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Abstract—Since scale-up machines perform better for jobs
with small and median (KB, MB) data sizes while scale-out
machines perform better for jobs with large (GB, TB) data size,
and a workload usually consists of jobs with different data size
levels, we propose building a hybrid Hadoop architecture that
includes both scale-up and scale-out machines, which however
is not trivial. The first challenge is workload data storage.
Thousands of small data size jobs in a workload may overload
the limited local disks of scale-up machines. Jobs from scale-
up and scale-out machines may both request the same set of
data, which leads to data transmission between the machines.
The second challenge is to automatically schedule jobs to either
scale-up or scale-out cluster to achieve the best performance.
We conduct a thorough performance measurement of different
applications on scale-up and scale-out clusters, configured with
Hadoop Distributed File System (HDFS) and a remote file sys-
tem (i.e., OFS), respectively. We find that using OFS rather than
HDFS can solve the data storage challenge. Also, we identify the
factors that determine the performance differences on the scale-
up and scale-out clusters and their cross points to make the
choice. Accordingly, we design and implement the hybrid scale-
up/out Hadoop architecture. Our trace-driven experimental
results show that our hybrid architecture outperforms both
the traditional Hadoop architecture with HDFS and with OFS
in terms of job completion time.
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I. INTRODUCTION

MapReduce [13] is a framework designed to process a
large amount of data in the parallel and distributed manner
on a cluster of computing nodes. Hadoop, as a popular open
source implementation of MapReduce, has been deployed
in many large companies such as Facebook, Google and
Yahoo!. In the last decade, the amount of computation
and data increases exponentially [7]. This trend poses a
formidable challenge of high performance on MapReduce
and motivates many researchers to explore to improve the
performance from different aspects such as job scheduling
[2], [4], [15], [16], short jobs performance optimization [14]
and intermediate data shuffling [6], [11], [12], [22].

A common sense in the IT community is that a larger
Hadoop cluster of machines is always better for processing
big data, i.e., a very large volume of data in terabytes,
petabytes or exabytes. Recent studies indicate that most jobs
in the production workloads (e.g., at Facebook [10] and
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Figure 2: Hybrid scale-up/out Hadoop with a remote stor-
age.

Microsoft [20] clusters) usually have input/shuffle/output
sizes in the MB to GB range. These production clusters
with many small jobs suffer from poor performance because
the existing Hadoop MapReduce clusters were not originally
designed for short and latency-sensitive jobs [14]. Therefore,
optimizing the performance of short jobs is important. To
process the current production workloads, Appuswamy et
al. [8] claimed that scale-up machines is a better option
than scale-out machines. Scale-up is vertical scaling, which
means adding more resources to the nodes of a system,
typically the processors and RAM. Scale-out is horizontal
scaling, which refers to adding more nodes with few pro-
cessors and RAM to a system.

A real-world workload usually consists many jobs han-
dling diverse data size levels and computations. Also, in
this big data era, the data size handled by jobs has been in-
creasingly larger. We calculated the Cumulative Distribution
Function (CDF) of the data sizes of more than 6000 jobs in
the Facebook synthesized workload trace FB-2009 [9] and
show the results in Figure 3. We see that the input data size
ranges from KB to TB. Specifically, 40% of the jobs process
less than 1MB small datasets, 49% of the jobs process 1MB
to 30GB median datasets, and the rest 11% of the jobs
process more than 30GB large datasets. Such a workload
requires both scale-up and scale-out machines to handle
datasets with different size levels. Therefore, it is not prac-
tical to simply decide to use scale-up machines or scale-out
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machines for a workload. Motivated by these observations,
we see the great potential to design a Hadoop architecture
with coexistence of both scale-up and scale-out machines to
improve the performance of real-world workloads. However,
this task is non-trivial due to two main challenges.
• Proper data storage to enable both scale-up machines
and scale-out machines efficiently access data needed. The
Facebook trace shows that thousands of jobs (85%) handle
small or median data size levels. Since majority jobs are
better to run in scale-up machines, these jobs may overload
the local disks of scale-up machines. Also, both scale-up and
scale-out machines may request the same workload dataset,
which leads to data transmission between the machines and
may degrade the application performance.
• Adaptively scheduling a job to either scale-up cluster
or scale-out cluster that benefits the job the most. Simply
referring to job input data size may not be sufficient and
there may exist other factors that determine the performance
difference between scale-up and scale-out clusters.

