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Abstract—Virtualization is a key technology for cloud data-
centers to implement infrastructure as a service (IaaS) and
to provide flexible and cost-effective resource sharing. It
introduces an additional layer of abstraction that produces
resource utilization overhead. Disregarding this overhead may
cause serious reduction of the monitoring accuracy of the cloud
providers and may cause degradation of the VM performance.
However, there is no previous work that comprehensively
investigates the virtualization overhead. In this paper, we
comprehensively measure and study the relationship between
the resource utilizations of virtual machines (VMs) and the
resource utilizations of the device driver domain, hypervisor
and the physical machine (PM) with diverse workloads and sce-
narios in the Xen virtualization environment. We examine data
from the real-world virtualized deployment to characterize VM
workloads and assess their impact on the resource utilizations
in the system. We show that the impact of virtualization
overhead depends on the workloads, and that virtualization
overhead is an important factor to consider in cloud resource
provisioning. Based on the measurements, we build a regression
model to estimate the resource utilization overhead of the PM
resulting from providing virtualized resource to the VMs and
from managing multiple VMs. Finally, our trace-driven real-
world experimental results show the high accuracy of our
model in predicting PM resource consumptions in the cloud
datacenter, and the importance of considering the virtualization
overhead in cloud resource provisioning.

I. INTRODUCTION

Virtualization is a key technology for cloud datacenters to
implement infrastructure as a service (IaaS) and to provide
flexible and cost-effective resource sharing [1], [2], [3].
For example, Amazon EC2 cloud service [1] uses Xen
virtualization [4] to support multiple virtual machine (VM)
instances on a single physical machine (PM). Previous VM
placement and migration works [5], [6], [7], [8] assume
that the utilization of a particular resource (e.g., CPU,
memory) in a PM equals the sum of the utilizations of
this resource of its hosted VMs, which is not always true.
The virtualization of hardware resources introduces extra
resource overhead (called virtualization overhead) to the
PM because the VM computing and data transfer processes
involve other system components (e.g., device driver domain
and hypervisor). The behaviors of an application running in a
virtual environment and a non-virtualized environment can
differ markedly and in surprising ways [9]. As shown in
Figure 1, in Xen, the device driver domain (usually Dom0)
manages the physical devices (e.g., hard disk drives and
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Figure 1. Overview of Xen architecture.

network interface cards (NICs)). Rather than directly com-
municating with the physical devices in the non-virtualized
environment, the guest VM communicates with the physical
devices via virtual interfaces (VIFs) within Dom0, which
generates an additional computational overhead in the Dom0
CPU. Virtualization overhead is also caused by hypervisor,
which is responsible for trapping VM activities and CPU
scheduling among VMs. It traps every I/O request from the
guest VM and schedules multiple VMs co-located in a PM
(i.e., determines when to allocate what amount of CPU to
which VM, and move the VM out of or into the CPU), which
causes extra memory and CPU overhead.

To improve the overall performance of the underlying
infrastructure of cloud datacenters, we need an accurate
estimation of virtualization overhead. It is also critical to
accurately bill cloud customers and for a wide variety of
management tasks to guarantee VM performance, such as
resource allocation, admission control of new VMs and VM
migration.

Knowing the actual resource utilizations helps accurately
allocate the amount of resources in a PM to VMs, avoid
mistakenly adopting new VMs in the case of insufficient
resource, and migrate VMs out of a PM to release load.
Some research works study the performance overhead of
applications when they are shifted from native systems
to virtualized environments [9], [10], [11]. They focused
on studying the degradation of overall performance due
to virtualization rather than the virtualization overhead.
There are several researches [12], [13], [14] that focus on
studying Dom0 CPU utilization as a result of either the
I/O-intensive or bandwidth-intensive workloads running in
the VM. However, these works do not give a comprehen-
sive study on diverse VM workloads (e.g., CPU–intensive,



memory-intensive) or different PM resource utilizations
(e.g., bandwidth, I/O). These works also neglect the CPU
utilization of the hypervisor, which affects the accuracy
of PM CPU utilization estimation. Further, they pay little
attention to the influence of co-located VMs in a PM on the
virtualization overhead.

In this paper, we aim to comprehensively characterize
the virtualization overhead on the PM introduced by VM
instances and to understand the impact of virtualization
on the PM performance. We conduct measurements on
different resource consumptions of the guest VMs and
the corresponding virtualization overhead in the Dom0,
hypervisor and PM in the Xen virtualized environment. We
run CPU-intensive, memory-intensive, I/O-intensive and
bandwidth-intensive benchmarks with different resource uti-
lization degrees on VMs in different scenarios with different
number of VMs hosting in a PM. We also investigate the
influence of co-located VMs in a PM on the virtualization
overhead. Through in-depth measurement analysis, we have
a better understanding of the set of key factors that lead to
the resource utilization overhead of the PM.

