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Abstract—Motivated by the growing popularity of mobile
devices and their increasing capacities, file sharing in disruption
tolerant networks (DTNs) has attracted significant attention
recently. Since nodes are sparsely distributed in separated areas
and are intermittently disconnected in DTNs, it is difficult to
achieve high data availability in file sharing. Many previous
methods enhance file availability in DTNs through file replication.
However, there has been no file replication method that tries
to reduce data loss in correlated node failures, which however
are common in wireless networks. In this paper, we propose a
distributed file replication method (called MobileCopy) in DTNs,
which aims to achieve low probability of totally losing a file
at the expense of having a high number of impacted files in
an individual large-scale correlated node failure. MobileCopy is
designed for community-based file sharing systems. It has two
main components: i) data loss resistant and popularity aware file
replication, and ii) distributed hash table (DHT)-based file replica
indexing. MobileCopy considers file popularity to determine
the number of replicas of a file in each community. Through
limiting the possible combination of candidate replica holders,
MobileCopy greatly reduces the probability of node failures that
will lead to data loss, i.e., losing all replicas of a file. Moreover,
MobileCopy enables nodes to efficiently store and fetch the
placement information of file replicas for efficient file searching.
Extensive trace-driven experiments show that MobileCopy is
robust against correlated node failures and efficient in file sharing
in comparison with previous methods.

I. INTRODUCTION

With the rapidly growing popularity of mobile devices (e.g.,
smartphones, tablets, laptops), file sharing in Disruption Toler-
ant Networks (DTNs) has attracted significant attention. DTNs
require no infrastructure and have promising applications in
many scenarios such as battlefields, disaster areas, rural areas,
and mountain areas, where it is infeasible or costly to build
infrastructures to support data communication. For example,
in a wireless monitoring system on battlefield, once a node
captures an event as a file, other nodes may want to access
the file for reference. In a disaster area, nodes need to share
information such as discovered wounded persons, food and
water availability and so on.

However, the properties of DTNs, including network spar-
sity, node mobility, constrained communication range and stor-
age space, lead to limited file availability in mobile file sharing.
One simple way to increase file availability is to increase
file redundancy [1]–[5]. The works in [1]–[3] let individual
nodes randomly and greedily replicate frequently queried files
to nodes they meet. However, this method achieves high file
availability at the expense of redundant resource utilization. To

control duplicate replicas, Zheng et al. [4] proposed to let each
node collect its neighbor nodes’ file query statistics for replica
creation. Duong and Demeure et al. [5] further proposed to
group nodes with stable connections and let each node check
its group members’ probability of requesting a file and their
storage status to decide whether to create a replica. In spite of
many works on file replication to enhance file availability, they
fail to consider the correlated node failures [6]–[8] in DTNs,
which may cause the failure of all replica nodes of a file and
hence permanent file loss.

Cascaded node failure, also known as correlated node fail-
ure, refers to the scenario in which a group of nodes fail simul-
taneously. Many previous studies have verified that correlated
node failures are very prevalent in wireless networks. Kong et
al. [6] indicated that in wireless sensor networks constrained
by limited power resource, the failure of one node can result in
redistribution of communication load to nearby nodes, thereby
spreading the power shut-down of some individual nodes to
correlated node failures. Moreover, Xu et al. [7] observed
that in wireless communication networks, malicious codes that
originate at a small number of nodes can infect nearby mobile
devices via short-range communication, leading to a “wireless
epidemic” failure in a wide range of nodes. In a disaster area
with a power outage, many mobile devices cannot be charged
in time, which also leads to correlated node failure.

We define a failure node set (FNS) as a set of nodes whose
simultaneous failures cause a file loss. All replica nodes of a
file form an FNS. For correlated node failures, the probability
of data loss (i.e., simultaneous failures of replica nodes of a
file) increases as the number of FNSs in the system increases
because the probability that the failed nodes constitute one
FNS increases. Since previous file replication methods use
random placement for replica creation, almost every newly
replicated file creates a distinct FNS, so they have a higher
probability of data loss under correlated node failures. Let’s
assume that the number of replicas of each file is 3. For a
system with N nodes, there will be

(
N
3

)
node combinations

that can be used to replicate a file. In the random replica
placement, the probability that a file is replicated on any node
combination is uniformly distributed. The simultaneous failure
of nodes in a node combination can result in file loss in the
correlated node failure. The distributed nature of DTNs makes
it difficult for nodes to know whether a file is permanently
lost. Then, the requests for the lost files would be continually
forwarded in the network and congest the network, which



greatly degrades the efficiency of file sharing in DTNs.
Above examples show that when the number of files is large

enough, the replication patterns of files will distribute over all
possible node combinations. Andreas et al. [9] showed that in
decentralized storage system, prevention of data loss caused
by correlated node failures is preferred even at the expense of
the largest data recovery cost in an individual data loss event.
Therefore, our goal in this paper is to use the high number of
impacted files as expense to trade for the low probability of to-
tally losing a file. In the above example, if we replicate all files
to m node combinations, the probability of file loss is reduced
to m/