In this paper, we aim to investigate the feasibility of
designing such a hybrid architecture and start the initial
exploration. Hadoop Distributed File System (HDFS) is the
file system designed to closely work with Hadoop MapRe-
duce (Figure 1). To handle the first challenge, we could
let HDFS consider both scale-out and scale-up machines
equally as datanodes for data distribution. However, in this
case, scale-up machines must frequently access data in scale-
out machines, which not only degrades their job performance
but also consumes their bandwidth. We then explore han-
dling this challenge by using a remote dedicated storage
system (e.g., OrangeFS [5] (Figure 2). The dedicated storage
offloads I/O load from the compute nodes and enables
the data sharing between scale-up machines and scale-out
machines easily. To handle the second challenge, we need
to decide not only the factors that affect the performance
difference between scale-up cluster and scale-out cluster but
also the cross points of the factors for the selection. As
shown in Figure 4, the cross point is the amount of a factor,
at which the scale-up and scale-out clusters provide similar
performance and if the actual amount is higher or lower than

Table I: Four architectures in our measurement.

Scale-up Scale-out
OFS up-OFS out-OFS

HDFS up-HDFS out-HDFS

the cross point, one cluster provides better performance.
To this end, by taking advantage of the Clemson Uni-

versity Palmetto HPC cluster that was successfully con-
figured Hadoop by replacing the local HDFS with the
remote OrangeFS (OFS), we configured four architectures
as shown in Table I: scale-up machines with OFS (denoted
by up-OFS), scale-up machines with HDFS (denoted by up-
HDFS), scale-out machines with OFS (denoted by out-OFS),
and scale-out machines with HDFS (denoted by out-HDFS).
We then measure the performance of representative Hadoop
applications (i.e., shuffle-intensive and map-intensive) on
these architectures. Through the measurement, we aim to
see if the use of a remote file system can provide efficient
data storage as we expected and whether it brings about
any side-effect to scale-up cluster or scale-out cluster. More
importantly, we study the benefits gained from scale-up
cluster and scale-out cluster, respectively, for different jobs,
based on which we can decide where to run a given job.

Through our performance measurement, we confirm the
benefits of the remote file system, identify the factors (i.e.,
input data size and shuffle/input data size ratio) that deter-
mine the performance differences on the scale-up and scale-
out clusters and their cross points to make the choice. Ac-
cordingly, we design a hybrid scale-up/out Hadoop architec-
ture. In this architecture, different jobs in a workload can be
executed on either scale-up or scale-out cluster that benefits
them the most, thus achieving higher workload performance.
In this paper, we use execution time to evaluate application
performance. Our contributions are summarized below:
1. We have identified comparable scale-up cluster and scale-
out cluster, built four architectures shown in Table I and op-
timized their configurations to achieve the best performance
by trial of experiments.
2. We have conducted thorough experiments of different ap-
plications on the four architectures with different input data
sizes and provided an insightful analysis on the performance.
3. Based on our measurement analysis, we design a sched-
uler, which helps decide whether to execute a job on the
scale-up or scale-out cluster to gain the most benefit. We
then design a hybrid scale-up/out Hadoop architecture that
incorporates this scheduler and uses a remote file system.
4. We have conducted experiments driven by the Facebook
synthesized workload trace, which show that our hybrid
architecture outperforms both the traditional Hadoop archi-
tecture with HDFS and with OFS in terms of the execution
time.