To the best of our knowledge, this is the first comprehen-
sive study on resource utilization overhead in Xen virtualized
environment.

We summarize our contributions as follows:
• We introduce a measurement method for automatic

and synchronized monitoring on different resource con-
sumption in a virtualized system. We create different
workloads for studying the impact of different resource
consumption of VMs on the virtualization overhead.

• We comprehensively study the virtualization overhead
introduced by virtualization and VM co-location. We
present the findings that were not previously observed.

• We propose a virtualization overhead estimation model
to estimate virtualization overhead in Dom0, the under-
lying hypervisor and the PM.

• Our trace-driven and real-world experimental results
show that the model can accurately estimate PM re-
source utilizations. We also improve a VM placement
algorithm based on the model and perform experiments
to show that considering virtualization overhead in
resource management can help improve application
performance.

The rest of this paper is organized as follows. Section
II presents the related work. Section III introduces our
measurement methods and the workloads for measurement.
Section IV presents the measurement and the analysis on
the virtualization overhead in various scenarios. Section V
presents the virtualization overhead estimation models. Sec-
tion VI evaluates the accuracy of the virtualization overhead
models in predicting PM resource utilizations when its VMs
run an enterprise application, and its effectiveness in guiding
VM placement to improve VM performance. Section VII
concludes this work with remarks on our future work.

II. RELATED WORK

Application performance and resource consumption in vir-
tualized environments can be very different from its perfor-
mance and usage profile on native hardware. Some research
works study the performance degradation of applications
when they are shifted from native systems to virtualized
environments [9], [10], [11]. Menon et al. [9] measured
Xen’s performance degradation on network throughput for
network I/O device virtualization. Shea et al. [10] performed
a measurement and analysis to reveal that the network I/O
performance variation of a VM in various environments.
Gulati et al. [11] measured disk workload characteristics and
performance metrics in a consolidated virtualized environ-
ment. All these works focus on the application performance
impact of both workload virtualization and consolidation,
while they pay little attention to the specific resource uti-
lization overheads from different resource workloads.

Some researches [12], [13], [14] focus on studying the
virtualization overhead of VM resource utilizations or the
PM resource utilizations. Apparao et al. [12] measured
CPU and network I/O performance in a Xen virtualized
environment and compared them to those from the na-
tive Linux machine. They provided a detailed architectural
characterization of network intensive workload but did not
measure other workloads such as CPU- or memory-intensive
workloads. Mei et al. [13] conducted performance mea-
surement study of network I/O applications in virtualized
cloud to understand the CPU resource sharing across VMs
running on a single PM. Cherkasova et al. [14] measured
the CPU overhead in Dom0 caused by I/O processing on
behalf of a particular VM. They regarded Dom0 CPU
utilization as the CPU overhead of running an application
in virtualized environment but neglected the CPU overhead
in Xen hypervisor. The above works pay little attention to
the resources other than CPU utilization on PM, such as
memory, I/O and bandwidth. Moreover, they do not give
a comprehensive study on diverse VM workloads except
the I/O and bandwidth intensive workloads. Furthermore,
they pay little attention to the resource utilization overhead
correlated to multiple co-located VMs in the PM.

III. MEASUREMENT METHOD AND WORKLOADS

A. Measurement Methods and Tools

There are several measurement tools associated with Xen
that can be directly used to measure the resource utilizations
of its guest VMs. Table I shows the tools and what they can
and cannot measure. However, none of them can concurrent-
ly measure different metrics (i.e., CPU, memory, bandwidth
and disk I/O utilization) without introducing extra resource
consumption (on VMs or Dom0), which however is critical
for the accurate virtualization overhead study. Therefore,
we developed a script that incorporates different tools for
different metrics for automatic and synchronized execution
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Table I
FEATURES OF MEASUREMENT TOOLS.

tool VM Dom0 PM/hypervisor
cpu mem i/o bw cpu mem i/o bw cpu mem i/o bw

xentop[15] Y+ - Y+ Y+ Y+ - Y+ Y+ - - - -
top[16] Y* Y*+ - - Y Y+ - - - - - -
mpstat[17] Y* - - - - - - - Y+ - - -
ifconfig[18] - - - Y* - - - - - - - Y+
vmstat[17] Y* Y* Y* - - Y - - Y - Y+ -
Y: can, -: cannot, *: need to run inside the VM, +: included in our script

of measurements. The CPU, I/O and network bandwidth
utilization information of both Dom0 and the guest VMs are
obtained from executing xentop in Dom0, while the memory
utilization is obtained by executing Linux top command in
each corresponding VM. The CPU utilization of the Xen
hypervisor is obtained by running mpstat in Xen. In order
to measure host PM resource utilization metrics, we use
vmstat and ifconfig in Dom0 to measure I/O and network
bandwidth utilizations, respectively. The memory utilization
of the host PM is estimated by the summation of the memory
utilizations in Dom0 and the guest VMs. Measurement
interval and inspection time can be tuned by the input
parameters of this script.