(
N
3

)
. Therefore, one effective method to reduce the prob-

ability of data loss is to limit the number of candidate replica
holder combinations (m) for files, hence the number of FNSs.
However, realizing such file replication in distributed DTNs
is non-trivial. First, there is no central server that can help
determine the candidate replica holder combinations. Second,
even if these node combinations are determined and are noti-
fied to all nodes, delivering replicas to these holders will lead
to long delays due to the intermittent connectivity in DTNs.
Third, even if the files are successfully replicated to the node
combinations, accessing the placement information of these
replicas is not easy. Finally, it is known that creating more
replicas for higher popular files and vice versa reduces unnec-
essary replicas while increasing the average file availability1,
but jointly considering file popularity and data loss reduction
to enhance data availability becomes another challenge.

To handle these challenges, in this paper, we design a
distributed file replication method (called MobileCopy) in
DTNs, which aims to reduce the probability of data loss in
correlated node failures to increase file availability. Mobile-
Copy is specifically designed for community-based file sharing
systems in DTNs such as those in [10]–[13]. The DTNs
present certain social community structures, in which nodes
meet a preferred group of nodes more frequently than average.
Each community has a stable node as community head and
nodes frequently transit to other communities as brokers for
inter-community communication. MobileCopy has two main
components: i) data loss resistant and popularity aware file
replication, and ii) DHT-based file replica indexing.

In MobileCopy, file replication is independently conducted
in individual community. First, if the querying frequency on
a file in community Ci from nodes in community Cj is
high, the file is replicated to community Cj . Second, each
community head replicates the files in its community with
the considerations of both file popularity and correlated node
failures. Specifically, the community head limits the candidate
replica holder combinations in its own community by grouping
the community nodes. It determines the number of replicas of
a file based on its popularity and replicates the file to nodes
in one group.

If a node cannot find its requested file in its own community,
it needs to search the file globally. We use a DHT-based file
replica indexing scheme to finish the task. The application of
DHT in wireless file sharing system has been widely discussed

1It is measured by the percentage of successfully resolved requests.

[14], [15]. Combining with the community structure extracted
from nodes in our case, the replica placement information and
corresponding indexing information are cooperatively main-
tained by representative nodes in different communities. The
“index” of a file means the IDs of nodes that store the file.
The DHT-based file replica indexing method maps a file to a
community to store the indices of the file’s replicas. Based on
the DHT, a file requester can find the mapped community of
the file to query the indices of the file replicas.

To our best knowledge, MobileCopy is the first file repli-
cation method that attempts to reduce the probability of data
loss in correlated node failures in DTNs. The contributions of
this paper include:
(1) We propose a novel file replication method that consid-

ers both file popularity and correlated node failures to
enhance file availability.

(2) We design a distributed file replica indexing method that
distributes replica placement information in communities
and make them easily accessible for file searching.

(3) We conduct extensive trace-driven experiments to show
the effectiveness of our file replication method and the
efficiency of file searching based on the file indexing.

The remainder of this paper is organized as follows. Sec-
tion II presents the detailed design of MobileCopy. Section III
presents the experimental results of MobileCopy. Section IV
presents an overview of related work. Section V concludes
this paper with remarks on our future work.

II. THE DESIGN OF MOBILECOPY

A. Network Model and Background

We assume a DTN consisting of N nodes, denoted by ni
(i ∈ [1, N ]). We also assume that each node has some available
storage and is willing to store files from others to facilitate file
sharing in the system. The work on how to encourage nodes
to be cooperative on file replication is orthogonal to this work.

Community-based file sharing in DTNs has been studied in
previous works [10]–[13]. MobileCopy is designed for these
community-based file sharing systems and is built upon such
a system. Like these works, MobileCopy only considers the
DTNs in which nodes present community and certain mobility
patterns. Nodes with high probability of meeting each other
form one community. For example, in a DTN consisting
of mobile devices on campus, device holders usually visit
certain places, such as the library, department buildings, and
dorms. As shown in Figure 1, in each community, the node
with the highest centrality (i.e., stability) is chosen to be the
community head (H), which is used to manage the community.
The node that has the highest frequency to visit each of other
communities is selected as the broker (B) for that community.
Brokers are responsible for transferring information between
this community and other communities. In the case that the
broker for another community cannot be found, the node that
frequently visits other communities is selected as the broker
since it has high mobility to other communities.

MobileCopy focuses on file replication and file replica
indexing. Other issues including community detection,



file searching, routing are all handled using the methods
in underlying community-based file sharing system. In the
following, we present the components of MobileCopy in detail.