As far as we know, our work is the first that i) studies the
application performance on the four architectures in Table
I, ii) proposes the idea of a hybrid scale-up/out Hadoop
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architecture to better serve a real-world workload with jobs
handling diverse data size levels and computations, and iii)
introduces a method to build the hybrid scale-up/out Hadoop
architecture. Our new architecture is only an initial design
and has many aspects to improve but we expect it can
stimulate many researches on this topic.

The remainder of this paper is organized as follows.
Section II describes the configurations of scale-up and
scale-out machines for the HPC-based Hadoop. Section III
presents the performance measurements for different types
of applications on the four architectures. Section IV presents
our proposed hybrid scale-up/out Hadoop architecture. Sec-
tion V presents the trace-driven experimental results of our
architecture compared with the traditional Hadoop. Sec-
tion VI gives an overview of the related work. Section VII
concludes the paper with remarks on our future work.

II. OPTIMIZATION OF THE HPC-BASED HADOOP
MAPREDUCE CONFIGURATIONS

In this section, we introduce the details on how we con-
figured Hadoop MapReduce on the Clemson Palmetto HPC
cluster, which is ranked as the top five fastest supercom-
puters at public universities in United States and the 66th

fastest supercomputers globally [3]. The HPC cluster makes
it easy to build the hybrid scale-up/out Hadoop architecture
due to two reasons. First, a HPC center have different kinds
of machines with different number of CPU cores and RAM
size, which allows us to build the architecture without any
further cost to buy new machines.

Second, the configuration of Hadoop with a remote s-
torage makes the coexistence of scale-up and scale-out
machines in Hadoop possible. These machines can share the
same datasets and access their required data easily without
frequent data transmission between machines.

A. Introduction of Hadoop MapReduce

HDFS generally consists of a namenode that manages the
metadata of the cluster and multiple datanodes used to store
the data blocks. The running process of a MapReduce job
is composed of three phases: map, shuffle and reduce. Each
node has a specific number of map and reduce slots. Given
the input data, HDFS divides it to input data size

block size number of
data blocks and stores the blocks into datanodes. In the map
phase, the job tracker assigns each mapper to process one
data block in a datanode. The output of all the mappers is
intermediate data (i.e., shuffle data). In the shuffle phase, the
shuffle data is then partitioned and shuffled to corresponding
reduce nodes. The shuffle data is copied to the reduce nodes’
memory first. If the shuffle data size is larger than the size
of in-memory buffer (which is determined by the heap size),
the shuffle data will be spilled to local disk. In the reduce
phase, the reducers aggregate the shuffle data and generate
the final output.

B. Hadoop MapReduce on HPC Cluster

We use myHadoop [18] to automatically configure
Hadoop on the Clemson Palmetto HPC cluster. Recently, a
Java Native Interface (JNI) shim layer has been implemented
on the Clemson Palmetto HPC cluster that allows Hadoop
MapReduce to store input/output on a remote storage file
system (i.e., OFS) directly. OFS is a parallel file system
that distributes data across multiple servers. The remote
storage in general has much faster I/O performance than
local disks [1]. Moreover, because of the centralization of
remote storage, it is much easier to manage and maintain
than the local storage. With OFS, no modifications to the
Hadoop source code and MapReduce jobs are required.

C. Experiment Environment

In the experiments, we use Hadoop version 1.2.1. We
use two machines for scale-up Hadoop MapReduce. Each
scale-up machine is equipped with four 6-core 2.66GHZ
Intel Xeon 7542 processors, 505GB RAM, 91GB hard disk,
and 10Gbps Myrinet interconnections. The scale-out cluster
consists of twelve machines, each of which has two 4-
core 2.3GHZ AMD Opteron 2356 processors, 16GB RAM,
193GB hard disk, and 10Gbps Myrinet interconnections.

