0.6

Figure 2: Video parameters for different quality levels.

to denote the video quality for quality level i and use bqi to
denote the corresponding bitrate. Different genres of games
have different requirements on response latency [11]. Based
on Figure 2, if a game video has a latency requirement of
90ms, the supernode should use 1200kbps encoding bitrate,
corresponding to a quality level of 4. To reduce the latency
of the game video, the supernode can choose encoding
bitrates corresponding to quality level lower than 4; that
is, sacrificing quality for lower latency. Due to unexpected
network condition (e.g., network congestion), packets may
actually be transmitted at a lower speed. In this case, a game
video can reduce video quality (decrease bitrate of the video
in encoding) in order to reach its latency requirement.

We aim to ensure that the playback rate is always lower
than or equal to the segment downloading rate. When this
condition cannot be satisfied, the video quality needs to be
reduced by one level. When the size of buffered video at cur-
rent quality level qi is expected to reach the size of buffered
video at quality level qi+1 (i.e., the downloading rate is faster
than the playback rate), the current encoding bitrate bqi can
be increased to bqi+1

to increase the video quality to qi+1.
Below, we explain the details of the adjustment operation.
The estimated size of the video buffered at time tk (denoted
by s(tk)) is calculated by:

s(tk) = s(tk−1) + (tk − tk−1)(d(tk)− bp(tk)), (7)

where d(tk) and bp(tk) denotes the downloading rate and
video playback rate at time tk. We use r to denote the
number of segments in the buffer:

r =
s(tk)

τ
=
s(tk−1) + (tk − tk−1)(d(tk)− bq(tk))

τ
, (8)

where τ denotes video segment size. If

r > 1 + β, (9)

the video bitrate adjusts up. β is an adjust-up factor,and

β = max{(bqi+1 − bqi)/bqi ,∀i ∈ [1, 2, ..., Q]}. (10)

β guarantees that the size of the buffered segments reaches
that of the incremented quality level. When the video bitrate
adjusts up, the user will not suffer from playback delay

Video quality 	ݍ௜
Encoding bitrate = 800 kbps

Client buffer Supernode/cloud

Segment Segment

Played

Increase 	ݍ௜ to ݍ௜ାଵ
Encoding bitrate = 1200 kbpsr>1+ߚ

Decrease	ݍ௜ to ݍ௜ିଵ
Encoding bitrate = 500 kbpsr<θ

r=1

௜ିଵFigureݍ 3: Receiver-driven encoding rate adaptation.

during the game. The adjust-down operation is performed
if

r < θ (θ ≤ 1), (11)

where θ denotes adjust-down threshold. Formula (11) en-
ables to proactively adjust down video bitrate to ensure the
playback continuity in network congestion, in which the
segment transmission time is typically much longer than
usual. In order to prevent the fluctuation of the video bitrate
for a client, the client can conduct the calculations of r for a
number of times consecutively. The video bitrate is adjusted
only when all results satisfy Formula (9) or Formula (11).
Figure 3 shows an example of the encoding rate adaptation.
When r > 1 + β for several consecutive estimations, the
supernode increases the video encoding quality by one level;
from 800kbps to 1200kbps for the player. When r < θ, the
supernode decreases the video quality by one level; from
800kbps to 500kbps.

Different games have different latency-tolerant degree
[11]. We consider this property to further enhancing the
probability of meeting the response latency requirement for
different games. Specifically, we require higher latency-
sensitive games to have larger buffered video size for the
encoding rate adjustment. We use ρ ∈ [0, 1] to denote the
latency tolerance degree; higher ρ means higher latency
tolerance degree. We then change Formula (9) to r >
(1+β)/ρ and change Formula (11) to r < θ/ρ for triggering
encoding bitrate adjustment. As a result, latency-sensitive
(lower latency-tolerant) games have a higher r threshold
while latency-tolerant games have a lower threshold for
adjusting the encoding bitrate.