B. Measurement Workloads

To study the resource utilization overhead of application-
s in virtualized environments, previous works either use
testing tools [13], [14], [12] (e.g., httperf [19] and Iperf
[20]) or use self-developed applications [21] (e.g., calcu-
lating Fibonacci series) to generate benchmark workload
in the VMs. However, these benchmarks cannot provide
a workload that has high utilization on a sole resource
and low overhead on other resources (e.g., CPU-intensive
workload has low overhead on other resources). However,
such a workload is important for understanding the impact of
different resource utilizations on the virtualization overhead.
To handle this problem, as shown in Table II, we used
lookbusy [22] to create three CPU-, memory-, I/O-intensive
workloads and used Linux command ping to generate net-
work bandwidth (BW) workload. Each workload has 5 levels
of the resource utilizations. We remove “-intensive” in the
workload/benchmark names for simplicity.

Table II
OUR GENERATED BENCHMARKS FOR MEASUREMENT STUDY.

Workload Workload intensity
CPU-intensive (%) 1 30 60 90 99
MEM-intensive (Mb) 0.03 5 10 20 50
I/O-intensive (blocks/s) 15 19 27 46 72
BW-intensive (Mb/s) 0.001 0.16 0.32 0.64 1.28

C. Measurement Environment and Reported Results

To study the relationship between resource consumption
of the VMs and of the underlying PMs in Xen, we deployed
the XenServer 6.2 [23] virtualization infrastructure in a local

cluster, which consists of 7 PMs. Each PM in the cluster
has the following configuration: one 2.66 GHz Quad Core
Xeon CPU, 2 GB main memory, 60 GB SATA hard disks
and one Gigabit network card. Since we had full control
of this cluster, we made sure that there was no additional
workload on the cluster during our experiments. We used
the default settings from Xen in all our experiments. During
the experiment, we used our shell script to concurrently
measure the resource (CPU, memory, I/O and bandwidth)
utilizations of all the VMs, Dom0 and the hypervisor (or
PM) every second for 2 minutes and we finally report the
average of these 120 measurements. We carried out the same
experiment in different PMs and the results are the same.
Then, we report the results from one PM.

Table III
DEFINITION OF UTILIZATION OVERHEAD.

Metrics Resource util. overhead Intensity workload
CPU MEM I/O BW

CPU |Dom0|+|hypervisor|
√ √

I/O |∑V Mio−PMio|
√

BW |∑V Mbw−PMbw|
√

MEM |∑V Mmem−PMmem|

We selected the results with obvious resource utilization
overhead (as marked in Table III) to report. We sum the
CPU utilizations of Dom0, hypervisor and the guest VMs
to indirectly calculate the CPU utilization of the PM. The
CPU utilizations of Dom0 and VM are in percentage of
virtual CPU (VCPU), while the utilization of hypervisor
is in percentage of real CPU. For simplicity, we use CPU
for both. In all our memory-intensive experiment, the
CPU utilizations of Dom0 and hypervisor have constant
values of 16.8% and 3.0%, respectively. Dom0’s I/O and
bandwidth utilizations are always zero, and the PM’s I/O
and bandwidth utilizations have constant values of 18.8
blocks/s and 254 bytes/s, respectively. Therefore, we do not
show the results from the memory benchmark.

IV. VIRTUALIZATION OVERHEAD MEASUREMENT AND
ANALYSIS

We ran the different benchmarks with different intensity
degrees in three scenarios: i) a single VM, ii) two VMs, and
iii) four VMs hosting on a PM.

A. Virtualization Overhead of One VM

In this section, we conduct measurement to answer the
following questions: i) Is there any extra resource utilization
in the PM to support the VM running. ii) What is the rela-
tionship between VM resource utilizations and the resource
utilizations of Dom0, hypervisor and the underlying PM. iii)
What is the magnitude of the virtualization overhead.

Figure 2(a) shows the measured CPU utilizations of the
VM, Dom0, and the hypervisor versus the CPU workload
in the VM. We define increase rate in a figure as ∆Y/∆X ,
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(b) I/O utilizations for I/O-intensive work-
load.
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(e) CPU utilizations for BW-intensive
workload.