The reason that we select two scale-up machines and
twelve scale-out machines is because it makes the scale-up
and scale-out clusters have the same price cost (according
to the investigation of market), thus makes the performance
measurements comparable. Previous research [8] used on-
ly one scale-up machine and hence did not consider the
network performance between scale-up machines in the
performance study. In order not to exclude the network factor
in the performance study, we use two scale-up machines and
comparably 12 scale-out machines.

We compare the performance of different types of ap-
plications on four architectures in Table I. For the HDFS
configuration, if one of the machines acts as both namenode
and datanode, it will degrade the performance of Hadoop.
Since OFS itself has metadata servers, in order to achieve
fair comparison, we use an additional machine to serve as
namenode in HDFS.

D. Hadoop Configurations

It is important for us to optimize the configurations of
both scale-up and scale-out machines, either with OFS or
HDFS, to achieve the best application performance of the
four architectures.
Heap size In Hadoop, each map and reduce task runs in
a JVM. The heap size is the memory allocated to each
JVM for buffering data. If the memory is full, the data
in memory is spilled to the local disk, which introduces
overhead. By default, the heap size is 200MB for each
JVM. Current modern servers (regardless of scale-out or
scale-up machines) always provide sufficient memory for
us to increase the heap size to reduce the overhead and
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improve the JVM performance. However, if the heap size
is too large, the memory used for heap is wasted and
the out of memory error may occur. To achieve the best
performance and also avoid the out of memory error [8] in
our experiments, through trial and error, we set the heap size
to 8GB per task on scale-up machines, and to 1.5GB and
1GB for shuffle-intensive and map-intensive applications on
scale-out machines, respectively.
Map and reduce slots To ensure the best performance, the
total number of map and reduce slots is set to the number of
cores for both scale-up and scale-out machines. For example,
if we use machines with 4-core CPUs, the sum of map and
reduce slots is equal to 4. Therefore, in our experiments,
each scale-up machine has 24 map and reduce slots, while
each scale-out machine has 8 map and reduce slots in total.
Remote file system strip size In HDFS, a file is broken
into small blocks and each data block is processed by one
map task. It is important to set the block size properly, which
cannot be too small or too large. We set the HDFS block
size to 128MB to match the setting in the current industry
clusters. Similarly, OFS stores data in simple stripes (i.e.,
similar as blocks in HDFS) across multiple storage servers
in order to facilitate parallel access. The stripe size is 4KB
in default. In order to compare OFS fairly with HDFS, we
also set the stripe size to 128MB.
The number of remote storage servers There are 32
remote storage servers in OFS in the Clemson HPC cluster.
Each remote storage server consists of 2 SSD disks with a
RAID-1 configuration and 5 SATA disks (ST32000644NS)
with a RAID-5 configuration. The two SSD disks are used
for storing metadata and the operating system for the remote
storage servers, while the 5 SATA disks are used to store
data. These 32 remote storage servers are connected with
high-speed interconnection Myrinet, which is a high-speed
local area network and has much lower protocol overhead
than standard Ethernet. Currently, these 32 remote storage
servers are sufficient to provide low latency for around 2000
machines on Palmetto and hence we do not need to worry
that this remote file system is not scalable to large Hadoop
MapReduce clusters. In our experiments, since each file in
the input data is not large (maximum 1GB) and the stripe
size is set to 128MB, we do not need to use the full 32
remote storage servers. Thus, in our experiments, we use 8
(1GB/128MB) remote servers to store each file in parallel.
Replication factor of HDFS In traditional large cluster
Hadoop MapReduce with HDFS, the replication factor is
set to 3, which means that each file block has three replicas.
In general, the first replica is in one node; the second
replica is placed in a different rack from the node and
the third replica is placed in the same rack as the second
replica. A large HDFS runs on a cluster of computers that
commonly spread across many racks. Therefore, setting the
replication factor to 3 for large cluster helps spread the data
to two different racks. However, because of the relatively