B. Data Loss Resistant and Popularity Aware File Replication
1) Different Node Roles in a Community: Since nodes

in one community have more contacts with each other than
with nodes in other communities, and one community is a
unit for file searching in previous DTN file sharing systems,
MobileCopy regards each community as an autonomous sub-
system for file replication. In other words, each community
collects file popularity and decides replicas for each of its
own files independently. This arrangement brings about several
advantages. Firstly, it is suitable for distributed DTNs in
that the tasks of file popularity collection and file replication
are distributed to different communities. Secondly, the file
popularity can be collected more efficiently and accurately.
Thirdly, since each community creates replicas based on the
file popularity within its community, the created replicas can
better satisfy requests of nodes in the community.

MobileCopy assigns different roles to the community head
and brokers. The community head maintains the indices of all
files in its community. It is also responsible for the following
tasks: 1) maintaining information of the community distribu-
tion in the network; 2) conducting file replication in its com-
munity; 3) maintaining the indices for the replica placement
information in its community. The brokers are responsible for
inter-community replica creation, replica placement informa-
tion distribution and file searching between communities.
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Fig. 2: Inter-community
file replication.

2) Inter-Community File Replication: The files may be
shared across communities. For example, in a campus, the
nodes in the computer science building share many articles
with the nodes in the computer engineering building. In order
to reduce the querying delay, if the querying frequency on a file
in community Ci from nodes in community Cj is high, the file
is replicated to community Cj . Specifically, the head of each
community keeps track of the querying frequency of each file
in its community from every other community. If the querying
frequency from community Cj is higher than a threshold, the
head asks Ci’s broker for Cj to carry this file to Cj when it
moves to Cj . Then, the head of Cj creates replicas for the
file in Cj based on its popularity in Cj . The process for inter-
community file replication is illustrated in Figure 2. In this
example, the head of community C1 assigns a replica of F1 to
respective brokers for C2, C3 and C4. Then, the brokers deliver
the replicas of F1 to these communities. Then, when nodes in
these communities request for F1, they can receive it from their
own communities without inter-community communication.
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(a) Random replication.
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(b) Constrained replication.
Fig. 3: Different replica placements.

As mentioned in the introduction section, previous file
replication methods suffer from data loss under correlated
node failures since they place replicas randomly on mobile
nodes. In the following, we first explain why random replica
placement is data loss prone to correlated node failure. Then,
we introduce the solution for this issue in MobileCopy.

3) Intra-Community File Replication:
Data Loss in Random Replica Placement. Randomly allo-
cating replicas to nodes can provide strong resistance against
independent node failures. As long as the size of the FNS does
not exceed the number of replicas of a file, there will be at least
one replica left for the file in the system. However, failures
are not totally uncorrelated, and the occurrence of wide-range
correlated failures is common in wireless networks [6]–[8].
Suppose the set of failure nodes include {na, nb, nc} (a, b, c ∈
[1, N ]) in a correlated failure. If a file is only replicated in these
three nodes, this file is lost permanently. We use an example
(shown in Figure 3(a)) to show the vulnerability of random
replica placement method in correlated failures. The DTN has
9 nodes and 12 files in total. In the figure, each square stands
for a node, and the triangles stand for file replicas. Suppose
each file has 3 randomly allocated replicas in the system. Then,
from Figure 3(a), we know that there are totally 12 FNSs used
in this case. The replica placement of these files, namely FNSs,
are: File1: (n1, n7, n9), File2: (n1, n2, n4), File3: (n1, n4,
n7), File4: (n1, n7, n8), File5: (n2, n3, n4), File6: (n2,
n4, n7), File7: (n2, n5, n8), File8: (n5, n6, n9), File9: (n3,
n5, n8), File10: (n3, n5, n6), File11: (n6, n8, n9), File12:
(n3, n6, n9). Since the total number of possible FNSs (i.e.,
node combinations) is

(
9
3

)
= 84, the probability of permanent

data loss under random replica placement is 12/84=14.3%.
The expense of a data loss event is 1 file. When the number
of files increases, even more FNSs will be used, leading to
higher probability of the loss of some file.

We again use the setting in the example to illustrate our
method (shown in Figure 3(b)). Suppose we limit the possible
combinations of replica holders to only < File1, File2, File3,
File4 >: (n1, n4, n7), < File5, File6, File7, File8 >:
(n2, n5, n8) and < File9, File10, File11, File12 >: (n3,
n6, n9). This means a file’s replica can only be stored in
any of the three combinations of nodes. As a result, only
three cases can cause data loss, leading to a probability of
3/84 = 3.6% for data loss, which is much smaller than the
probability in the random replica placement. But the expense
of data loss is higher, which is 4 files in this example. In front
of pervasive correlated failure, wireless file sharing systems



prefer to use the high number of impacted files to achieve the
low probability of data loss event.