C. Deadline-driven Sender Buffer Scheduling

After a supernode encodes the game video, it puts the
video segments into its buffer to send to its supported
normal nodes. Each supernode has a single queuing buffer to
send out video segments [23]. In a supernode’s buffer, the
segments for different game videos have different packet
loss tolerance and delay tolerance degrees [11]. We take
advantage of this property to improve overall QoE of players
across different games. Basically, segments from packet loss
tolerant game can drop packets while still meet their packet

5

Queuing buffer

Drop packets

Send

Segment 2
1:00pm1:01pm1:02pm

Segment 3 Segment 1

Figure 4: Deadline-driven buffer scheduling.

loss rate requirements; and segments from delay tolerant
game can delay transmission while still meet their latency
requirements. For video segment i, we use L̃ti and L̃ri to
denote its packet loss tolerance rate and response latency
requirement of its game. L̃ri can be evaluated based the
genre of game [22]. The expected arrival time for segment
i is calculated by tai = tmi

+ L̃ri , where tmi
denotes the

time that the player makes an action. When a new segment
is generated, the supernode inserts it into its queuing buffer
in ascending order of the expected arrival times; segments
with earlier arrival times have higher priorities to send out
earlier, as shown in Figure 4.

After a segment is put in the buffer, the supernode
estimates the arrival times of this segment and its succeeding
segments. If the estimated arrival time is later than its ex-
pected arrival time, the supernode drops some packets from
the preceding segments based on their packet loss tolerance
rates in order to meet latency requirement. The supernode
first estimates the response latency Lri for segment i:

Lri = lri + lsi + lqi + lti + lpi , (12)

where lri is server receiving delay from a player makes an
action until its supernode receives its game information from
the cloud; lsi is server processing time for a supernode to
render game videos; lqi is queuing delay from the time when
the video segment enters the buffer until it leaves the buffer;
lti is transmission time from the first packet until the last
packet of segment i has left the supernode; and lpi is the
propagation delay of transmitting the video segment from
the supernode to the player. lri and lsi are known. lqi , lti
and lpi can be estimated as below. Suppose npi is the total
size of segments preceding segment i, then lqi = npi/λr,
where λr is bandwidth of the supernode. lti = si/λr, where
si is the size of the segment. Different game videos are sent
to different players, and the players have different distances
from the supernode. The supernode records the propagation
delay of m recently sent packets for each player, and uses
their average value to estimate the propagation delay of
segment i in Equation (13):

lpi = (lp1 + ...+ lpm)/m (13)

If Lri > L̃ri , segment i is likely to be delayed, and user

who needs this segment would suffer from response delay
during the game. In this case, the supernode drops packets
from segment i and its preceding segments. The number of
packets to drop (denoted by Di) is calculated by: Di =
(Lri − L̃ri)/σ, where σ is the average amount of latency
reduced by dropping one packet in the buffer. The number of
packets needed to drop for each segment is determined based
on its packet loss tolerance rate. Also, in order to prevent
the preceding segments from dropping excessive number of
packets, we apply an exponential decay [24] factor φi ∈
[0, 1] for segment i. φi is initialized to 1 and decreases as
time elapses: φi = e−λti , where ti is the time period that
segment i waits in the queue. We then use dk to denote the
number of packets needed to drop in each segment k.

dk =
L̃tk × φk∑k
j=0 L̃tj × φj

×Di (14)

As shown in Figure 4, suppose 6 packets need to be
dropped in order to make segment 3 meet its latency
requirement. Segments 1, 2, 3 have packet loss tolerance
rates Lt1 = 0.6, Lt2=0.2, Lt3 = 0.5, and decay factors
φ1 = 0.5, φ2 = 0.1, φ3 = 0.2, respectively. Based on
Equation (14), the numbers of dropped packets for different
segments are calculated as d1 = 3, d2 = 2 and d3 = 1,
respectively.