small scale of Hadoop cluster in our experiments (i.e., 12
machines), the machines of our cluster are in the same
rack, which means it is not necessary to set the replication
factor to 3. To reduce the bandwidth consumption and time
to replicate data and also spread replicas among nodes to
help achieve high data locality, we set the replication factor
of HDFS to 2. For the remote file system OFS, it currently
does not support build-in replications. However, it does not
affect our measurement performance since data loss never
occurs in OFS during our experiments.
RAM drive of scale-up machines The scale-up machines
provide a large amount of memory size (i.e., 505GB in
the experiments), which is an advantage of the scale-up
machines. Even though we set the heap size to 8GB, there
is much memory space left. To fully take advantage of the
unused memory in the scale-up machines, Palmetto enables
to use half of the total memory size as tmpfs, which serves
the same functions as RAMdisk. On the other hand, since
the memory size is limited on the scale-out machines (i.e.,
16GB), we do not use memory as RAMdisk.
Shuffle data placement Although the Clemson Palmetto
HPC cluster allows us to configure Hadoop with remote file
system OFS, we only can place input and output data to
OFS, but cannot place shuffle data to OFS, which requires
the modification of Hadoop MapReduce code. Then, we still
need to utilize the local file system to store the shuffle data.
For the scale-up machines in our experiments (either with
HDFS or OFS), we place the shuffle data on RAMdisks,
which improves the shuffle data I/O performance greatly.
For scale-out machines, we store the shuffle data in the local
disks (i.e., HDD).

III. PERFORMANCE MEASUREMENT OF APPLICATIONS

In this section, we compare the performance of shuffle-
intensive and map-intensive jobs with different input data
sizes on the four architectures in Table I. Shuffle-intensive
applications have large shuffle data size, while map-intensive
applications generally do not contain large shuffle data size.
We expect to provide a thorough analysis on how different
applications benefit from scale-up and scale-out clusters, and
on remote storage and local storage respectively.

A. Types of Applications

The applications we use include Wordcount, Grep, and
the write test of TestDFSIO. Among them, Wordcount and
Grep are typical shuffle-intensive applications. Specifically,
Wordcount and Grep have only relatively large input and
shuffle size but small output size. We generated the input
data by BigDataBench [21] based on the Wikipedia datasets
for Wordcount and Grep. The write test of TestDFSIO is typ-
ical map-intensive applications. We measure the following
metrics of each job:
• Execution time, which is the job running time and calcu-
lated by the job ending time minus job starting time.
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(a) Execution time.
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(b) Map phase duration.
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(c) Shuffle phase duration.
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Figure 5: Measurement results of shuffle-intensive Wordcount.
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(d) Reduce phase duration.

Figure 6: Measurement results of shuffle-intensive Grep.

• Map phase duration calculated by the last map task’s
ending time minus the first map task’s starting time.
• Shuffle phase duration calculated by the last shuffle task’s
ending time minus the last map task’s ending time.
• Reduce phase duration, which is the time elapsed from
the ending time of the last shuffle task to the end of the job.

Note that due to the limitation of local disk size, up-HDFS
cannot process the jobs with input data size greater than
80GB.

Since the execution time and map phase duration of jobs
with different input data sizes differs greatly, it is difficult
to see the experimental results of small data sizes in the
figures. Therefore, we normalize execution time and map
phase duration results by the results of up-OFS, since we
only focus on the performance comparison among up-OFS,
up-HDFS, out-OFS, and out-HDFS, rather than the exact
execution time or map phase duration. For example, if a job
running on up-OFS and up-HDFS has an execution time of
10 and 20 seconds, respectively, then up-OFS on the figure
is shown as 1, while up-HDFS on the figure is shown as 2.
And we only need to know from the figure that up-OFS has
better performance than up-HDFS.