Figure 2. Resource utilizations for one VM.

which means the increase of Y value for each unit increase
of X value. We see that as the workload intensity increases,
the CPU utilization in Dom0 increases from a background
utilization 16.8% to 29.5% with the increase rate growing
from 0.01 to 0.31. The CPU utilization of the hypervisor
increases from 3% to 14% with the increase rate growing
from 0.04 to 0.26. A VM with a higher CPU utilization
means an increasing need for the hypervisor in scheduling
and for the Dom0 to respond to control signals, which
increase their CPU utilizations.

Figure 2(b) shows the I/O utilizations of the VM, Dom0
and the PM versus the I/O workload. The zero I/O utilization
in Dom0 indicates that the VM’s I/O workload does not
impose extra I/O requirement on Dom0 since Dom0 is only
responsible for scheduling the I/O request from the VM.
The PM’s I/O utilization is nearly twice as much as the
VM’s I/O utilization and they increase at a similar trend as
the workload intensity increases. It indicates that the guest
VM I/O workload introduces I/O utilization overhead on
the host PM, with an amount of approximately the same as
the VM’s I/O utilization. This is because the virtual disk
of the VM is actually striped across many different disks
and a single read or write by the guest VM may involve
several reads or writes. Figure 2(c) shows the measured CPU
utilizations of the VM, Dom0 and the hypervisor as a result
of the increased I/O workload in the guest VM. All the three
measured CPU utilizations remain stable under varying I/O
intensity. Because the default configuration of the VM has
a maximum I/O capacity limit of about 90 blocks/s, which
is relatively small and hence does not cause obvious CPU
utilization changes in Dom0.

Figure 2(d) shows the bandwidth utilizations in Kb/s of
the guest VM, Dom0 and the host PM, with an increasing

bandwidth workload on the VM. The zero utilization in
Dom0 indicates that the bandwidth workload in the guest
VM does not impose bandwidth utilization overhead on
Dom0. The overhead of bandwidth utilization in the host PM
is at the amount of nearly 400 bytes/s, which is negligible
especially when the guest VM is undergoing bandwidth-
intensive workload with high intensity degree.

Figure 2(e) presents the measured CPU utilizations of
the guest VM, Dom0 and the hypervisor as a result of
the increasing bandwidth workload in the guest VM. We
see that the CPU utilization in the VM slightly increases
from 0.5% to 3%. The CPU utilization of Dom0 increases
from 16.0% to 30.2% with a constant increase rate of 0.01,
which indicates that the CPU utilization overhead in Dom0
increases with the bandwidth workload intensity in the guest
VM. The CPU utilization overhead in Dom0 is caused by the
need of processing network packets as the guest VM talks
to the physical network interface via a VIF existing within
Dom0. The CPU utilization of the hypervisor increases from
2.5% to 3.5% as a result of the CPU utilization increment
in both guest VM and Dom0.

We summarize our observations for the single-VM sce-
nario:

• CPU utilizations in both Dom0 and hypervisor have a
background rate due to virtualization and they increase
with VM CPU utilization at the increase rates of [0.01,
0.31] and [0.04, 0.26], respectively.

• PM I/O utilization is slightly more than twice of the
VM I/O utilization.

• CPU utilizations in Dom0 increases with a constant
increase rate 0.01 while hypervisor’s CPU remains
constant as the VM bandwidth utilization increases.

• CPU utilizations in both Dom0 and hypervisor keep
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(b) I/O utilizations for I/O-intensive work-
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workload.

Figure 3. Resource utilizations for two VMs co-located in a PM.

nearly constant (16±0.3% and 2.8±0.1%) as VM I/O
utilization increases (from 15 blocks/s to 72 blocks/s).

• PM bandwidth utilization equals to the VM bandwidth
utilization, with near zero overhead.

B. Virtualization Overhead of Two and More VMs

Co-located VMs in a PM is one of the attractive fea-
tures that the virtualization technique brings to the cloud
computing. In order to investigate the effect of co-located
VMs on the virtualization overhead, we carry out another
experiment to study the relationship of resource utilizations
of the co-located VMs, Dom0 and the hypervisor (or PM).
We launched the four micro benchmarks with increasing
workload intensity simultaneously in each VM, and then
measured all the metrics. Since the measurements of all
VMs are exactly the same, we only show the measurement
of one VM. This experiment aims to answer the following
questions: i) How are the resource utilizations of Dom0
and the PM (or hypervisor) affected by co-located VMs.
ii) How are the resource utilizations of the VMs affected by
co-location. iii) What is the magnitude of the virtualization
overhead. The following results confirm all our observations
from the previous single VM test, so we do not repeat the
same observations.