Limiting the combinations of replica holders aside, in file
replication, file popularity also needs to be considered when
creating replicas to maximize the average file availability in
the system. Generally, the more popular a file is, the more
replicas of the file should be created. Therefore, MobileCopy’s
data loss resistant and popularity aware file replication method
jointly consider both objectives in file replication.

Recall that each community conducts file replication inde-
pendently. Therefore, we present the file replication process
in one community as an example to explain the proposed
file replication method. We first introduce how to collect file
popularity and how to determine the number of replicas for
a file based on its popularity. Then, we present how to limit
the combinations of replica holders when different files have
different number of replicas.

Popularity-aware Replica Number Determination. For
each file in its community, the head needs to calculate its
querying frequency from its own community to determine the
number of replicas of this file. Each node keeps track of the
querying frequencies of its files from its own community and
reports this information to the head when moving close to
it. After a certain period of time, the head can know the
distribution of file popularity in its community. The head node
then groups all popularity values into several ranges, and each
range is associated with a replica number. Then, it determines
the number of replicas (denoted by Rf ) for a file (denoted by
Ff ) based on its popularity (denoted by Pf ).

Specifically, the head first determines the maximal number
of replicas allowed for a file, denoted by M . We will explain
how to calculate M later on. The head then sets M popularity
thresholds, denoted by Tr (r = 1, 2, ...,M ). Then, for file Ff ,
its number of replicas equals Rf = r if Tr ≤ Pf < Tr+1,
where r ∈ [0,M ]. Note that T0 and TM+1 are fixed to 0 and
+∞, respectively, to include all possible popularity values.

The values of M and Tr are determined based on the
popularity distribution, the total number of files and available
storage resource in the community in order to ensure that
file popularities are evenly categorized into different ranges
and all replicas can be stored in the community. We use a
heuristic method to get these parameters. In detail, the head
estimates the number of files (ht) and the average file size (sa)
in its community. Then, since we will select M thresholds
that split file popularity evenly into the M + 1 ranges, the
amount of storage occupied by files in the (r + 1)-th range
(r = 0, 1, ...,M ) can be calculated as r ∗ ht

M+1 ∗ sa, where
r is the number of replicas for a file, ht

M+1 is the number of
files in this range and sa is the average size of a file for these
files. We see that the files ranked higher have more replicas.
Finally, M should satisfy

M∑
r=0

r ∗ Nc

M + 1
∗ sa ≈ αS (1)

where S is the size of available storage in the community
and parameter α ∈ [0.5, 1) determines the percentage of the
available storage used for storing the created replicas. Nc is

the total number of nodes in the community. We can deduce
a suitable M based on the above equation. We then select
thresholds Tr (r = 1, 2, ...,M ) so that the file popularity falls
into all ranges evenly.

Limiting Replica Holder Combinations. After determin-
ing the number of replicas for a file, the head node selects
nodes in the community to hold replicas. As indicated previ-
ously, it tries to limit the number of candidate replica holder
combinations that can be selected to store the replicas of a file.

For this purpose, we can assign each node to a replica holder
combination with each set having M nodes, and constrain
the replicas of a file to a randomly selected combination. In
this method, the most popular files will be replicated to all
nodes in a combination, which may lead to load imbalance
problem that some nodes become overloaded while some
nodes are underloaded in the community [16]. To handle this
problem, we limit the number of possible replica holders in a
combination to M + t, where t is a small integer (e.g., 1 and
2). Then, when a file with the highest popularity is replicated
to a combination, it can randomly choose M replica nodes
from M + t nodes.

Specifically, MobileCopy splits Nc community nodes into
d Nc

M+te groups. The replica holders of each file can only be
selected from one group. Therefore, the maximal number of
combinations of replica holders for file Ff is d Nc

M+te ∗
(
M+t
Rf

)
,

where Rf ≤ M is the number of replicas for Ff . We use
an example to demonstrate the effectiveness of this proposed
method. Suppose the maximal number of replicas for a file
(M ) is 3, t is set to 1, and the number of nodes (Nc) is 12.
Nodes are split into groups with size M + t = 4, as shown
below
< N1, N2, N3, N4‖N5, N6, N7, N8‖N9, N10, N11, N12 >

Then, suppose we have a file to be replicated and the number
of replicas allowed for the file is 3. The head node first
randomly selects a group for the file and then randomly selects
3 nodes in the group to hold the replicas. Therefore, there
are 3 ∗

(
4
3

)
= 12 options to select replica holders for the file.

On the other hand, if we place replicas randomly in the
community, the number of combinations of replica holders is(
Nc

Rf

)
. Since Nc is often much larger than M + t,

(
Nc

Rf

)
�

d Nc

M+te ∗
(
M+t
Rf

)
. In the above example, the total number

of combinations of replica holders in the random replica
placement is

(
12
3

)
= 220, which means that the possibility of

data loss is 220/12 = 18.33 times of that in MobileCopy.
Therefore, MobileCopy constrains the number of the com-
binations of replica holders for each file, thereby effectively
preventing the probability of data loss under correlated node
failures.

