iASK: A Distributed Q&A System
Incorporating Social Community and Global Collective Intelligence
Guoxin Liu and Haiying Shen

Presenter: Haiying Shen
Associate professor

*Department of Electrical and Computer Engineering, Clemson University, Clemson, USA
Outline

- Introduction
- Related work
- iASK design
- iASK implementation
- Evaluation
- Conclusion
Introduction

• Vital role of Web Q&A
 ◦ Yahoo! Answers
 • 10 million users in first 2 years
 • Currently 200 million users
 • 15 million visits everyday
 ◦ Drawbacks
 • Unsolved non-factual questions without knowing personnel preferences
 • Long delay due to too many questions needed to be browsed
 • Lack of trustworthiness
Introduction

- Social-based Q&A
 - Potential benefits
 - Personnel recommendation/opinion
 - Trustable and altruistic
 - Problem
 - Confine the Q&A activities within individual social communities
 - Challenge
 - How to connect different social communities for users to efficiently receive answers outside of their social communities
Introduction

• Our Approach:
 ◦ iASK: a unified system that incorporates social community intelligence and global collective intelligence into a single distributed Q&A system
 • A neural network based friend ranking method to identify answerer candidates in the social network
 • A virtual server tree in the central servers to efficiently locate answerer candidates in the global user base
 • A fine-grained reputation system to accurately locate cooperative global experts to answer questions
Outline

- Introduction
- Related work
- iASK design
- iASK implementation
- Evaluation
- Conclusion
Related work

- Social-based Q&A
 - Infrastructure
 - Centralized solutions
 - High overhead for computing
 - Distributed Q&A system
 - Flooding: high communication overhead
 - Selecting: lack of cooperation of global collective intelligence
 - Expert locating algorithm
 - Social features
 - Answerer reputation
 - Question quality
Outline

• Introduction
• Related work
• iASK design
• iASK implementation
• Evaluation
• Conclusion
iASK Design

• Design rationale and challenge
 ◦ Questions inside social community
 • Social intelligence
 • Share similar interests
 • Know friends’ background
 • Need to be accurate and efficient
 ◦ Questions outside social community
 • Global collective intelligence
 • Need to ensure timely and high-quality answers
iASK Design

- iASK architecture
 - Clustering: interest-based virtual server tree
 - Social intelligence: bi-direction friendship
 - Global intelligence: follower-followee

Social community intelligence

iASK's social communities

- V_P: Pop
- V_F: Folk music
- V_R: R.A.P.
- V_C: Classical
- V_N: News

Global Collective intelligence

- Root
- Music
- Television
- Classical
- Folk music
- Pop
- R.A.P.
iASK Design

- Social intelligence: inside asker’s social communities
 - Neural network-based friend ranking
 - Hidden layer
 - Efficiency: cooperativeness
 - Accuracy: answer quality
 - First layer
 - Response rate/delay + mutual interaction frequency + precision rate

\[w_1 w_2 \ldots w_{10} \]

\(W \): influence weight

Answer QoS

Cooperativeness

Answer quality

Response rate

Mutual interaction frequency

Response delay

Precision rate
iASK Design

- Global intelligence: outside asker’s social communities
 - Efficiency: interest-based clustering for all users
 - User join/leave: have a new interest/remove an old interest
 - Virtual server: global intelligence collection

![Diagram of iASK Design]

- $V_{1,1}$: Music
- $V_{1,5}$: Research
- $V_{1,n}$: Sports
- $V_{2,1}$: Pop music
- $V_{2,40}$: Datacenter
- $V_{i,j}$: user (sub)$^{i-1}$-interest j
- $V_{i,m}$: user (sub)$^{i-1}$-interest m
iASK Design

- Fine-grained reputation-based answerer selection
 - Ranking: global reputation + specific expertise
 \[
 R_{u_j} = \frac{1}{\frac{1}{2} \left(\frac{1}{R^g_{u_j}} + \frac{1}{R^{I_i}_{u_j}} \right)}
 \]
 - Global reputation: expertise + followees’ reputation
 \[
 R^g_{u_j} = \frac{1}{\frac{1}{2} \left(\frac{1}{B_{u_j}} + \sum_{u_i \in f(u_j)} \frac{1}{R^g_{u_i} / |f(u_j)|} \right)}
 \]
 - Specific expertise
 \[
 R^{I_i}_{u_j} = \frac{N^{I_i}_{u_j}}{N^{I_i}}
 \]
Outline

- Introduction
- Related work
- iASK design
- iASK implementation
- Evaluation
- Conclusion
iASK implementation

- Two different roles:
 - Virtual server side
 - Java servlet + Tomcat 7.0 + MySQL
 - User side
 - Java applet framework

- Functionality: menu + ask + answer
Outline

- Introduction
- Related work
- iASK design
- iASK implementation
- Evaluation
- Conclusion
Evaluation

- **Experimental settings**
 - 100,000 users
 - Question and answer activity from Yahoo! Answer [1]
 - Social relationship from Facebook trace [2]
 - 100 questions per user

- **Measured metric**
 - Response rate
 - Recall rate: $|\text{RA} \cap \text{BA}| / |\text{BA}|$
 - Precision rate: $|\text{RA} \cap \text{BA}| / |\text{RA}|$
 - Response delay

Evaluation

• Comparison methods
 ◦ Social intelligence
 • Random: randomly select friend
 • Flooding: select all friends
 • SOS [1]: social closeness plus interest similarity
 ◦ Social plus global intelligence
 • Global(Tree): use global intelligence only
 • Global(Flat): use global intelligence only with single interest
 • SOS [1]

Evaluation of social intelligence

- **Accuracy**
 - Largest precision rate: quality
 - High recall rate: completeness

- **Efficiency**
 - Largest response rate: incentive
 - Short response delay: time efficiency
Evaluation of global intelligence

- **Accuracy**
 - Largest precision rate: quality
 - Largest recall rate: completeness

- **Efficiency**
 - Largest response rate: incentive
 - Comparable short response delay: time efficient
Outline

• Introduction
• Related work
• iASK design
• iASK implementation
• Evaluation
• Conclusion
Conclusion

• iASK: a unified distributed Q&A system incorporating both social community intelligence and global collective intelligence
 ◦ A neural network to consider multiple factors in evaluating the answer QoS of a user’s friends
 ◦ A virtual server tree overlay to efficiently locate answerer candidates in the interest of the question
 ◦ A fine-grained reputation system to locate cooperative global experts

• Future work:
 ◦ Add more features to rank users in order to more precisely and efficiently locate the experts
Thank you!

Questions & Comments?

Haiying Shen
shenh@clemson.edu

Electrical and Computer Engineering
Clemson University