
GreedyFlow: Distributed Greedy Packet Routing
between Landmarks in DTNs

Kang Chen and Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631

Email: {kangc, shenh}@clemson.edu

Abstract—Delay Tolerant Networks (DTNs) have attracted
significant interests due to the adaptability in areas without
infrastructures. In such scenarios, moving data from one place
(landmark) to another place (landmark) is essential for data
communication between different areas. However, current DTN
routing algorithms either fail to fully utilize node mobility or
have additional requirements that cannot be satisfied easily (i.e.,
require base stations or the global traffic distribution). Therefore,
in this paper, we propose a distributed greedy routing algo-
rithm, namely GreedyFlow, for efficient packet routing between
landmarks. GreedyFlow builds a local traffic map and a global
landmark map on each node. The local traffic map indicates the
node’s knowledge about the amount of traffic (node transition)
between landmarks in the area where it primarily visits. It is
constructed by collecting encountered nodes’ transit frequencies
between these landmarks. The global landmark map shows the
distribution of landmarks in the system and is built offline. In
packet routing, the global landmark map shows the general
packet forwarding direction, while the local traffic map helps
determine the next-hop landmark on the fastest path in the
forwarding direction. As a result, packets are greedily forwarded
toward their destination landmarks. Extensive real trace driven
experiments demonstrate the high efficiency of GreedyFlow.

I. INTRODUCTION

In delay tolerant networks (DTNs) [1], mobile nodes rely

on the encountering to communicate with each other directly

without infrastructures. Therefore, such a network structure is

suitable for areas where infrastructures are costly to be built

or are unavailable. In these scenarios, it is desirable to be able

to forward packets from one place (landmark) to another place

(landmark), i.e., packet routing between landmarks, to support

many practical DTN applications.
For example, people live in villages in a mountain area may

wish to communicate with each other through their computers.

However, it is costly to build infrastructures to interconnect

them or enable satellite connection in each village. In this

case, we can exploit the DTN consisting of mobile devices

carried by people or vehicles moving in the area to transfer

data between these villages [2]. We can also enable satellite

connection in one village and rely on the DTN based packet

routing between villages to enable the Internet connection for

all villages. Though such a connection has a long delay, it

is still useful for delay tolerant applications such as email.

Similarly, such a communication structure can be used to

collect data from sensors attached to animals [3] or deployed

in mountain areas without infrastructures. Even in areas with

infrastructures, it can be an effective backup scheme to support

the dissemination of important messages in extreme scenarios

such as disaster and outage [4].

Packet routing between landmarks in DTNs can be real-

ized [5]–[7] by always forwarding a packet to the node that

is more likely to move to its destination landmark. In other

words, these methods rely on nodes that can frequently visit a

packet’s destination landmark to deliver the packet. Therefore,

the mobility of nodes that rarely visit the destination landmark

cannot help forward the packet. When the number of nodes

that can frequently visit the destination landmark is limited,

the packet routing efficiency is also limited.

To solve this problem, some researchers have proposed

to forward a packet along a sequence of landmarks (called

landmark path) to better utilize node mobility for efficient

packet routing between landmarks [8]–[10]. In each hop, the

packet is carried by a node to move from current landmark

to the next landmark in the path. With such a design, nodes

moving between two consecutive landmarks on the landmark

path can help forward the packet, even when these nodes rarely

or never visit the packet’s destination landmark. This means

that node mobility is better utilized to forward packets.

However, these methods require either base stations [8], [9]

or the global traffic distribution [10] to calculate the optimal

landmark path for each packet. Such requirements cannot be

satisfied easily in real DTNs. First, due to the long delay in

DTN routing, the global traffic information cannot be updated

timely on each node. Second, in some DTN scenarios, such as

battlefields and mountain areas, it is hard to build base stations.

Such a limitation poses a significant challenge on realizing

efficient packet routing between landmarks in DTNs.

To solve the above challenge, we propose GreedyFlow, a

distributed packet routing algorithm in DTNs. In GreedyFlow,

to better utilize node mobility, packets are forwarded in a

landmark-by-landmark manner. Each node maintains a global

landmark map and a local traffic map (Figure 1). The network

is split into sub-areas, each of which is represented by a

landmark. The global landmark map indicates the distribution

of landmarks in the network and is built offline. The local

traffic map reflects a node’s knowledge about how frequently

nodes transit between landmarks where it primarily visits.

When a node meets another node, it collects the encountered

node’s transit frequencies between landmarks covered by its

local traffic map to update the traffic map.

The global landmark map and local traffic map are used to

2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems

978-1-4673-9101-6/15 $31.00 © 2015 IEEE

DOI 10.1109/MASS.2015.67

199

L1

L2

L3

L4

Des:�L8

…...

Local�traffic�map

Fig. 1: Illustration of the design rationale.

guide packet routing. The basic idea is to greedily forward

a packet to a landmark closest to the destination landmark

(called temporary destination landmark) within current packet

holder’s local traffic map. When a node (say Ni) receives a

packet, it first determines the temporary destination landmark

for the packet. Then, the node determines the fastest landmark

path to the temporary destination landmark on its local traffic

map and selects the next landmark on the path as the next-

hop landmark. Next, Ni forwards the packet to the node that

is predicted to move to the selected next-hop landmark.

For example, in Figure 1, for a packet destined to far-away

landmark L8, the node uses its global landmark map to identify

the landmark that is closest to L8, i.e., L4, and uses the local

traffic map to find the fastest path to L4. With such a design,

the packet is always forwarded to the landmark closest to the

destination landmark through the fastest path based on local

information. That is, packets are greedily forwarded toward

their destination landmarks based on the two maps.