IV. PERFORMANCE EVALUATION

We conducted experiments on the PeerSim [25] simulator
and the PlanetLab [26] real-world testbed to evaluate the
performance of CloudFog in comparison with other systems.
We measured the performance in response latency, playback
continuity and user coverage. Basic CloudFog (CloudFog/B)
denotes the fog-assisted cloud gaming infrastructure with-
out applying our proposed strategies; Advanced CloudFog
(CloudFog/A) denotes our system with all proposed strate-
gies. We compared CloudFog with the current cloud gaming
model [15] (denoted by Cloud) and EdgeCloud [19]. Edge-
Cloud deploys a number of powerful servers to increase user
coverage. The difference between EdgeCloud and CloudFog
lies in the responsibility of newly added servers. EdgeCloud
simply adds powerful servers to takeover all the cloud’s tasks
(including storing and computing game status and rendering
new game videos), while in CloudFog, the supernodes only
need to receive updates from the cloud to render new game
videos and stream them to the players. A user is covered by
datacenter if the response latency is no more than the latency
requirement of the user’s game. The default number of main
datacenters is 5 and 2 for all systems in simulation and
PlanetLab, respectively. EdgeCloud has additionally 45 and
8 randomly distributed servers in simulation and PlanetLab,
respectively. Other default settings are: θ = 0.5, λ = 1,
h1 = 100 and h2 = 10.

In the simulation, there were 10,000 game players (in-
cluding online and offline players), 10% of which have

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

of datacenters

30 ms 50 ms
70 ms 90 ms
110 msR

a
t
io
 o
f
c
o
v
e
r
e
d

P
la
y
e
r
s

(a) User coverage VS # of datacenters.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

100 200 300 400 500 600

of supernodes

30 ms 50 ms
70 ms 90 ms
110 msR

a
t
io
 o
f
c
o
v
e
r
e
d

P
la
y
e
r
s

(b) User coverage VS # of super nodes.

Figure 5: Impact of # of datacenters and supernodes on
PeerSim.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10

of datacenters

30 ms 50 ms
70 ms 90 ms
110 msR

a
t
io
 o
f
c
o
v
e
r
e
d

P
la
y
e
r
s

(a) User coverage VS # of datacenters.

0

0.2

0.4

0.6

0.8

10 20 30 40 50 60

of supernodes

30 ms 50 ms
70 ms 90 ms
110 msR

a
t
io
 o
f
c
o
v
e
r
e
d

P
la
y
e
r
s

(b) User coverage VS # of supernodes.

Figure 6: Impact of # of datacenters and supernodes on
PlanetLab.

the capacity to be supernodes. We randomly selected 600
supernodes for CloudFog. This is reasonable as the hard-
ware requirement of servers in EdgeCloud is much more
demanded than that of supernodes in CloudFog, thus, given
the same amount of revenue, CloudFog can deploy more
supernodes than the number of servers. The number of
friends for each player follows power-law distribution with
skew factor of 0.5 [27]. In order to simulate the dynamics
of supernodes and players, the players join the system
following the Poison distribution with an average rate of
5 players per second [28]. Each node leaves the system
after it finishes playing and joins the system for the next
session. As in [29]–[32], the capacities of nodes follow
Pareto distribution with a mean of 5 and shape parameter
α = 1. According to studies in [33], we randomly selected
50% nodes and 30% nodes to play for a period randomly
selected from (0, 2] and (2, 5] hours a day, and let the
remaining 20% nodes to play for a period randomly selected
from (5, 24] hours a day.

We defined 5 games, their quality levels and latency
requirements are shown in Figure 2. When a player joins the
system, if none of its friends is playing, it randomly chooses
a game to play; otherwise, it chooses the game that has
the largest number of its friends playing. OnLive provides
gaming service at a frame rate of 30fps [4]. Thus, the frame
rate of game videos in our experiment is set to 30fps. The
communication latency between nodes in the simulation
was set based on the trace from the PlanetLab. The time
period for one experiment is 4 days. In the PlanetLab
experiments, we used 750 distributed nodes nationwide,
and 300 of them have the capacity to be supernodes. The
nodes with IP 128.112.139.43 in Princeton University and
IP 131.179.150.72 in the University of California, Los
Angeles were set as cloud datacenters, due to their stable
connection during the experiment. In the experiment, we
used TCP protocol to transfer data between different nodes.
All other settings are the same as in the simulation.