Figure 3 and Figure 4 show the resource utilizations when
the PM hosts two VMs and four VMs, respectively. Figures
3(a) and 4(a) show the CPU utilizations with different CPU
workloads. We see that the CPU utilization of the VM
increases with CPU workload intensity, but the utilization
is not exactly equal to the input workload. The guest VM
consumes 95% in Figure 3(a) and 47% in Figure 4(a) when
the workload is 100%. This result indicates that the CPU
utilization in the guest VM decreases due to the co-location

of VMs, in which the resources are shared and none of
the VMs reaches 100% of CPU utilization. In both figures,
the CPU utilizations in Dom0 slightly increase at first with
the load in the VMs and keep stable (or slightly decreases)
due to the inadequate of available CPU resource in the PM.
Similarly the CPU utilizations in the hypervisor increase as
the CPU workload increases, but they become stable when
the CPU resource consumption is saturated.

Figure 3(b) and Figure 4(b) show the I/O utilizations with
different I/O workloads. The I/O utilization of the PM is
more than twice of the sum of the utilizations of its guest
VMs, which indicates that extra I/O resource in the host PM
is required for I/O resource provisioning for the co-located
guest VMs. Figure 3(c) and Figure 4(c) show the CPU
utilizations with different I/O workloads. All the utilizations
remain relatively stable under varying I/O workload; 17.4%
and 0.84% for Dom0 and VM in both figures and 2.7%
and 3.5% for the hypervisor in two figures, respectively.
This result is similar to the result in the previous one VM
experiment. We notice that the CPU utilization overhead
correlates to VM co-location in Dom0 is very small (about
2% extra utilization compared to Figure 2(c)). Due to the
limit of VM I/O capacity, the maximum I/O throughput in
our experiment is 360 Kb/s from 4 VMs, which is not high
enough to obviously change Dom0 CPU utilization.

Figure 3(d) and Figure 4(d) show the bandwidth uti-
lizations with different bandwidth workloads. We see that
Dom0 does not consume bandwidth resource, while PM has
bandwidth utilization approximately equal to the sum of its
guest VMs’ bandwidth utilizations with a small overhead
|PMbw−∑V Mbw|

PMbw
=3%. Figure 3(e) and Figure 4(e) show the

CPU utilizations with different bandwidth workloads. The
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Figure 4. Resource utilizations for four VMs co-located in a PM.

CPU utilization in Dom0 increases from 17.1% to 41.8%
in Figure 3(e) and from 17.3% to 67.1% in Figure 4(e) as
the bandwidth intensity increases to the maximum value.
Both figures have increase rates of 0.01, which is consistent
with Figure 2(e). This result confirms the conclusion that
the bandwidth workload in guest VMs imposes extra CPU
utilization in Dom0. Note that the slope of Dom0 in Figure
4(e) is twice as much as that in Figure 3(e), because it
has twice input bandwidth intensity (four VMs compared to
two VMs). The CPU utilization of the hypervisor increases
from 2.6% to 4.0% in Figure 3(e), and from 3.5% to 6.3%
in Figure 4(e) as bandwidth workload increases. Also, both
figures exhibit increase rates of 0.0005. Since the hypervisor
is responsible for the management of multiple guest VMs,
its CPU utilization increases with the bandwidth workload
intensity and the number of VMs.

In the above experiments for bandwidth workloads, VMs
communicate with VMs in other PMs. It is possible that one
VM has frequent network communication with another VM
residing in the same PM, then the bandwidth utilizations
are within the PM. In order to study how the resource
utilizations correlate to network transmission between co-
located VMs, we carry out another experiment. We use
ping in one VM (VM1) to ping 64Kb size packet to the
other VM (VM2) in the same PM. Figure 5 shows the
measured resource utilizations of VM1, Dom0 and the host
PM with different intra-PM bandwidth workloads. Figure
5(a) shows that the bandwidth utilizations of Dom0 and the
PM are zero. This result indicates that the bandwidth work-
load between the guest co-located VMs does not actually
consume physical bandwidth resource, because the packets
sent from VM1 are redirected to VM2 inside the PM, and
do not need to occupy the network interface hardware of

the host PM. Figure 5(b) shows that the CPU utilization
of Dom0 increases with guest VM bandwidth workload at
an increase rate of 0.002. It is 5X less compared to the
increase rate (0.01) in Figures 2(e), 3(e) and 4(e). The Dom0
CPU increment is caused by the requirement for processing
network packets from the guest VMs. Although the network
communication between the two co-located VMs does not
introduce bandwidth utilization to their host PM, it still
imposes CPU overhead on Dom0 with an increase rate 5X
less than the inter-PM communications between VMs.

We summarize our observations for the multi-VM sce-
nario:
• CPU utilizations in Dom0 and hypervisor increase

with VM CPU utilization and stay at constants (23.4%
and 12.0%, respectively), due to the insufficient CPU
resource in the PM to support multiple VMs.