In GreedyFlow, all packet forwarding decisions are made

locally without the requirement of base stations or global

traffic distribution. This is the major contribution of this work

compared to previous works [8]–[10] that also adopt landmark

based relay. In summary, the contributions of this paper include

• We propose a distributed traffic map generation method,

which enables each node to learn the node transition

frequencies between landmarks in the area where it

primarily visits. Such a design rationale is similar to the

phenomenon that people often know the traffic volume

between places they visit a lot.

• We propose a fully distributed greedy packet routing

algorithm that can realize efficient packet routing between

landmarks in DTNs based on the local traffic map and the

global landmark map.

• Extensive real trace based experiments demonstrate the

efficiency of the proposed algorithm.

The remaining of this paper is arranged as follows. Sec-

tion II introduces related work. Section III presents the detailed

system design. Section IV conducts performance evaluation

through real trace driven experiments. Finally, Section V

concludes the paper with remarks on our future work.

II. RELATED WORK

A. Packet Routing between Landmarks in DTNs

Packet routing between landmarks in DTNs [5]–[10] has

been studied recently. The authors in [5] observe the long

term mobility pattern of each node and use such information

to forward packets to nodes that frequently move to their

destinations. GeoOpps [6] routes packets to geographical loca-

tions through vehicle networks. It always forwards packets to

vehicles on the route with the smallest minimal estimated time

of delivery (METD). In the work of [7], a packet is always

forwarded to the node that has closer distance to its destination

landmark. These methods mainly rely on nodes that are likely

to visit the destination landmarks. When the number of such

nodes is limited, the routing efficiency is also limited.

In order to better utilize node mobility, researchers have pro-

posed to forward packets in a landmark-by-landmark manner

to reach the destination landmarks [8]–[10]. In LOUVER [8],

base stations are built on road intersections for packet relay.

Vehicle mobility is then exploited to forward packets from

one base station to another to reach the destination area.

DTNFLOW [9] expands vehicle networks in LOUVER to

general DTNs. It splits the network into sub-areas represented

by landmarks. Then, predicted node mobility is used to carry

packets from one landmark to another landmark. Geomob [10]

utilizes the global traffic distribution to forward packets to

different areas through the landmark based relay.

Above methods need either base stations or the global traffic

distribution. These requirements can hardly be realized easily

in DTNs. Such limitations constraint the feasibility of these

methods. On the contrary, our method does not rely on any

base stations and makes forwarding decisions locally, which

is more suitable for distributed DTNs.

B. Packet Routing between Nodes in DTNs

There are already many algorithms for packet routing be-

tween nodes in DTN [11]–[19]. PROPHET [11] updates two

node’s future meeting probability upon their encountering and

ages it over time. It always forwards a packet to the node that

has a higher probability of meeting its destination. RAPID [12]

and MaxContribution [13] specify different packet forwarding

and storage priorities to realize different routing performances,

e.g., maximal success rate and minimal delay. The work in [14]

further propose to exploit transient contact patterns to select

forwarder for more efficient packet routing.

Considering that mobile device owners often belong to

certain social networks, social networking properties have been

utilized for packet routing in DTNs [15]–[19]. MOPS groups

frequently encountered nodes as communities and assigns

different roles to nodes with different community visiting

patterns to facilitate the publish/subscribe service in DTNs.

BUBBLE [16] first forwards a packet to the community that

contains its destination and then routes the packet within the

community. SimBet [17] considers both a node’s centrality and

its similarity with the packet destination to evaluate a node’s

suitability to carry the packet. The works in [18] and [19]

exploit fixed community and transient community structure in

DTNs for efficient packet routing, respectively.

III. SYSTEM DESIGN

In this section, we first introduce the network modeling and

design rationale. We then present how to construct the global

200

landmark map and the local traffic map. Finally, we introduce

the detailed packet routing algorithm.

A. Network Modeling and Design Goal

We assume a DTN consisting of n nodes, denoted by Ni

(i ∈ [1, n]). We also assume that the network is split into sub-

areas, each of which is represented by a landmark. A landmark

is often selected as the area where nodes gather together, such

as a village in the rural area and a building on the campus. This

means that the landmark is just the notation of an area and does

not require any base stations to be built. We assume there are

m landmarks, denoted by Lj (j ∈ [1,m]). Then, node mobility

can be regarded as continuous transit between landmarks. We

also assume that nodes present certain landmark visit patterns,

which exists in many DTNs. For example, in DTNs consisting

of mobile devices carried by people in rural areas or students

on a campus, a person or a student may mainly transit between

a few landmarks (i.e., villages or buildings).

The goal of this paper is to realize efficient and distributed

packet routing between identified landmarks in DTNs. This

means that no infrastructures or global information is needed

to support packet routing, and the packet forwarding decision

is made locally. Such a function can support many interesting

services or applications, such as data communication between

rural villages, where infrastructures are too costly to build.

B. Rationale of System Design

In this work, we relay packets in a landmark-by-landmark

manner to reach their destination landmarks. Such a strategy

can better utilize node mobility for routing packet to land-

marks. For example, suppose we need to forward packets

from L1 to L16. With the landmark based routing strategy,

these packets are forwarded through a landmark path, say

L1 → L6 → L12 → L16. As a result, nodes moving between

any two neighboring landmarks on the path, e.g., L1 and L6,

can forward these packets one step closer to destination L16

even though these nodes rarely or never visit L16. This means

that more node mobility is utilized for packet routing between

landmarks, leading to better routing efficiency.