Experimental results. Recall that the general response
latency requirement is 100ms [6]; 20ms is attributed to

playout and processing delay and 80ms is the network la-
tency. Figure 5(a) and Figure 6(a) show the ratio of covered
players with different number of deployed datacenters and
different network latency requirements of games on Peersim
and PlanetLab, respectively. The figures illustrate that more
datacenters lead to increased user coverage, as users are
more likely to connect to close datacenters. Also, given a
certain number of datacenters, stricter latency requirement
leads to a smaller user coverage. In order to guarantee a
better coverage of the user population, previous research
suggested deploying more datacenters nationwide [19]. As
building a medium size datacenter of approximately 300,000
gross square feet costs around 400 million dollars [34], [35],
it would cost OnLive around 8 billion dollars to build 20
more datacenters; however, 25 datacenters can only cover
60% players with the general response latency requirement.
Thus, increasing user coverage by deploying more data-
centers is cost-prohibitive for game service providers. In
CloudFog, a game service provider can offer a small amount
of monetary rewards as incentives to encourage supernodes,
and user coverage can be increased by deploying supernodes.

We then examine the effectiveness of supernodes in in-
creasing user coverage under the current cloud infrastructure,
that is, with 5 datacenters on PeerSim and 2 datacenters on
PlanetLab. We see from Figure 5(a) that when the network
latency requirement is 90ms, deploying 10 datacenters can
increase about 10% user coverage than deploying 5 datacen-
ters in PeerSim. Figure 6(a) reflects a similar trend as that
in Figure 5(a), the two figures show that the effectiveness
of increasing user coverage by deploying more datacenters
weakens when the number of datacenters reaches a specific
value. Figure 5(b) and Figure 6(b) show the ratio of cov-
ered players with different number of randomly selected
supernodes and network latency requirements, Figure 5(b)
shows that 100 supernodes can increase user coverage from
0.25 to 0.65 when the network latency requirement ranges
from 110ms to 30ms. 200 supernodes can help achieve user
coverage of deploying 25 datacenters. Figure 5(b) and Figure
6(b) show that instead of building datacenters, deploying

7

0

5000

10000

15000

20000

25000

30000

35000

40000

5000 6000 7000 8000 9000 10000
of players

Cloud
CloudFog/B
EdgeCloud

B
a
n
d
w
id
t
h

c
o
n
s
u
m
p
t
io
n
 (
M
b
p
s
)

(a) The PeerSim simulator.

0

500

1000

1500

2000

2500

3000

150 300 450 600 750
of players

Cloud
CloudFog/B
EdgeCloud

B
a
n
d
w
id
t
h

c
o
n
s
u
m
p
t
io
n
 (
M
b
p
s
)

(b) The PlanetLab real-world testbed.

Figure 7: Server bandwidth consumption.

supernodes is an effective alternative in increasing user
coverage.

Figures 7(a) and 7(b) show the bandwidth consumption
of the cloud versus the number of players in the system. As
CloudFog/A does not influent the bandwidth consumption of
CloudFog, thus we use CloudFog/B to represent the band-
width consumption of both CloudFog/A and CloudFog/B. We
see that the result follows Cloud>EdgeCloud>CloudFog/B.
The bandwidth consumption of EdgeCloud does not include
those of additional servers. If we include them, EdgeCloud’s
bandwidth consumption is similar to that of Cloud’s. Cloud-
Fog/B saves significant bandwidth consumption cost due to
its employment of supernodes to stream game videos to the
players. The cloud only needs to send update information
rather than the entire game video to the supernodes. We also
see that as the number of players increases, the bandwidth
consumption increases. The increase rate of CloudFog/B is
smaller than those of other systems. This means that our
system can save more bandwidth cost when there are a very
large number of players.

Figures 8(a) and Figure 8(b) show the average response
latency per player in different systems in PeerSim and
PlanetLab, respectively. We see that EdgeCloud generates
slight shorter response latency than Cloud due to the use
of scattered servers, and users are more likely to connect to
servers within a short distance. CloudFog/B shows a slightly
reduce in response latency than that of EdgeCloud, which
indicates the effectiveness of our fog-assisted infrastructure
in reducing the latency. In CloudFog, users are supported by
supernodes that are physically close to them. As the game
video is streamed from supernodes to the users, instead of
from servers that are physically far away. Thus, CloudFog
is able to reduce the response latency for users. This
result shows that our system not only reduces the response
latency of the system of deploying many datacenters but
also saves the prohibitive cost of building more datacenters.
CloudFog/A further reduces the latency, which indicates the
effectiveness of our proposed strategies in reducing response
latency.