• PM bandwidth utilization has 3% overhead
( |PMbw−∑V Mbw|

PMbw
) compared to the sum of bandwidth

utilizations of its guest VMs in inter-PM
communication.

• The bandwidth utilizations of co-located VMs due
to their network I/O communication do not generate
bandwidth utilization of their hosting PM.

• The network I/O communication between two co-
located VMs leads to the increase of CPU utilization
in Dom0 at an increase rate of 0.002, which is 5X less
than the inter-PM communications between VMs.

V. MODELING VIRTUALIZATION OVERHEAD

In this section, we describe our models to characterize the
relationship between VM resource utilizations and virtual-
ization overhead (on different resources) of a PM when it
holds a single VM and multiple VMs.
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Figure 5. Resource utilizations for intra-PM bandwidth-intensive work-
load.

A. Virtualization Overhead from a Single VM

To find the relationship between the virtualization over-
head and resource usage of a single VM, we use our
previously collected data for the resource utilizations on
PM and VMs from the Xen server when the VMs run the
micro benchmarks. Using the gathered data from repeated
experiments, we derive a set of equations to calculate the
virtualization overhead as a linear combination of different
metrics as below.

M̂c = ao +acMc +amMm +aiMi +anMn (1)

where Mc, Mm, Mi and Mn are utilization values of the VM
gathered for CPU, memory, I/O and network bandwidth,
respectively. M̂c is a measured CPU utilization of the PM.
ac, am, ai and an are corresponding coefficients for different
metrics, and ao is a constant denoting the resource utilization
of the guest VM without running any benchmarks, that
is, the resource consumption of the guest operating system
(OS).

We use ac = [a′o,a
′
c,a
′
m,a
′
i,a
′
n] to denote the set of co-

efficients that describes the relationship. By applying a
regression method [24] to the gathered utilization data, we
derive ac that minimize error e =

√
∑ j(M̂

′ j
c − M̂ j

c )2, where
the superscript j is the sequence number of different sets of
measurements. Accordingly, the approximated solution for
Equ (1) is M̂′ jc = a′o +a′cM j

c +a′mM j
m +a′iM

j
i +a′nM j

n .
Similarly, we derive the relationship between VM differ-

ent resource utilizations and PM memory, I/O and network
bandwidth utilizations (denoted by M̂m, M̂i and M̂n), respec-
tively. We use am, ai and an to denote each set of coefficients
that describes each of the relationships. By applying the
regression method on the gathered VM utilization metrics,
we derive am, ai and an. Therefore, given a set of VM
resource utilization measurements M = [Mc,Mm,Mi,Mn]

T ,
we estimate the approximated PM resource utilization by

M̂ = aM (2)

where M̂ = [M̂c,M̂m,M̂i,M̂n]
T is the estimated PM resource

utilization. a = [aT
c ,aT

m,aT
i ,aT

n ]
T is the set of coefficients that

describes the characteristics of virtualization overhead of the
system.

Dom0

Web 
Server

Dom0

Database
Server

Client

PM1 PM2
hypervisor hypervisor

Figure 6. Experiment setup.

B. Virtualization Overhead from Multiple VMs

When multiple VMs are co-located in one PM, the re-
sulting PM resource utilizations are not always equal to the
sum of the VM utilizations. Extra physical resource is re-
quired. For example, Section IV shows that extra computing
resource is required for managing multiple VMs. The PM
resource utilizations could be less than the sum of the VM
utilizations due to intra-PM communication between VMs
in the same PM. Below, we present the model of resource
utilization overhead of co-located VMs in this section.

Suppose there are N VMs (VM1, VM2, ...) co-located
in one PM. Each VM has resource utilization profile
Mk=[Mck,Mmk,Mik,Mnk]

T , where 1≤ k≤N is the VM iden-
tification. PM has resource utilization M̂=[M̂c,M̂m,M̂i,M̂n]

T .
Since the resource utilizations of Dom0 and the hypervisor
are caused by the workload resource usages of all the
VMs. We model the resource consumption of the PM as
a combination of the VMs and an overhead to represent the
synthesized effect of co-located VMs as below.

M̂ = a(
N

∑
n=1

Mn)+α(N) ·o(
N

∑
n=1

Mn) (3)

Similar to a, o = [oT
c ,oT

m,oT
i ,oT

n ]
T is a set of the coefficients

that describes the relationship between resource utilization
overhead from co-located VMs and the resource utilizations
of the VMs. α(N) is a coefficient determined by N, which
can be simply derived from measurement experiments.
When N=1, there is no overhead for co-located VMs and
α(N)=0; when N=2, there are two co-located VMs, α(N)=1,
and M̂= a(M1+M2)+o(M1+M2). The combination effect
of placing multiple VMs on a single PM can be quite
complex due to the diverse resource consumption features
of multiple types of VMs. As shown in Section IV-B, the
resource consumption overhead caused by multiple VMs
exhibits a near linear trend. Therefore, we assume that the
coefficient α(N) is a linear function of N to simplify the
analysis. Similarly, using the regression method, we derive
a and o, which can be used to estimate M̂ based on Equ. (3).