1) Challenges: The key problem in these methods is how

to select a suitable landmark path for each packet. Recall that

packets are carried by nodes to move from one landmark to

another. This means that the more frequently nodes move from

one landmark to a neighbor landmark, say L1 to L6, the more

quickly a packet can be forwarded from L1 to L6, and the

smaller the expected delay of this forwarding step. Then, we

can calculate the expected delay of a landmark path as the sum

of the expected delays on each hop and select the landmark

path with the smallest expected delay for packet forwarding.

However, how to find the landmark path with the smallest

expected delay efficiently and accurately is non-trivial. This is

because nodes often are sparsely distributed in DTNs. Previous

methods [8]–[10] realize this step by either building extra base

stations on each landmark [8], [9] or requiring that each node

knows the global traffic distribution [10]. Unfortunately, both

requirements cannot be satisfied easily in real DTNs.

2) Our Solution: GreedyFlow routes packets through land-

mark path in a distributed manner. Without global information,

GreedyFlow does not try to determine the whole relay path for

each packet. Rather, it only selects the next-hop landmark for

each packet based on the local information on current carrier

to greedily route it to its destination landmark. To realize

this goal, GreedyFlow builds a global landmark map and a

local traffic map on each node, which represent the node’s

understanding of the landmark distribution in the network and

node transition frequencies between landmarks in the area

where the node primarily visits, respectively. The two maps

help decide the next-hop landmark for each packet.

Such a design rationale matches with our daily experiences.

People usually know the traffic delays on roads connecting

places they visit frequently and the general direction to reach

a far-away unfamiliar place (e.g., in south or north). Then,

people can use such knowledge to greedily relay a message

to a far-away place efficiently.

C. Global Landmark Map

The global landmark map shows the distribution of land-

marks in the network. It includes the GPS position of each

landmark and the neighboring relationships between land-

marks, i.e., the neighbor landmarks of each landmark. It is

designed to ensure that packets are forwarded on the right

direction towards their destination landmarks.

The global landmark map is generated and maintained by

the network administrator. When a DTN is deployed, the

administrator selects landmarks in the network. It can collect

the mobility information of nodes in the system to determine

landmarks. When a node joins in the system, it first obtains

the global landmark map from the network administrator. The

global landmark map usually remains unchanged for a relative

long period of time, which means that the global landmark

map on each node does not need frequent updates. When the

global landmark map changes, each node can obtain the up-

dated version when it has access to the network administrator,

e.g., when moving to a place with network connection.

We split the network into sub-areas based on landmarks and

let each landmark be responsible for the sub-area it resides

in. The area between two landmarks is evenly split to the

two neighboring sub-areas (i.e., the borderline passes through

the midpoint of the line connecting the two landmarks and is

perpendicular to it), as shown in Figure 2(a). Each sub-area

is stored as the list of vertices in clockwise direction. When

a node enters the sub-area of a landmark, we regard it as

transiting to the landmark. As a result, node mobility can be

summarized as consecutive transitions between landmarks.

D. Local Traffic Map

Each node maintains a local traffic map to record its knowl-

edge about how frequently nodes transit between landmarks

in the area where it primarily visits. It is designed to select

the locally optimal landmark path on the direction to the

destination landmark for packets carried by the node. Below,

we first introduce how to determine the area a node visits

201

L1 L2

L5

L3 L4

L6

(a) Global landmark map.

L1 L2

L6 L7

L3

L5

(b) Coverage of local traffic map.

Fig. 2: Example of global landmark map and local traffic map coverage.

0

10

20

30

40

50

60

70

80

1 51 101 151 201 251 301

N
um
be
r�
of
�L
an
dm
ar
ks

Node�Sequence

All�Visits
70%�of�Visits

(a) DART trace.

0

4

8

12

16

20

1 6 11 16 21 26 31

N
um
be
r�
of
�L
an
dm
ar
ks

Node�Sequence

All�Visits
70%�of�Visits

(b) DNET trace.

Fig. 3: Distribution of the # of visited landmarks.

primarily, i.e., the coverage of the local traffic map, and then

present how to construct the local traffic map on each node.

1) Local Traffic Map Coverage: As previously introduced,

the local traffic map helps determine the next-hop landmark

on the path that can lead to the destination landmark quickly.

Therefore, the more landmarks the local traffic map includes,

the more likely that the next-hop landmark that can lead

to smaller expected delay can be found. However, nodes

often have limited storage resources, and the information

dissemination often has a long delay in DTNs. This means

that a node can neither store the node transit frequencies

between all landmarks nor collects such information timely

in DTNs. Therefore, we need to determine which landmarks

to be included in the local traffic map.

To solve this problem, we first examine how nodes visit

landmarks in DTNs. We analyzed two real DTN traces: Dart-

mouth Campus Trace (DART) [20] and DieselNet AP Trace

(DNET) [21]. The former shows the association records of the

WiFi access points (APs) and students’ devices on Dartmouth

campus, while the latter includes the AP association records

of 34 buses in a college town (UMass). We preprocessed the

trace to abstract landmarks, i.e., a building or an area with

a certain size, from the two traces and merge neighboring

records with the same device and landmark. Finally, the DART

trace contains 320 nodes and 159 landmarks, and the DNET

trace has 34 nodes and 18 landmarks.

We measured the total number of landmarks a node visits

in the trace and the number of landmarks that account for

70% of a node’s landmark visits in the trace. The test results

with the two traces are shown in Figure 3(a) and Figure 3(b),

respectively. We ranked nodes in descending order of the two

metrics in the two figures. From the two figures, we find that

more than 80% of nodes in the DART trace and all nodes in

the DNET trace visit fewer than 20 landmarks. This means

that most nodes visit a few landmarks throughout the two

traces. Besides, more than 90% of nodes in both traces spend

their 70% of visits on fewer than 5 landmarks. Such results

demonstrate that nodes often only frequently transit between

a limited number of landmarks.