B. Performance of Shuffle-Intensive Applications

Figures 5(a) and 6(a) show the execution time of Word-
count and Grep versus different input data sizes, respec-
tively. We see that when the input data size is small (0.5-
8GB), the performance of Wordcount and Grep all follows:
up-HDFS>up-OFS>out-HDFS>out-OFS. Recall that the
number of required map slots equals d input data size

block size e. The
scale-up machines have better performance when the input

data size is small because of three reasons. First, the two
scale-up machines can provide the majority of required map
slots of the small jobs (defined as jobs with small input data
size), which means that the jobs can be completed in only a
few task waves. The number of map (reduce) waves of a job
is calculated by the number of distinct start times from all
mappers (reducers) of the job. Thus, small jobs can benefit
more from more powerful CPU resources of the scale-up
machines than from scale-out machines. Second, these jobs
are all shuffle-intensive and their performance is very related
to the memory resource. The map outputs are copied to the
reduce nodes’ memory, which is limited by the heap size. A
larger heap size makes it less likely to spill the map outputs
to the local disks. The more memory resource of scale-up
machines provides larger heap size and hence enhances the
performance of these shuffle-intensive applications. Third,
for the shuffle data placement, the RAMdisks in the scale-up
machines are much faster than the local disks in the scale-out
machines.

When the input data size is small, the performance of out-
HDFS is around 20% (calculated by OFS−HDFS

HDFS ) better
than out-OFS, and up-HDFS is around 10% better than
up-OFS. Although a remote file system has better I/O
performance than HDFS [1], its advantage cannot be shown
for small jobs. This is caused by the network latency in
the communication with the remote file storage, which is
independent on the data size. When the data size is small,
the execution time is also small and the network latency
occupies a relatively high portion of the total execution time.
Then, the performance of the remote file system becomes
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slightly worse than the local file system. However, we see
that up-OFS performs around 10-25% better than out-HDFS,
which means that scale-up Hadoop with remote file system
outperforms the traditional scale-out Hadoop with HDFS.

We also see from the figures that when the input data size
is large (>16GB), the performance of Wordcount and Grep
follows out-OFS>out-HDFS>up-OFS>up-HDFS. It means
that scale-out machines are better for the shuffle-intensive
jobs with large input data size (i.e., large jobs) than scale-up
machines. The reason is that a large input data size usually
requires a large number of map slots, which however is the
primary bottleneck of scale-up machines though they have
more powerful CPU resources. The requirements of more
map slots and less task waves of large jobs make them ben-
efit more from the scale-out machines. OFS performs better
than HDFS because the more powerful dedicated remote
servers in OFS and the high speed HPC interconnections
(i.e., 10Gbps Myrinet) can provide a higher I/O performance
than HDFS.

Furthermore, we see from the figures that as the input
data size increases, the performance on scale-up machines
decreases while the performance on scale-out machines
increases. The two applications have different performance
degrading speed on scale-up machines as the input data size
increases though they are all shuffle-intensive applications.
The cross points of input data size of Wordcount and
Grep are close to 32GB and 16GB, respectively. That is,
when the input data size of a Wordcount (or Grep) is
smaller than 32GB (or 16GB), then it performs better in
scale-up machines, otherwise, it performs better in scale-
out machines. This cross point difference between the jobs
is caused by the different shuffle/input ratio calculated by
shuffle data size
input data size . Given the same input data size, if a job’s

shuffle data size is large, it can benefit more from the large
memory and fast RAMdisk of the scale-up machines in the
shuffle phrase, thus reduces the shuffle phase duration. In
our experiments, regardless of the input data size of the
jobs, the shuffle/input ratio of Wordcount and Grep are
always around 1.6 and 0.4, respectively. Therefore, the larger
shuffle data size of Wordcount leads to slower application
performance degradation on the scale-up machines when the
input data size increases and a larger cross point than other
applications.