Storage Limitation Consideration. It is possible that the
storage of a selected replica node is full. To solve this problem,
MobileCopy lets each node report to the head node when
its storage becomes full. Then, when selecting holders for
replicas, the head node excludes the nodes that do not have
available storage. When a node’s storage becomes available,
it informs the head node so that its available storage can be
fully used to store replicas.



Even with such a design, it is still possible that the storage
of all nodes in a community is full. In MobileCopy, when a
replica must be stored on a node without available storage, the
node randomly drops some replica. Since replicas are dropped
with the same probability, the ratios between the numbers of
replicas of files with different popularity remain unchanged.
In other words, dropping replicas randomly does not break
the rule that the more popular files have more replicas.

C. DHT-based File Replica Indexing

1) Distribution of Replica Placement Information: Since
nodes often are sparsely distributed in DTNs, it may not
be easy for a requester to meet the requested file directly
even though it is replicated in the network. Therefore, we
need to design a scheme to efficiently maintain the placement
information of each file for easy access in file searching.
However, it is a non-trivial task. Firstly, a distributed method
is needed to store the replicas’ placement information since
there is no central server or infrastructure available in DTNs.
Secondly, it is desirable to distribute the placement information
evenly in the network since the storage and bandwidth on each
individual node is often limited. Thirdly, the placement infor-
mation must be up-to-date, which means that once the replicas
of a file are created, changed or deleted, the replica placement
information must be updated quickly and the file requesters
can always receive the correct placement information. To
handle these challenges, MobileCopy uses the distributed hash
table (DHT) technique to distribute the placement information
of different files to different communities. DHT is well known
by its balanced information distribution [17]. For each file, it is
mapped to a community based on the consistency hash value
[18] of its name. The mapped community is the one whose
ID is equal to or follows the hash value. Then, the replica
placement information of the file is stored, updated or deleted
in the mapped community. Later on, when a node requests for
the file, it can follow the same process to get the community
that stores the file’s replica placement information. As a result,
any node in the network can know where the replica placement
information of its requested file is stored.

Once the replica nodes of a file are determined in a
community, the head in the community generates a hash value
by hashing the file name. Then, it identifies the community
whose ID is equal to or follows the hash value and forwards the
replica placement information to this community through the
brokers. Each piece of replica placement information assigned
to a community will be stored in multiple nodes that often
stay in the community. This is to ensure that such information
has a high probability to be found in the community even
when nodes move constantly in DTNs. To select such nodes,
the head node in a community first collects each community
member’s staying probability (i.e., the portion of time a node
stays in the community during a unit time period). Then,
it ranks community members in descending order of their
staying probabilities and takes the top Ns nodes as the replica
placement information storage nodes. Ns is determined by the
expected probability that at least one storage node stays in
the community when a file request arrives. A larger expected
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probability leads to a larger Ns and vice versa. The head
node also records the IDs of these storage nodes to guide file
requests in file searching. The process of replica placement
information update and deletion is conducted in the same
manner.

We use Figure 4 to illustrate the replica placement infor-
mation distribution process. In this example, suppose F1 is
mapped to community C3. Then, the heads in C1, C2 and
C4 report the replica placement information of file F1 in
their communities to C3. Thus the overall replica placement
information of F1 is aggregated in C3. This information is
further distributed to storage nodes in C3.

2) Replica Placement Information Assisted File searching:
File searching can be completed efficiently in two steps.

Firstly, the file requester finds the replica placement informa-
tion of the requested file (i.e., ID of replica holders). Secondly,
the file requester locates a replica of the requested file based
on the placement information obtained.

Finding the Placement Information. This step is similar
to the replica placement distribution process. When a node
in community Ci requests for a file, it forwards the request
to the head in the community. The head node first checks
whether the replica of the file exists in some nodes in
local community. If yes, the requester can learn the replica
placement information directly from the head. Otherwise,
the head node hashes the file ID to know the community
that stores the file’s replica placement information, say Ck.
Then, the head forwards the request to the broker for Ck.
After the head node in Ck receives the request, it responds
the replica placement information of the requested file back
to the head of Ci through brokers. The head of Ci then
forwards the information to the requester. Such a process can
be illustrated by Figure 5. “None” in the figure means that
the node no longer has the replica. In this example, the head
in the request’s community C1 firstly checks whether it has
the replica placement information of file F1 locally. If such
information cannot be found in C1, the head calculates the
DHT hash value of the file, which is 3. Then, a broker carries
the request to C3. Finally, the head in C3 responds with the
replica placement information of file F1.