Video playback continuity is an important metric for

65

70

75

80

85

90

95

100

5000 6000 7000 8000 9000 10000
of players

Cloud CloudFog/B

CloudFog/A EdgeCloud

A
v
e
r
a
g
e
 r
e
s
p
o
n
s
e

la
t
e
n
c
y
 (
m
s
)

(a) The PeerSim simulator.

70

75

80

85

90

95

100

150 300 450 600 750
of players

Cloud CloudFog/B
CloudFog/A EdgeCloudA

v
e
r
a
g
e
 r
e
s
p
o
n
s
e

la
t
e
n
c
y
 (
m
s
)

(b) The PlanetLab real-world testbed.

Figure 8: Response latency.

0.6

0.7

0.8

0.9

1

5000 6000 7000 8000 9000 10000
of players

Cloud CloudFog/B
CloudFog/A EdgeCloud

C
o
n
t
in
u
it
y

(a) The PeerSim simulator.

0.6

0.7

0.8

0.9

1

5000 6000 7000 8000 9000 10000
of players

Cloud CloudFog/A
CloudFog/B EdgeCloud

C
o
n
t
in
u
it
y

(b) The PlanetLab real-world testbed.

Figure 9: Playback continuity.

QoE. When there are not enough packets in the cache, the
player suffers from an playback interruption. We measured
continuity by the proportion of packets arrived within the
required response latency over all packets in a game video.
Figures 9(a) and 9(b) show the average playback continuity
of game videos when different number of players are playing
games concurrently, which is a metric to measure weather
a player can enjoy smooth video playback. We see that
Cloud yields the lowest playback continuity because there
are only a small number of cloud servers, which may locate
far away from some players. So most game videos need
to be transmitted from remote servers to clients, thus large
portion of packets cannot be received within the required
response latency. EdgeCloud produces higher continuity
than Cloud because players in EdgeCloud are supported by
their nearby servers. EdgeCloud generates smaller continuity
than CloudFog/B and CloudFog/A, because not all users in
EdgeCloud are able to connect to a nearby server due to the
shortage of servers. So game video packets need to travel
longer distance than that in CloudFog. CloudFog/B increases
the continuity of EdgeCloud due to the effectiveness of
the fog-assisted infrastructure, a large portion of users are
supported by supernodes that are close to them. CloudFog/A
provides an average of more than 90% continuity, with the
contribution of all other proposed strategies.

In the following, we show the effectiveness of each of
our proposed strategies: i) encoding rate adaptation and ii)
deadline-driven buffer scheduling. Figure 10(a) and Figure

8

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

P
e
r
c
e
n
t
a
g
e
 o
f

s
a
t
is
fi
e
d
 p
la
y
e
r
s

of suporting players of a supernode

CloudFog/B

CloudFog‐adapt

(a) The PeerSim simulator.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

P
e
r
c
e
n
t
a
g
e
 o
f

s
a
t
is
fi
e
d
 p
la
y
e
r
s

of suporting players of a supernode

CloudFog/B

CloudFog‐adapt

(b) The PlanetLab real-world testbed.

Figure 10: Effectiveness of encoding rate adaptation.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

P
e
r
c
e
n
ta
g
e
 o
f

s
a
t
is
fi
e
d
 p
la
y
e
r
s

of suporting players of a supernode

CloudFog/B

CloudFog‐schedule

(a) The PeerSim simulator.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

P
e
r
c
e
n
t
a
g
e
 o
f

s
a
t
is
fi
e
d
 p
la
y
e
r
s

of suporting players of a supernode

CloudFog/B

CloudFog‐schedule

(b) The PlanetLab real-world testbed.

Figure 11: Effectiveness of deadline-driven buffer scheduling.

10(b) show the percentage of satisfied players with and
without (denoted by CloudFog-adapt and CloudFog/B) the
encoding rate adaptation strategy, in PeerSim and PlanetLab,
respectively. We see that CloudFog-adapt increases the per-
centage of satisfied users in CloudFog/B. The increase rate
reaches 27% when the number of supported players of a
supernode is 25 in the simulation. When the network condi-
tion is not good enough to support high quality streaming of
game videos, this strategy decreases the video quality level
to meet the response latency based on loss rate tolerance,
thus increasing the number of satisfied players.