Therefore, we let the local traffic map of each node only

include landmarks in the area where the node primarily visits.

Specifically, each node ranks the landmarks in decreasing

order of its visit frequencies and selects the first k landmarks

that account for Vf% of its total landmark visits. The area

covered by these landmarks, i.e., the area covered by the

most left-up landmark and the most right-bottom landmark,

is defined as the coverage of the local traffic map. Figure 2(b)

shows an example of the coverage of a local traffic map. In this

example, the primarily visited landmarks are L1, L2, L6, and

L7. Then, the shadowed area is determined as the coverage of

the local traffic map, which includes L1, L2, L3, L5, L6, and

L7. We can see that the larger Vf is, the more information

the local traffic map provides, but also the more overhead

incurred. Therefore, a suitable Vf can be determined based on

the requirement on routing efficiency and overhead.

2) Local Traffic Map Construction: Each node updates

the local traffic map upon encountering other nodes. Specif-

ically, suppose the coverage of a node’s local traffic map is

Ci = {La, Lb, Lc, Ld}, {a, b, c, d} ∈ [1,m], it queries each

encountered node about how frequently it transits between

these landmarks, i.e., from Lx to Ly , x, y ∈ {a, b, c, d} and

x �= y. To enable such a function, each node builds an indi-

vidual landmark transit table to record its transit frequencies

between landmarks, as shown in Table I. Each row represents

the node’s transit frequency (i.e., how many transits per day)

between two neighboring landmarks. The third column and

the fourth column are the transit frequencies from Lx to Ly

and from Ly to Lx, respectively.

TABLE I: Landmark transit table.

Landmarkx Landmarky Frequencyxy Frequencyyx
L1 L5 3 2.5
L2 L13 8 9
L15 L24 7 4
· · · · · · · · · · · ·

Each node collects encountered nodes’ transit frequencies

to update its local traffic map. For example, suppose a node’s

local traffic map contains landmark L1 and landmark L2.

Then, to get the overall transit frequency from L1 to L2, the

node gets every encountered node’s transit frequency from L1

to L2 and sums up these transit frequencies. However, in this

process, a node may meet another node and obtain its transit

frequency multiple times. Then, to avoid summing up a node’s

transit frequency multiple times, each node maintains a record

on which nodes’ transit frequencies have already been included

in the calculation of the overall transit frequency from one

landmark to another. We name such a record as the transit

element table. Table II shows an example of transit element

table on a node for the transition from L1 to L2.

The “overall frequency” in each transit element table finally

is stored in the local traffic map. Table III shows the traffic

202

TABLE II: Transit element table.

Transit Node Frequency

L1 → L2

N8 0.7
N5 2
N7 1.5
· · · · · ·

Overall 10.5

L1 L2

L6 L7

L3

L5

L15

Temp�
des.

Des.

(a) Temporary destination landmark.

L1 L2

L6 L7

L3

L5

L15

Temp�
des.

Des.

Fastest�path�to�temp�des.

(b) Fastest path to the temp des.

Fig. 4: Determining the next-hop landmark.

map following the example in Figure 2(b).

TABLE III: Local traffic map.

Landmark ID Neighbor Landmark Frequency

L1
L2 10.5
L5 13

L2

L1 9
L6 4
L3 10.2

L3
L2 4.2
L7 5.5

· · · · · · · · ·

In summary, in GreedyFlow, when a node, say Ni, meets

another node, say Nj , Ni obtains Nj’s transit frequencies

between each pair of landmarks covered in Ni’s local traffic

map to update its local traffic map. In detail, for Lx → Ly ,

if Nj’s transit frequency (denoted by f j
xy) is not 0, Ni first

checks whether it has a transit element table for this transit. If

not, it creates a transit element table for this transit with only

one entry, i.e., the entry for Nj . Ni then updates Nj’s entry

in the transit element map to f j
xy . Ni also updates the overall

frequency for transit Lx → Ly accordingly in both the transit

element table and the local traffic map.

For example, suppose a node’s transit element table for

L1 → L2 is as shown in Table II, and its local traffic map

is as shown in Table III. When the node meets N8 and finds

that N8’s transit frequency for L1 → L2 has changed to 1.4,

it updates the entry for N8 in its transit element table to 1.4.

Then, it updates the overall transit frequency for L1 → L2 to

11.2 in both the transit element table and the local traffic map.

E. Packet Routing in GreedyFlow

We introduce the packet routing algorithm in this section.

We first give out the overview and then present details.

1) Overview: The packet routing works in a greedy manner

in GreedyFlow. When a node generates or receives a packet,

it checks its local traffic map and the global landmark map to

decide the next-hop landmark to forward the packet. Specif-

ically, since a node’s local traffic map may not include the

destination landmark of the packet, it first selects a temporary

destination landmark in the local traffic map that has the

closest distance to the destination landmark. Each landmark’s

distance to the destination landmark is obtained from the

global landmark map. This ensures that the packet forwarding

is always on the right direction. We introduce this step in

Section III-E2. Then, the node finds the fastest path from

current landmark to the temporary destination landmark based

on the local traffic map and selects the next landmark on the

path as the next-hop landmark. We introduce how to determine

such a path in Section III-E3. Figure 4(b) shows that the

fastest path from L1 to temporary destination landmark L7

is L1 → L5 → L6 → L7 and the next-hop landmark is L5.