Locating the Requested File. With the replica placement
information of the requested file, the requester knows the
holders of the file’s replicas. Then, it can schedule searches
according to the geographical distances to communities con-
taining the file and the number of replicas of the file in each
community. A replica holder in a closer community with more
replicas has a higher priority to be selected as the target
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Fig. 7: Data loss resistance performance.

node to send the request. The requester uses the DTN routing
algorithm to send the request (along with other replica holder
information) to the target node. In the case that the target node
no longer has the replica, the request is forwarded to other
replica holders in the same community. If all other replica
nodes fail though the probability is low, the forwarding process
iterates.

Figure 6 shows an example on file searching. From the
context of Figure 5, the requester in C1 has known that the
replicas of F1 are originally stored by n2 in C1, n3 in C2,
n5 in C3 and n9 in C4. Since n2 in the requester’s original
community and n5 in the replica placement information node’s
community no longer have the replica, the forwarder then
transfers the request to n3 in C2 in the next step because it
is a neighbor community and contains a replica of F1. In this
case, for files partially lost, as long as there’s node holding the
replica in some community, the file can be recovered. Besides,
correlated failure generally happen among nodes belonging to
the same community. Therefore, the total loss of data will only
happen in the cases that the replica holders in all communities
suffer from correlated failure simultaneously.

III. PERFORMANCE EVALUATION

We conducted trace-driven experiments based on the
DART [19] and the DNET [20] traces. DART is a 119-day
record for wireless devices carried by students on Dartmouth
College campus. DNET is a 20-day record for WiFi nodes
attached to the buses in the downtown area of UMass. We
filtered out nodes with few occurrences and merged access
points (APs) within short ranges to one sub-area. Finally,
DART has 320 nodes and 159 sub-areas and DNET has 34
buses and 18 sub-areas. Based on trace analysis, for DART,
nodes are partitioned into 22 communities, and the average
number of nodes in each community is 15. For DNET, nodes
are partitioned into 3 communities, and the average number
of nodes in each community is 12. Each node originally holds
100 files for file sharing. Each file has the same size 1KB, and
each node has 300 KB available storage. The file popularity
follows a Zipf distribution with the Zipf parameter equals to
0.7 [21]. Then, the request frequency of each file was set based
on its popularity. We set the initialization period to 30 days
for DART and 2.5 days for DNET. After the initialization,
file requests were generated based on the search rate, defined
as the number of file requests generated in each generation
interval, which is 1 day for DART and 4 hours for DNET.
The expiration TTL (Time-To-Live) for a file request was 4
hours and 2 hours in DART and DNET, respectively.

A. Data Loss Resistance
We first evaluate the data loss resistance performance of

MobileCopy in comparison with Random and Uniform. Ran-
dom places replicas on randomly selected nodes and follows
the same method as in MobileCopy to determine the number
of replicas for each file based on its popularity, which is the
usual replica placement scheme used in mainstream wireless
file sharing designs [2], [4], [22]. Uniform randomly chooses
the replica holders and creates equal number of replicas for
each file, which corresponds to methods without considering
file popularity in determining the number of replicas [1], [3].

We evaluate the performance from two perspectives: data
loss probability under various percentages of concurrent failure
nodes and data loss probability under various sizes of nodes
in a group. The percentage of failure nodes determines the
scale of correlated node failures, and the number of nodes in
a group determines the maximum number of combinations of
replica holders for each file in a community. The percentage
of failure nodes ranges from 10% to 100%, the number of
nodes in each group ranges from 4 to 10, and their default
values are 30% and 5, respectively. We ran the experiment for
1000 times on DART and observe data availability of each file
in the end. The probability of data loss is calculated by the
percent of experiments in which at least one file is lost.

In Figure 7(a), “(< x replicas)” means that a file can
maximally generate x replicas in a community and “(= x)”
means that each file generates x replicas. We find that the data
loss probability of Random is 100% when the percentage of
failure nodes is larger than 20% regardless of the maximum
number of replicas of a file. However, for MobileCopy, when
the percentage of failure nodes is 20%, the data loss prob-
ability is smaller than 20%. When the percentage of failure
nodes increases to 40%, the data loss probability is 60%
when the maximum replica number is 5. We also find that
with the increase of the maximum number of replicas, the
data loss resistance of MobileCopy increases. This is because
when more replicas are created, a file can tolerate more failure
holders. For Uniform with 5 replicas, when the percentage of
failure nodes is 60%, the data loss probability is around 20%.
However, for Uniform with 2 replicas, when the percentage of
failure nodes is 20%, the data loss probability is higher than
80%. The result illustrates that more replicas per file leads to
higher data loss resistance but at the cost of redundant replicas
for low popularity files.