QoE is determined by packet loss rate and response delay.
Thus, if a user can receive 95% of its game packets within
the game’s response latency, we consider this user as a
satisfied player, and this definition is adopted in all figures
within the paper. Figures 11(a) and Figure 11(b) show the
percentage of satisfied players with and without the deadline-
driven buffer scheduling (denoted by CloudFog-schedule and
CloudFog/B). We see that CloudFog-schedule increases the
percentage of satisfied players, especially when a supernode
is supporting a large number of players. This is due to the
reason that in CloudFog-schedule, supernodes will assign
higher priorities to packets with tight deadlines in the process
of packet transmission, and drop packets from game videos
based on the packet loss tolerance. Thus, CloudFog-schedule
is able to ensure that packets arrive at the client within their
latency requirement. The result confirms that this deadline-
driven buffer scheduling strategy is effective in reducing the
overall latency of the packets by globally considering their
latency requirement and loss rate requirement of different
games.

In Figures 11(a), 11(b), 10(a) and 10(b), as the number of
supporting players of a supernode increases, the percent of
satisfied players drops quickly in CloudFog/B, while that of
CloudFog-schedule and CloudFog-adapt exhibits a moderate
decrease. When a supernode supports more players, it needs
to send out more packets at the same time, thus leading
to high delays. Our strategies adjust the video quality and
schedule sending queue based on different tolerant rates
of packet loss and response delay of different games, thus

resulting in a high percentage of satisfied players even in a
traffic congestion. These results confirm the effectiveness of
our proposed strategies in enhancing cloud game QoE.

V. CONCLUSIONS

The rapid growth of mobile users and high popularity of
MMOG make thin-client MMOG an inevitable trend. How-
ever, conventional MMOG gaming model requires players to
use powerful computers. Cloud gaming is a very promising
model for thin-client MMOG since it frees players from
this requirement, but it faces formidable challenges that
prevents it from achieving high user QoE and low cost. We
propose CloudFog, which leverages supernodes functioning
as “fog” to connect the cloud to users. The cloud conducts
the intensive computation for producing game state and
sends update information to supernodes. The supernodes
then generate game videos to stream to players. Considering
that different games have different degrees of response
latency tolerance and packet loss tolerance, we propose
a receiver-driven encoding rate adaption and a deadline-
driven buffer scheduling strategies to balance these two
factors in guaranteeing user QoE. As a result, CloudFog
reduces response latency and bandwidth consumption and
increases user coverage. These advantages are verified by
our experiments on the PeerSim simulator and the PlanetLab
real-world testbed. In our future work, we will study the
cooperation among supernodes in rendering and transmiting
game videos to further reduce response latency. Also, we
will study the security issues such as dealing with malicious
supernodes and preventing cheating behaviors in CloudFog.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,
Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] C. Bezerra and C. Geyer. A load balancing scheme for
massively multiplayer online games. Multimedia Tools Appl,
2009.

9

[2] N. Bilton. Video Game Industry Continues Major Growth,
Gartner Says. The New York Times, 2011.

[3] CBS News. Study: Number of smartphone users tops 1
billion.
http://www.cbsnews.com/8301-205 162-57534583/study-
number-of-smartphone-users-tops-1-billion/, 2012.

[4] Onlive. Inc. http://www.onlive.com/, [Accessed in Nov 2014].

[5] Gaikai. Inc. http://www.gaikai.com/, [accessed in nov 2014].

[6] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld. An
Evaluation of QoE in Cloud Gaming Based on Subjective
Tests. In Proc. of IMIS, 2011.

[7] S. Choy, B. Wong, G. Simon, and C. Rosenberg. The brewing
storm in cloud gaming: A measurement study on cloud to
end-user latency. In Proc. of NetGames, 2012.

[8] K. Chen, P. Huang, and C. Lei. Game Traffic Analysis: An
MMORPG Perspective. Computer Networks, 50(16):3002–
3023, 2006.

[9] E. Carlini, M. Coppola, and L. Ricci. Integration of P2P and
Clouds to support Massively Multiuser Virtual Environments.
In Proc. of NetGames, 2010.

[10] P. Suresh Kumar, P. Sateesh Kumar, and S. Ramachandram.
Recent Trust Models In Grid. JATIT, 2011.