To illustrate the cross points of Wordcount and Grep, we
draw Figure 7, which shows the normalized execution time
of each job on the scale-out cluster by its execution time on
the scale-up cluster (e.g., execution time on scale−out(Grep)

execution time on scale−up(Grep) ),
denoted by out-OFS-Wordcount and out-OFS-Grep, respec-
tively. Wordcount with a larger shuffle/input ratio has a
higher cross point (i.e., near 32GB) than the cross point
(i.e., near 16GB) of Grep with smaller shuffle/input ratios.
A higher shuffle/input ratio leads to a higher cross point, and
vice versa. Near the cross point, the benefit from scale-out
cluster due to large input data size equals the benefit from
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Figure 7: Cross points of
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Figure 8: Cross point of
write test of TestDFSIO.

scale-up cluster due to large shuffle data size. When the input
data size is smaller than the cross point, scale-up cluster is a
better choice, otherwise, scale-out cluster is a better choice.

Since the execution time is determined by the durations
in the map, shuffle and reduce phases, we then study these
broken-down durations. Figures 5(b) and 6(b) show the map
phase duration of Wordcount and Grep, respectively. We
see that the map phase duration of these jobs has similar
performance trends and order as the job execution time.
When the input data size is small (0.5-8GB), the map phase
duration is shorter on scale-up than on scale-out; when the
input data size is large (>16GB), the map phase duration
is shorter on scale-out than on scale-up. This is mainly
because the map phase duration consists of more waves of
map tasks on scale-up machines than on scale-out machines.
Comparing OFS and HDFS in either scale-up or scale-out
machines, we see that when the input data size is between
0.5 and 8GB, the map phase duration of these jobs are 10-
50% shorter on HDFS. However, up-OFS still outperforms
out-HDFS by 10-25% because of the higher benefits from
scale-up machines for small jobs. When the input data size is
larger than 16GB, the map phase duration is 10-40% shorter
on OFS than on HDFS, no matter on the scale-up or scale-
out cluster.

Figures 5(c) and 6(c) show the shuffle phase duration of
Wordcount and Grep, respectively. We see that the shuffle
phase duration is always shorter on scale-up machines than
on scale-out machines. This is because the shuffle phase
benefits from the larger memory resource and the RAMdisk
of scale-up machines. We then can conclude from the map
phase and shuffle phase figures: the cross point appears when
the benefit of shuffle phase from scale-up machines is not
able to compensate the drawback of scale-up machines due
to fewer map and reduce slots.

Figures 5(d) and 6(d) show the reduce phase duration
of Wordcount and Grep, respectively. The reduce phase of
Wordcount and Grep just aggregates the map outputs, which
have small size. Therefore, Wordcount and Grep use only a
few seconds during reduce phase after the shuffle phase. We
see neither OFS nor HDFS affects the reduce phase duration
of Wordcount and Grep, since the reduce phase duration is
small.
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(b) Map phase duration.
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(c) Shuffle phase duration.
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Figure 9: Measurement results of map-intensive write test of TestDFSIO.

C. Performance of Map-Intensive Applications

In this section, we show the performance evaluation of
the write test of TestDFSIO. In the write test, each map task
is responsible for writing a file. Therefore, the number of
mappers is equal to the number of files. There is only one
reduce task, which collects and aggregates the statistics of
the map tasks, such as completion time of write and file
size.

Figure 9(a) shows the normalized execution time of
TestDFSIO write test versus input data size, respectively.
Again, scale-up machines are the best for small jobs (1-5GB)
because small jobs do not require many mappers and scale-
up machines can provide the required map slots and better
CPU than scale-out machines. However, the execution time
difference of TestDFSIO between scale-up and scale-out is
not as significant as the shuffle-intensive applications. This
is because TestDFSIO is map-intensive application, which
do not have large shuffle data. Therefore, the large memory
benefit of scale-up machines for improving shuffle phase
duration is not exhibited in map-intensive applications.

On the other hand, for large input data size (≥10GB) (i.e.,
a large number of mappers), the performance follows out-
OFS>up-OFS>out-HDFS. For large jobs, running on scale-
out machines with remote storage is better than scale-up
machines with remote storage because scale-out machines
have more map slots and large jobs can be completed in
fewer task waves. Running on scale-out machines with local
storage results in the worst performance because the local
disks are slower than the remote storage and the remote file
system OFS can provide higher I/O performance than HDFS.