In Figure 7(b), “failProb=x" means that the percentage of
failure nodes is set to x. The curves of Random with different
node failure probabilities overlap with each other over all
node failure probabilities, which means there’s always data
loss under various percentages of failure nodes. We find that
the data loss probability of MobileCopy is around 90% when
failProb=0.4 and below 15% when failProb=0.2 or 0.3. We
also see that with the increase of the number of nodes in
each group, the data loss probability decreases under a certain
node failure probabilities. This is because when the group size
increases, the number of groups decreases, leading to fewer
combinations of replica holders and hence lower data loss
probability. For Uniform, the data loss probability is below



20% when failProb=0.2 or 0.3. When failProb=0.4, the data
loss probability of Uniform is 100%. In contrast, under these
node failure probabilities, the data loss possibility of Random
is always 100% regardless of the number of nodes in each
group. Such results demonstrate the strong data loss resistance
of MobileCopy.

B. File Searching Efficiency
In order to show the effectiveness of the DHT-based file

replica indexing method, we further compare the file searching
performance of MobileCopy and two representative systems:
the MOPS publish/subscribe system [11] and the SPOON file
sharing system [10]. For fair comparison, all the three methods
use the same method as in MobileCopy to create replicas. In
MOPS, brokers from different communities exchange infor-
mation about the files and the number of replicas of each file
existing in their own communities when they encounter each
other. In order to maximize the probability of successfully
finding files, we let MOPS search the community with the
maximal number of replicas of the requested file. Specifically,
in file searching, a file requester forwards its request to the
broker of its community (Ci), which further forwards the
request to the broker of the community (Cj) that has the
maximal number of replicas of the requested file. When the
broker meets a file holder, it fetches the file and then forwards
it back to the broker of Ci, which forwards the file to the
requester. In SPOON, a file request is always forwarded to
nodes that have higher meeting frequency with the target
node than previous carrier. If such a node cannot be found,
the request is forwarded to nodes that have higher meeting
frequency with others. This method can forward a request to
a file holder since nodes with similar file interests tend to
gather together.

We measured the following metrics in the experiments.
• Success rate: The percentage of file requests that success-

fully reach their target files within search TTL.
• Average delay: The average time (in seconds) spent by

file requests to reach their target files. Note that the time
spent by unsuccessful requests, which is the search TTL,
is also considered in calculating this metric.

• Average search length: The average number of forward-
ing hops experienced by a file request. Note that the
search length of unsuccessful requests is also considered.

We conducted two experiments. In the first experiment, we
varied the search rate from 20 to 70. In the second experiment,
we varied the search TTL of each request from 18 hours to
33 hours in DART and from 1 hour to 6 hours in DNET.

1) Success Rate: Figure 8(a) and Figure 9(a) show the suc-
cess rates of the three algorithms under different search rates in
DART and DNET, respectively. Figure 10(a) and Figure 11(a)
show the success rates under different search TTLs in the
experiments with DART and DNET, respectively. We see the
success rates follow: MobileCopy>SPOON�MOPS. MOPS
always has the lowest success rate under different search rates
and TTLs. With the information exchanged between brokers,
the community with the maximum number of the replicas
of the target file can be known. However, the broker of the

target community does not know the exact file holder, but can
only find the file by occasional contact. As a result, MOPS
generates a long search delay and has low success rate.

In MobileCopy, the file requester can know the file holder
through DHT. Then the request is forwarded through the bro-
ker to the community and learns which nodes store the replica
placement information from the head. Then, the requester
knows the replica holders and schedules file searching. The
request can be forwarded through the relay of nodes that
frequently meet the file holder. Since in each phase of the
file search process, the request has a clear target, it can reach
its target file efficiently, leading to the highest success rate.

SPOON lets file requests be forwarded to nodes with higher
meeting frequency with the file holders. Therefore, it has
higher success rate than MOPS. However, a file request may
be generated in a community where few nodes have met the
holder of the target file, leading to many forwarding hops.
Therefore, SPOON’s success rate is lower than MobileCopy.

2) Average Delay: Figure 8(b) and Figure 9(b) show the
average delays of the three algorithms under different search
rates in DART and DNET, respectively. Figure 10(b) and
Figure 11(b) show the average delays under different search
TTLs in DART and DNET, respectively. In all figures, the
average delays follow: MOPS�SPOON>MobileCopy.

As mentioned previously, MOPS simply forwards the re-
quest to the community with the highest number of target
file’s replicas. After arrival, the request waits for the target
file. Therefore, MOPS generates the highest average delay. In
MobileCopy, requests firstly identify the replica information
storage nodes and the replica holders. With clear target nodes,
file requests are efficiently forwarded to the target nodes
through brokers and active nodes, resulting in the least delay.
In SPOON, requests are forwarded to nodes that frequently
meet the file holders. The requests can gradually reach their
target files, leading to much lower delay than MOPS.

However, file requests may be generated in communities far
away from the target files. As a result, they may not be able
to find the nodes that can frequently meet the file holders,
leading to many forwarding hops in SPOON.