Then, the packet is forwarded to the selected next-hop

landmark L5. In detail, the node queries its neighbors about

where they are predicted to move to and forwards the packet

to the node that is predicted to move to the selected next-

hop landmark L5. The details on how each node predicts

the next landmark it is going to transit to is introduced

in Section III-E4. When the node arrives at L5, it repeats

the above process to further forward the packet. Finally, the

packet is greedily forwarded toward its destination landmark.

However, a node that is predicted to move to the next-hop

landmark may not always be found. A node may not always

move to the predicted landmark. A packet may revisit the same

landmark during the forwarding. We discuss how to handle

these exceptions in Section III-E5.

2) Selecting Temporary Destination Landmark: The packet

carrier first checks whether its local traffic map contains the

destination landmark of the packet or not. If yes, the temporary

destination landmark is the destination landmark. Otherwise,

the temporary destination landmark is the landmark in the

local traffic map that has the closest distance to the destination

landmark. The distance between two landmarks is calculated

as the minimal number of landmark hops between them. As

shown in Figure 4(a), suppose the destination landmark is L15,

landmark L7 is selected as the temporary destination landmark

since it has the closest distance to L15.

3) Determine the Fastest Path to the Temporary Destina-
tion: As introduced in Section III-B, the expected delay to

a forwarding hop is determined by the frequency of node

transition on the hop. We use such a property to find the fastest

path to the temporary destination landmark.

For better illustration, we abstract each landmark as a circle

and two circles are connected if they represent two neighbor

landmarks. We also abstract the node transition from one

landmark to another landmark as a link connecting the two

landmarks. Therefore, two neighbor circles are connected by

two links in two direction. Each link has a weight, which

represents the delay to forward a packet through the link. It is

calculated as 1/ft, where ft is the frequency of node transition

in the direction of the link. Figure 5(a) shows the abstracted

local traffic map.

Using such a graph, the problem of finding the fastest path

to the temporary destination landmark turns into the problem

of finding the shortest path to the temporary destination

203

L1 L2 L3

L5 L6 L7

0.5 0.2
0.3 0.1

0.7
1.5 0.8

0.4
0.9 0.4 2.5 2

0.6 0.3

Current�
landmark

Temp�des.�
landmark

(a) Abstracted local traffic map.

L1 L2 L3

L5 L6 L7

0.2
0.3 0.1

Current�
landmark

Temp�des.�
landmark

(b) The selected fastest path.

Fig. 5: Determine the fastest path to the temporary destination.

landmark. We use the Dijkstra algorithm [22] to fulfill this

task. In detail, we take the current landmark L1 as the root.

We then calculate its shortest paths to all nodes iteratively until

the shortest path to the temporary destination landmark L7 is

found. The bold links in Figure 5(b) show the fastest path

from L1 to L7. Finally, the node selects the next landmark on

the path as the next-hop landmark, i.e., L5.

4) Predicting Node Mobility: In order to forward a packet

from current landmark to the determined next-hop landmark,

the current packet holder queries its neighbors about where

they are most likely to transit to and forwards the packet to

the node that is going to move to the next-hop landmark.

To fulfill this function, each node predicts its next transit

upon moving to a new landmark. In detail, each node uses

its historical landmark visit information to feed the Order-

1 Markov predictor to deduce the landmark it is going to

transit to. In detail, suppose a node’s landmark visit history

can be represented by VH = Lx1
Lx2

Lx3
· · ·Lxn−1

Lxn
. Then,

the probability that the node is going to visit landmark Lxn+1

can be calculated by

Pr(LxnLxn+1 |Lxn−1Lxn) =
Pr(Lxn−1LxnLxn+1)

Pr(Lxn−1Lxn)
, (1)

where

Pr(Lxn−1LxnLxn+1) =
N(Lxn−1LxnLxn+1)

N(All3)
(2)

and

Pr(Lxn−1Lxn) =
N(Lxn−1Lxn)

N(All2)
(3)

Note that N(Lxn−1
Lxn

Lxn+1
) denotes the number of times

that the node visits landmarks Lxn−1
, Lxn

, and Lxn+1
con-

secutively, N(Lxn−1
Lxn

) denotes the number of times that

the node visits landmarks Lxn−1 and Lxn consecutively, and

N(Allk) (k = 2, 3) means the number of visits on consecutive

k landmarks in history. Then, the landmark that leads to the

largest transit probability in Equation (1) is selected as the

landmark that the node is going to move to.

5) Handle Exceptions: We further design three additional

schemes to handle three exception cases. Firstly, a node that

is expected to transit to the next-hop landmark for a packet

cannot be found. Secondly, the packet carrier moves to a

landmark that is different from the predicted one.

To handle the first exception, we simply let the current

carrier of the packet continue carrying it until arriving at

another landmark. If this landmark is the next-hop landmark of

the packet, the exception is solved automatically. Otherwise,

the first exception turns into the second exception: the carrier

moves to an unexpected landmark. For this exception, the

current carrier checks whether a node that is predicted to

move to the next-hop landmark of the packet can be found.

If yes, it forwards the packet to the node. Otherwise, it

forwards the packet to the neighbor node that has the highest

centrality, which handles the packet as mentioned in Sec-

tions III-E2, III-E3, III-E4. The centrality of a node is defined

as the number of nodes it can meet in a unit time. We select

such a node to carry the packet since it can meet more nodes

and thus has more options on forwarder selection.

6) Summary: We summarize the process of packet routing

in GreedyFlow as follows.