VI. PERFORMANCE EVALUATION

A. Overhead Prediction Accuracy

To test the accuracy of our virtualization overhead pre-
diction model, we first derived this model from the trace
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Figure 7. Resource utilization prediction for a PM hosting one VM.
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(d) PM2 bandwidth prediction.

Figure 8. Resource utilization prediction for a PM hosting two VMs.

of resource utilizations in our micro benchmark study using
the method introduced in Section V. We used the model
to predict the resource utilizations of Xen servers, which
hosted VMs running the RUBiS web applications [25]. The
actual PM CPU utilization was calculated as the sum of the
measured CPU utilizations from all the domains (e.g., Dom0
and VMs) and the hypervisor, while the actual bandwidth
utilizations of the PMs were directly measured in Xen. We
predicted the PM CPU utilization based on the predicted
Dom0 and hypervisor utilizations. Since RUBiS is a net-
work bandwidth-intensive application, we also predicted the
bandwidth utilizations of the PMs. We then compared the
predicted resource utilizations and the measured resource
utilizations to evaluate the prediction accuracy. Due to the
limited space, we do not show the prediction of other
resources, which has similar accuracy result as CPU and
bandwidth.

We carried out the first experiment to evaluate the model
of predicting resource utilizations from a single VM. The
RUBiS web application was configured to run in two VMs.
As shown in Figure 6, we configured the RUBiS with a web
server front-end running in V M1, which was located in PM1,
and a database server running in VM2, which was located
in PM2. We used a third machine to simulate the benchmark
client and generated the requests for the front-end web
server. We created a variable rate workload for RUBiS by
increasing the number of clients over a ten minute period.
The system was loaded between 300 and 700 simultaneous
clients. This workload was repeated three times. Since the
results from the three times experiments are similar, we show
the results from one of them. We recorded VM resource
utilizations every second and made predictions for every
measurement for a 10 minute interval.

We evaluated the accuracy of the prediction by examining
its prediction error, which is calculated by |p−m|

m , where p
is the predicted amount while m is the measured resource
utilization. Figure 7(a) and Figure 7(b) show the cumulative
distributed function (CDF) of the prediction errors for the
PM CPU utilization prediction. The different curves in the
figures represent different number of clients (from 300 to
700) for RUBiS. We see that 90% of the predictions for
PM CPU utilizations have prediction errors smaller than 3%
in PM1, and 4% in PM2. The reason for the difference of
the prediction errors in two PMs is that their hosted VMs
are playing different roles in the application and hence have
different resource utilizations. The prediction errors decrease
as the number of simulated clients increases because more
clients place heavier load on the RUBiS web server (VM1)
and lead to a larger denominator in |p−m|

m . The prediction
errors in PM2 (hosting database server) are higher than PM1
(hosting web server) because the database server has a lower
bandwidth utilization than the web server, which means that
the database server imposed less CPU utilization overhead
on the Dom0 and the hypervisor and results in relatively
lower PM CPU utilizations. Some errors may be caused
by irregularities in the data used as input to the model.
Figure 7(c) and Figure 7(d) show the CDF of PM bandwidth
prediction errors in the two PMs. We see that 90% of the
predictions, for both PM1 and PM2 bandwidth utilizations,
have prediction errors smaller than 4%, and about 80% of
the predictions have prediction errors smaller than 1%.

In order to validate the virtualization overhead model for
two co-located VMs, we created two sets of independent
RUBiS applications by placing two RUBiS web servers in
PM1 and two RUBiS database servers in PM2. We varied
the workload by adjusting the number of emulated clients
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(a) PM1 CPU prediction.
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(d) PM2 bandwidth prediction.

Figure 9. Resource utilization prediction for a PM hosting multiple VMs.

from 300 to 700, and then measured the resource utilizations
in the two PMs. Figure 8(a) and Figure 8(b) show the
prediction errors of predicting PM CPU in the two PMs. 90%
of the predictions for PM CPU utilizations have prediction
errors under 2% in PM1, and 5% in PM2. The prediction
errors in PM2 are higher than PM1 due to the same reasons
mentioned before. Figure 8(c) and Figure 8(d) present the
CDF of the PM bandwidth prediction errors. We see that
90% of the predictions for PM bandwidth have within 3.5%
prediction errors for both PM1 and PM2. Compared to PM
CPU utilization prediction, PM bandwidth prediction has a
higher accuracy, because co-located two VMs do not impose
much overhead on PM bandwidth utilization, as indicated in
the previous micro benchmark studies.