3) Average Search Length: Figure 8(c) and Figure 9(c)
show the average search lengths of the three algorithms
under different search rates in DART and DNET, respectively.
Figure 10(c) and Figure 11(c) show the average search lengths
under different search TTLs in DART and DNET, respectively.
We find that for both traces, the search lengths follow:
MOPS<MobileCopy<SPOON.

MOPS has the lowest search length since the broker pas-
sively waits for file holder. Since MobileCopy always actively
forwards requests to file holders through multi-hops, it has
higher search length than MOPS. In SPOON, since requests
are not directly forwarded to file holder, more forwardings are
needed than MobileCopy, leading to the highest search length.

C. Data Availability

To illustrate the effectiveness of considering popularity
in file replication in improving data availability, we compare
MobileCopy with Random and Uniform. In the experiment,
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Fig. 8: File search performance with different search rates using the DART trace.
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Fig. 9: File search performance with different search rates using the DNET trace.
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Fig. 10: File search performance with different TTLs using the DART trace.
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Fig. 11: File search performance with different TTLs using the DNET trace.

MobileCopy can generate maximally 5 replicas for a file per
community, and 2 replicas for each file in average. Therefore,
in Uniform, each file uniformly generates 2 replicas in each
community. Random also generates replicas according to the
popularity of files like MobileCopy, but randomly selects the
holders. Figure 12(a) and Figure 12(b) show the success rates
of the three algorithms under different TTLs in DART and
DNET, respectively. Figure 12(c) and Figure 12(d) show the
average delays of the three algorithms under different TTLs
in DART and DNET, respectively. We find that the success
rate of MobileCopy and Random is higher than Uniform, and
the average delay of MobileCopy and Random is lower than
Uniform. Further, the results of both metrics of MobileCopy
are closest to those of Random. It is because randomly allocat-
ing replicas has no effect on success rate and average delay.
The result verifies that MobileCopy can achieve higher file
availability by considering file popularity in replica creation.

IV. RELATED WORK

The topic of file replication in distributed wireless networks
has been extensively studied. To increase the data availability
in mobile ad hoc networks, Hara et al. [3] proposed three
replica allocation methods. The methods determine the ne-
cessity of file replication or deletion based on the file access
frequencies of individual nodes, neighbor nodes, and a group
of stably encountering nodes, respectively. Moussaoui et al. [1]
proposed to realize file replication in two steps to prevent data
loss. In the first step, a file is distributed in the network evenly.
In the second step, nodes create replicas based on each file’s
density in the neighborhood to ensure the even distribution
under node mobility. The work in [2] caches popular files
on the intersection nodes on the path of requests for these
files, which can be used to satisfy future file requests. The
work in [4] creates or removes replicas on neighbor nodes
based on file access requests collected from neighbor nodes.
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Fig. 12: Effectiveness of considering file popularity in file replication in improving data availability.

In [5], nodes predict future file requests based on collected
sematic information from their group members and create
replicas accordingly. The PCS algorithm [22] considers both
storage and meeting ability as resources for replica creation.
It models the relationship between the average file access
delay and the resource allocation to deduce how to allocate
resources for files to create replicas so that the average file
access delay is minimized. Chen [23] investigated how to
ensure that each data can be accessed within at most k hops
in mobile networks by creating file replicas. It copies a file
to the right place that needs a replica so that “each data can
be accessed within k hops" is still satisfied. In spite of many
works on file replication in DTNs, there has been no work
that tries to reduce data loss in correlated failures, which is
common in wireless networks.

V. CONCLUSION

Previous file replication methods aiming at improving data
availability in DTNs neglect correlated node failures, which
can cause serious data loss and low data availability. We
propose MobileCopy to increase the data availability in cor-
related node failures in DTNs. MobileCopy is designed for
community-based file sharing systems and conducts file repli-
cation within each community independently. A failure node
set (FNS) is a set of nodes whose simultaneous failures cause a
file loss, i.e., a set of replica nodes of a file. Thus, MobileCopy
aims to reduce the data loss by reducing the number of FNSs
in the system. To this end, it groups community nodes and
constrains the replicas of many files to the nodes in one group,
and determines the number of replicas of a file based on its
popularity in order to increase the average data availability for
file requests. Further, MobileCopy has a DHT-based file replica
indexing method, which provides an efficient way to update
and fetch replica placement information of a given file. Thus,
a file requester can quickly learn the replica nodes of a given
file in file searching. Extensive trace-driven experiments show
that MobileCopy is robust against correlated node failures and
efficient in file sharing in comparison with previous methods.
For files that do not have the highest popularity, their number
of replicas is less than the number of nodes in a group, which
leads to several different FNSs. In our future work, we will
study how to constrain the number of FNSs of these files to
reduce data loss rate.
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