• When a node generates a packet or carries a packet

to its next-hop landmark, the node follows the method

introduced in Section III-E2 to determine its temporary

destination landmark.

• The node determines the fastest path to the temporary

destination landmark based on its local traffic map and

selects the next-hop landmark for the packet by following

the method in Section III-E3

• Then, the node checks whether a neighbor node is

predicted to move to the next-hop landmark. If yes, it

forwards the packet to the neighbor node. The prediction

of node transition is introduced in Section III-E4.

• If no suitable carrier can be found or the selected carrier

moves to a landmark other than the next-hop landmark,

the packet is handled by the schemes in Section III-E5.

• The above process repeats until the packet arrives at the

destination landmark.

IV. PERFORMANCE EVALUATION

We conducted event driven experiments with the two real

traces, namely Dartmouth campus trace (DART) [20] and

DieselNet AP trace (DNET) [21], to evaluate the performance

of the GreedyFlow in comparison with three state-of-art meth-

ods. Section III-D1 introduces the two traces.

A. Experiment Settings

We compared GreedyFlow with three representative DTN

routing algorithms: Geomob [10], PER [23] and SimBet [24].

Geomob is similar to GreedyFlow that it also routes packets in

a landmark-by-landmark manner. However, it requires that all

nodes know the traffic distribution in the network to decide

the landmark path for each packet. As mentioned in the

introduction, such a requirement is not practical. We still use

it to measure whether GreedyFlow can lead to comparable

performance with Geomob. PER estimates each node’s prob-

abilities to visit each landmark and forwards packets to nodes

that have a high probability to visit their destination landmarks

before they expire. SimBet evaluates a node’s suitability to

carry a packet by considering both its centrality and its visit

frequency with the packet’s destination landmark.

In the experiment, we used the first 1/3 of both traces for

initialization, in which nodes build the local traffic map in

GreedyFlow and accumulate related metrics, e.g., landmark

visit frequencies, in comparison methods. After this step, we

204

0.20

0.30

0.40

0.50

0.60

30 40 50 60 70 80

Su
cc
es
s�
R
at
e

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8

9

10

11

12

13

14

30 40 50 60 70 80

A
ve
ra
ge
�D
el
ay
�(x
10

5 s
)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

6

12

18

24

30

36

42

30 40 50 60 70 80

Fo
rw
ar
di
ng
�C
os
t�
(x
10

6)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

1

2

3

4

5

6

7

8

30 40 50 60 70 80

M
ai
nt
en
an
ce
�C
os
t�
(x
10

7)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Fig. 6: Performance with different packet rates using the DART trace.

0.70

0.75

0.80

0.85

0.90

30 40 50 60 70 80

Su
cc
es
s�
Ra
te

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8.0

8.5

9.0

9.5

30 40 50 60 70 80

A
ve
ra
ge
�D
el
ay
�(x
10

4 s
)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

1

2

3

4

30 40 50 60 70 80

Fo
rw
ar
di
ng
�C
os
t�
(x
10

5)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

0

1

2

3

4

5

30 40 50 60 70 80

M
ai
nt
en
an
ce
�C
os
t�
(x
10

6)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Fig. 7: Performance with different packet rates using the DNET trace.

generated packets with randomly selected destination land-

marks at the rate of rp packets per landmark per day. The

TTL (Time to Live) of each packet was set to 30 days in the

DART trace and 6 days in the DNET trace. When a packet’s

TTL expires, it is dropped directly. We assume that each packet

has the same size of 1 KB and the available storage on each

node is mn KB. We set rp and mn to 50 and 150 by default

and varied them for extensive performance evaluation. When

the storage on a node is full, the oldest packet is dropped.

We set Vf to 70 since we find that it is sufficient for efficient

packet routing. We set the confidence interval to 95%.

We used four metrics in the experiments: success rate,

average delay, forwarding cost, and maintenance cost. The

success rate refers to the percentage of packets that have

been successfully delivered within the TTL. The average delay

refers to the average delay of successfully delivered packets.

The forwarding cost refers to the number of packet forwarding

operations. The maintenance cost refers to the number of

messages exchanged between nodes to support packet routing

(e.g., transit information in GreedyFlow and landmark visit

frequencies in comparison methods).

B. Performance with Different Packet Rates

We first conduct performance evaluation with different

packet rates (rp). We varied rp from 30 to 80 in the test.

1) Success Rate: Figures 6(a) and 7(a) show the success

rates of the four methods in the experiments with different

packet rates using the DART trace and the DNET trace,

respectively. We see from the two figures that the success rates

follow: Geomob≈GreedyF low>SimBet≈PER.

Geomob and GreedyFlow lead to higher success rate than

the other two methods because they forward packets in a

landmark-by-landmark manner, thereby better utilizing node

mobility for more efficient packet routing. Such a result

demonstrates the advantage of the landmark path based routing

strategy in routing packets to different landmarks. GreedyFlow

shows slightly lower success rate than Geomob. This is

because nodes in Geomob are assumed to know the global

traffic distribution beforehand, while nodes in GreedyFlow

only know the traffic distribution in the area they often visit.

However, the assumption in Geomob is not practical in real

DTNs. We see that the difference on success rate is very

marginal. This means that GreedyFlow can also effectively

select a fast landmark path for each packet even without the

global information. In other words, the performance of the

distributed GreedyFlow is comparable to that of Geomob.

We also find that SimBet shows slightly higher success rate

than PER. This is because SimBet considers not only a node’s

visiting frequency with the destination landmark but also its

centrality in the network, while PER only considers the visit

frequency. Then, in addition to nodes that frequently visit

packet destinations, SimBet also utilizes nodes with a high

centrality to route packets. As a result, SimBet utilizes more

mobile nodes for routing, leading to higher success rate.