We further applied our model to predict the resource
utilizations when the PMs are hosting more than two VMs.
The system was configured to have two PMs with six
VMs running three sets of RUBiS applications. Specifically,
three RUBiS web servers ran in one PM and three RUBiS
database servers ran in the other PM. Figure 9(a) and Figure
9(b) show the CDF of the PM CPU prediction errors. In
Figure 9(a), 90% of the predictions have prediction errors
smaller than 2%. From Figure 9(b), we see that most of
the predictions for PM2 have prediction errors around 4.5%.
The predictions for PM2 CPU utilizations have relatively
higher prediction errors than the predictions for PM1. This
is because the workload in PM2 is relatively lower than in
PM1 and leads to a smaller denominator in |p−m|

m . Figure 9(c)
and Figure 9(d) show the prediction errors for PM bandwidth
utilizations. 80% of the predictions have prediction errors
within 1% for both PM1 and PM2. The prediction accuracy
for the bandwidth utilization on the two PMs is similar since
both PMs have high workloads.

B. Virtualization Overhead Aware Resource Provisioning

In this section, we deployed an experiment to show
that concerning virtualization overhead in cloud resource
provisioning is important. Properly placing VMs in PMs
by considering their virtualization overhead can help bet-
ter guarantee Service-level agreement (SLA) and improve
performance of the VMs. In this experiment, we setup a
scenario, in which a cloud provider deployed 5 identical
VMs that have the same capacity configuration (1 VCPU,
256 MB memory, Debian Squeeze 6.0 OS) in the cloud.

Two VMs corporately ran RUBiS, with the web front-end
installed in one VM (V M1) and the back-end database in
the other (V M2). The RUBiS system was loaded by serving
500 simultaneous clients. The other three VMs (V M3-V M5)
did nothing and had nearly zero consumptions on CPU, I/O
and bandwidth. Based on this scenario (denoted by 0), we
test more scenarios by running lookbusy with 50% CPU
utilization in one, two and all of the three VMs (V M3-V M5),
denoted by 1, 2 and 3, respectively.

We implemented CloudScale [8], a system that employs
online resource demand prediction to achieve robust resource
provisioning inside the cloud. First, we deployed the 5 VMs
to PMs in a random order, and then we used CloudScale
to predict their resource utilizations one by one in order to
find suitable PMs for hosting them. CloudScale predicted
the resource utilizations of the 5 VMs in a random order
and deployed them one by one based on the predictions. We
compared the performance of RUBiS in CloudScale with
and without the consideration of virtualization overhead in
VM allocation, denoted by VOA and VOU, respectively. We
repeated this VM placement process for 10 times.

Figure 10(a) compares the average throughput of RUBiS
in VOA and VOU measured by the number of requests
handled per second. The error bars indicate the 90th and
10th percentile among the 10 test results. We see that
VOA achieves a stable throughput under every workload
scenario, which is greater than that of VOU. This is because
VOU does not consider the virtualization overhead when
making VM placement decisions and the PM may become
overloaded. VOU placed the first four VMs in a PM, then
it predicted that the PM would not have sufficient memory
resource for hosting the fifth VM, and placed it in another
PM. When VOU was allocating the fourth VM, it did not
realize that the remaining CPU resource in the PM was
inadequate for the fourth VM since VOU ignores the extra
CPU consumptions in Dom0 and the PM. The throughput
was reduced as the RUBiS VMs were placed in a PM
with exhausted CPU resource. The throughput for VOU
further decreases as the workload in the VMs increases.
Figure 10(b) shows the total time of RUBiS for processing
the requests. VOU has a higher total time compared to
VOA, because the RUBiS VMs cannot get sufficient CPU
resource for processing incoming requests. The lack of CPU
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Figure 10. Performance of virtualization overhead aware VM placement.

resource for the RUBiS VMs is caused by inappropriate VM
placement due to the neglect of virtualization overhead by
the placement algorithm.

VII. CONCLUSIONS

We presented a comprehensive and in-depth study on the
resource utilization overhead caused by virtualization on
Xen, which includes the overhead of the server for providing
virtualized resource for hosting VMs and for managing
multiple VMs. We also proposed a virtualization overhead
estimation model to study the relationship between VM
resource utilization and the utilization overhead in Dom0,
the hypervisor and the PM. Our trace-driven real-world
experiments show that the proposed model can effectively
characterize the different virtualization overhead. We also
showed that using the proposed estimation model can help
improve the performance of the VMs in the virtualized
environment. In the future, we are interested in improving
the model for estimating the resource utilization overhead
for different types of VMs with diverse configurations, when
they are co-located in a PM.
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