[11] Y. Lee, K. Chen, H. Su, and C. Lei. Are all games equally
cloud-gaming-friendly? An electromyographic approach. In
Proc. of NetGames, 2012.

[12] C. Bezerra, J. Comba, and C. Geyer. Adaptive load-balancing
for MMOG servers using KD-trees. CIE, 10(3):5, 2012.

[13] S. Ahmad, C. Bouras, E. Buyukkaya, R. Hamzaoui, A. Pa-
pazois, A. Shani, G. Simon, and F. Zhou. Peer-to-peer live
streaming for Massively Multiplayer Online Games. In Proc.
of P2P, 2012.

[14] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan.
Gaming over COPS: A Content Centric Communication
Infrastructure for Gaming Applications. In Proc. of ICDCS,
2012.

[15] C. Huang, C. Hsu, Y. Chang, and K. Chen. GamingAnywhere:
An Open Cloud Gaming System. In Proc. of MMSys, 2013.

[16] Z. Zhao, K. Hwang, and J. Villeta. Game cloud design with
virtualized CPU/GPU servers and initial performance results.
In Proc. of ScienceCloud, 2012.

[17] S. Wang and S. Dey. Cloud mobile gaming: modeling and
measuring user experience in mobile wireless networks. In
Proc. of SIGMOBILE, 2012.

[18] M. Hemmati, A. Javadtalab, A. Shirehjini, S. Shimohammadi,
and T. Arici. Game as Video: Bit Rate Reduction through
Adaptive Object Encoding. In Proc. of NOSSDAV, 2013.

[19] S. Choy, B. Wong, G. Simon, and C. Rosenberg. EdgeCloud:
A New Hybrid Platform for On-Demand Gaming. Technical
Report CS-2012-19, University of Waterloo, 2012.

[20] P. Salvador and A. Nogueira. Study on geographical distri-
bution and availability of bittorrent peers sharing video files.
In Proc. of ISCE, 2008.

[21] H. Shen and G. Liu. A lightweight and cooperative multi-
factor considered file replication method in structured P2P
systems. TC, 2012.

[22] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld.
Gaming in the clouds: QoE and the users’ perspective.
Mathematical and Computer Modelling, 2011.

[23] H. Kanakia, P. Mishra, and A. Reibman. An adaptive con-
gestion control scheme for real-time packet video transport.
In Proc. of SIGCOMM, 1993.

[24] D. Gardner, J. Gardner, G. Laush, and W. Meinke. Method for
the Analysis of Multicomponent Exponential Decay Curves.
The Journal of Chemical Physics, 31(4):978–986, 1959.

[25] The PeerSim simulator. http://peersim.sf.net, [Accessed in
Nov 2014].

[26] PlanetLab. http://www.planet-lab.org/, [Accessed in Nov
2014].

[27] S. Raza A. Nazir and C. Chuah. Unveiling dacebook: a
measurement study of social network based applications. In
Proc. of SIGCOMM, 2008.

[28] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of
Multichannel P2P Live Video Systems. TON, 18(4):1248–
1260, 2010.

[29] H. Shen and C. Xu. Locality-aware and churn-resilient
load balancing algorithms in structured peer-to-peer networks.
TPDS, 18(6):849–862, 2007.

[30] N. Bansal and M. Harchol-Balter. Analysis of srpt
scheduling: investigating unfairness. In Proc. of SIGMET-
RICS/Performance, 2001.

[31] X. Zhang, Y. Qu, and L. Xiao. Improving distributed work-
load performance by sharing both cpu and memory resources.
In Proc. of ICDCS, 2000.

[32] R. Subrata and A. Y. Zomaya. Game-theoretic approach for
load balancing in computational grids. TPDS, 19(1):66–76,
2008.

[33] C. Hellstrom, K. Nilsson, J. Leppert, and C. Aslund. In-
fluences of motives to play and time spent gaming on the
negative consequences of adolescent online computer gaming.
Computers in Human Behavior, 28(4):1379–1387, 2012.

[34] I. Goiri, J. Guitart, and J. Torres. Economic model of a Cloud
provider operating in a federated Cloud. Information Systems
Frontiers, 14(4):827–843, 2012.

[35] L. Barroso and U. Holzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Synthesis Lectures on Computer Architecture. 2009.

10