2) Average Delay: Figures 6(b) and 7(b) show the average

delays of the four methods in the experiments with different

packet rates using the DART trace and the DNET trace,

respectively. We find from the two figures that the average

delays follow: Geomob<GreedyF low<SimBet<PER.

Geomob has the least average delay because each node

knows the global traffic distribution, which enables it to always

select the landmark path with the minimal expected delay for

each packet. In GreedyFlow, each node only knows the node

transit frequencies between landmarks in the area where it

primarily visits. Therefore, it has slightly higher average delay

than Geomob. However, we see that the difference is very

205

small. Since GreedyFlow does not require the global traffic

information as Geomob, it is more suitable for DTNs.

SimBet and PER exhibit much higher average delay than

Geomob and GreedyFlow. This is because they rely on nodes

that frequently visit destination landmarks for packet routing,

and such nodes may not always exist. On the contrary, Geomob

and GreedyFlow forward packets in the landmark-by-landmark

manner to reach their destinations. Nodes that rarely visit the

destination landmark of a packet can still be utilized to forward

it to a landmark closer to the destination landmark, leading to

a small average delay of successfully delivered packets.

3) Forwarding Cost: Figures 6(c) and 7(c) show the for-

warding costs of the four methods in the experiments with dif-

ferent packet rates using the DART trace and the DNET trace,

respectively. We find from the two figures that the forwarding

costs follow: Geomob>GreedyF low>SimBet>PER.

PER generates the least packet forwarding cost because it

only forwards a packet to the node that has a high probability

of delivering the packet before it expires, leading to few

forwarding opportunities. SimBet works in a similar manner

as PER but additionally considers centrality for forwarder

selection, resulting in more packet forwarding than PER.

GreedyFlow and Geomob generate more packet forwarding

cost than PER and SimBet because they forward packets in

a landmark-by-landmark manner, which exploits more nodes

to carry packets. However, we can see that the increase

of forwarding cost is not significant, which is worthwhile

considering their improvement on routing efficiency.

4) Maintenance Cost: Figures 6(d) and 7(d) show the main-

tenance costs of the four methods in the experiments with dif-

ferent packet rates using the DART trace and the DNET trace,

respectively. We see from the two figures that the maintenance

costs follow: GreedyF low>SimBet>PER>Geomob.

GeoMob generates the least maintenance cost because it

assumes that nodes already know the global traffic distribution

beforehand. Therefore, nodes only need to exchange their

probabilities of going to neighbor landmarks to support packet

routing. In PER, encountering nodes exchange their probabil-

ities to visit all landmarks to determine packet forwarders,

leading to more maintenance cost than Geomob. In addition

to landmark visit frequencies, nodes in SimBet also exchange

centrality information. Therefore, it has higher maintenance

cost than PER. GreedyFlow has more maintenance cost than

others because nodes need to exchange transit frequencies for

local traffic map update. However, we see that the maintenance

cost of GreedyFlow is on the same level with others.

Combining all above results, we conclude that the two

methods that forward packets through landmark paths lead to

better performance than other methods. Such a result justifies

the correctness of such a packet routing strategy. We also

see that GreedyFlow shows close performance with Geomob,

which however requires global traffic distribution. Such a re-

sult demonstrates that GreedyFlow can realize efficient packet

routing in a fully distributed manner.

C. Performance with Different Memory Sizes

We further evaluate the performance of the four methods

with different memory sizes on each node (mn). We varied

mn from 100 to 200 in the test.

1) Success Rate: Figures 8(a) and 9(a) illustrate the success

rates of the four methods in the experiments with different

memory sizes using the DART trace and the DNET trace,

respectively. We see from the two figures that the success

rates follow: Geomob≈GreedyF low>SimBet≈PER. Such

a result is consistent with those in Figures 6(a) and 7(a) for

the same reasons. We also find that when the memory size on

each node increases, the success rates of all methods increase.

This is because when the memory size increases, each node

can carry more packets. This means that the capacity of the

network is enhanced, leading to more successful packets.

2) Average Delay: Figures 8(b) and 9(b) plot the average

delays of the four methods in the experiments with different

memory sizes using the DART trace and the DNET trace,

respectively. We find from the two figures that the average

delays follow: Geomob<GreedyF low<SimBet<PER. We

see that this relationship is the same as in Figures 6(b) and 7(b)

due to the same reasons. Similarly, we see that when the

memory size on each node increases, the average delays of

all methods decrease. This is because when the memory size

increases, more packets can be carried by nodes that are most

likely to deliver them to their destinations, thereby reducing

the average delay of successfully delivered packets.

3) Forwarding Cost: Figures 8(c) and 9(c) show the for-

warding costs of the four methods in the experiments with

different memory sizes using the DART trace and the DNET

trace, respectively. The two figures show that the average

forwarding costs follow: Geomob>GreedyF low>SimBet
>PER. Again, this is the same as in Figures 6(c) and 7(c)

due to the same reasons. We also find that when the memory

size increases, the forwarding costs of all methods increase.

This is because when each node can carry more packets, there

are more packet forwarding.

4) Maintenance Cost: Figures 8(d) and 9(d) show the

maitenance costs of the four methods in the experiments with

different memory sizes using the DART trace and the DNET

trace, respectively. The two figures show that the maintenance

costs follow: GreedyF low>SimBet>PER>Geomob
We can find that this relationship is the same as in

Figures 6(d) and 7(d). Also, the maintenance costs remain

unchanged with different packet rates or memory sizes. This

is because the maintenance costs of these methods are only

affected by the number of node encountering. Since we use the

same traces in the each test, the maintenance costs remain the

same. The results with different memory sizes further confirm

the superior performance of GreedyFlow.

V. CONCLUSION

Data transmission between different places (landmarks) in

a DTN can be used in many applications. However, previous

algorithms on packet routing between landmarks either cannot

achieve high efficiency or have impractical requirements. In

206

0.20

0.30

0.40

0.50

0.60

100 120 140 160 180 200

Su
cc
es
s�
R
at
e

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8

10

12

14

100 120 140 160 180 200

A
ve
ra
ge
�D
el
ay
�(x
10

5 s
)

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

5

10

15

20

25

30

35

100 120 140 160 180 200

Fo
rw
ar
di
ng
�C
os
t�
(x
10

6)

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

1

2

3

4

5

6

7

8

30 40 50 60 70 80

M
ai
nt
en
an
ce
�C
os
t�
(x
10

7)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Fig. 8: Performance with different memory sizes using the DART trace.

0.75

0.80

0.85

0.90

0.95

100 120 140 160 180 200

Su
cc
es
s�
R
at
e

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8.0

8.5

9.0

9.5

10.0

10.5

100 120 140 160 180 200

A
ve
ra
ge
�D
el
ay
�(x
10

4 s
)

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

1

2

3

100 120 140 160 180 200

Fo
rw
ar
di
ng
�C
os
t�
(x
10

5)

Memory�Size�(KB)

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

0

1

2

3

4

5

30 40 50 60 70 80

M
ai
nt
en
an
ce
�C
os
t�
(x
10

6)

Packet�Rate�

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Fig. 9: Performance with different memory sizes using the DNET trace.

this paper, we propose a novel algorithm, namely GreedyFlow,

to route packets between landmarks in DTNs in a fully dis-

tributed manner. To better utilize node mobility, GreedyFlow

forwards packets in a landmark-by-landmark manner to let

them gradually reach their destination landmarks. Each node

collects node transit frequencies between landmarks in the area

it primarily visits and uses such information to build a local

traffic map. A global landmark that shows the distribution of

landmarks is also built on each node off-line. The two maps

are used to greedily forward packets toward their destination

landmarks. Extensive real trace driven experiments show that

GreedyFlow has better performance than state-of-art routing

algorithms and can achieve performance comparable to the

routing algorithm that requires the global traffic information

on each node. In the future, we plan to further enhance routing

efficiency by considering social communities in DTNs.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,

Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant network,”
in Proc. of SIGCOMM, 2004.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proc. of SIGCOMM, 2003.

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet,” in Proc. of ASPLOS-X, 2002.

[4] U. Weinsberg, A. Balachandran, N. Taft, G. Iannaccone, V. Sekar, and
S. Seshan, “CARE: Content aware redundancy elimination for disaster
communications on damaged networks,” CoRR, 2012.

[5] J. Kurhinen and J. Janatuinen, “Geographical routing for delay tolerant
encounter networks,” in Proc. of ISCC, 2007.

[6] I. Leontiadis and C. Mascolo, “GeOpps: Geographical opportunistic
routing for vehicular networks,” in Proc. of WOWMOM, 2007.

[7] J. Lebrun, C. nee Chuah, D. Ghosal, and M. Zhang, “Knowledge-based
opportunistic forwarding in vehicular wireless ad hoc networks,” in Proc.
of VTC, 2005.

[8] K. C. Lee, M. Le, J. H0Ł1rri, and M. Gerla, “LOUVRE: Landmark
overlays for urban vehicular routing environments.” in Proc. of VTC
Fall, 2008.

[9] K. Chen and H. Shen, “DTN-FLOW: Inter-landmark data flow for high-
throughput routing in DTNs.” in Proc. of IPDPS, 2013.

[10] L. Zhang, B. Yu, and J. Pan, “GeoMob: A mobility-aware geocast
scheme in metropolitans via taxicabs and buses.” in Proc. of INFOCOM,
2014.

[11] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks.” Mobile Computing and Communications
Review, vol. 7, no. 3, 2003.

[12] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem.” in Proc. of SIGCOMM, 2007.

[13] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, and S. Chong, “Max-
Contribution: On optimal resource allocation in delay tolerant networks.”
in Proc. of INFOCOM, 2010.

[14] W. Gao and G. Cao, “On exploiting transient contact patterns for data
forwarding in delay tolerant networks.” in Proc. of ICNP, 2010.

[15] F. Li and J. Wu, “MOPS: Providing content-based service in disruption-
tolerant networks,” in Proc. of ICDCS, 2009.

[16] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in Proc. of MobiHoc, 2008.

[17] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant MANETs,” in Proc. of MobiHoc, 2007.

[18] J. Wu, M. Xiao, and L. Huang, “Homing spread: Community home-
based multi-copy routing in mobile social network,” in Proc. of INFO-
COM, 2013.

[19] X. Zhang and G. Cao, “Transient community detection and its applica-
tion to data forwarding in delay tolerant networks.” in Proc. of ICNP,
2013.

[20] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature
campus-wide wireless network,” in Proc. of MOBICOM, 2004.

[21] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Enhancing
interactive web applications in hybrid networks,” in Proc. of MOBICOM,
2008.

[22] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, 1959.

[23] Q. Yuan, I. Cardei, and J. Wu, “Predict and relay: an efficient routing
in disruption-tolerant networks.” in Proc. of MobiHoc, 2009.

[24] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant MANETs,” in MobiHoc, 2007.

207