Figures 9(b), 9(c) and 9(d) show the map, shuffle and
reduce phase durations of the write test, respectively. Since
the map phase of TestDFSIO completes the majority work in
the jobs, while the shuffle phase only collects the statistics
and the reduce phase simply aggregates the results, we see
that in the write tests, the map phase duration exhibits a
similar performance trends as the execution time. The shuffle
and reduce phase durations of both tests are quite small
(<8s), and they exhibit no specific relationships and are not
affected by either OFS or HDFS. Comparing OFS and HDFS
in either the scale-up or scale-out cluster, when the input
data size is small (1-5GB), HDFS leads to 10-20% shorter

map phase duration. However, up-OFS still generates 5-15%
shorter map phase duration than out-HDFS. When the input
data size is large (≥10GB), OFS leads to 50− 80% shorter
map phase duration, a significant improvement.

We conclude that for map-intensive jobs in our experiment
environment, if the input data size is small (1-5GB), the
scale-up machines are the better choice because of better
CPU. On the other hand, if the input data size is large
(≥10GB), scale-out machines can achieve better perfor-
mance because of more map and reduce slots and better
I/O performance of OFS over HDFS.

Figure 8 shows the normalized execution time of the write
(denoted by out-OFS-Write) of TestDFSIO on the scale-
out cluster by its execution time on the scale-up cluster,
respectively. We see that the cross point is around 10GB for
both tests. Since the shuffle size (in KB) is negligible (which
makes the shuffle/input ratio close to 0) in both tests, these
map-intensive jobs benefit little from the scale-up machines
during the shuffle phase. We conclude that the cross point for
map-intensive applications is smaller than shuffle-intensive
applications.

Conclusions
• Input data size and shuffle/input ratio affect the benefits
gained from scale-up and scale-out clusters. When the input
data size is small, the scale-up cluster outperforms the scale-
out cluster, and when the input data size is large, the scale-
out cluster outperforms scale-up machines. The cross point
of the input data size depends on the shuffle data size; a
larger shuffle size leads to more benefits from the scale-up
machines and vice versa.
• Hadoop with a remote file system improves the perfor-
mance of Hadoop with HDFS when jobs are scheduled to
run on the scale-up or scale-out cluster to gain more benefits.

IV. A HYBRID SCALE-UP/OUT HADOOP ARCHITECTURE

A traditional Hadoop cluster only has scale-out machines
in general. However, we have demonstrated in Section III
that different jobs perform better on scale-up machines or on
scale-out machines. In current real-world workloads, the jobs
are increasingly diverse mix of computations and data size
levels. Recall that in Section I improving the performance
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of small jobs is important for production clusters. Therefore,
we propose a new Hadoop architecture including both scale-
up and scale-out machines to achieve better performance for
real-world workloads.

As indicated in Section I, there exist two main chal-
lenges for building such a new architecture: data storage
and scale-up or scale-out selection. For the data storage
challenge, HDFS and storing all data blocks needed by
scale-up machines in themselves are not efficient methods.
Besides, this latter solution requires the modification of
the function of the namenode to decide where to store the
data blocks based on the jobs handling them. Since usually
data is distributed before jobs are launched, this solution
introduces not only extra overhead and but also complexity
to the namenode’s function. We then use a remote file
system (e.g., OFS) for the hybrid Hadoop architecture, the
feasibility and advantage of which are shown in Section
III. Since both scale-up and scale-out machines can be
mounted with the same remote file system on HPC, jobs
can read/write data no matter they are scheduled to the scale-
up or scale-out clusters without data transmission between
machines. Moreover, using a remote file system allows us
to implement the hybrid architecture without modifying the
namenode code for data distribution. Intuitively, it seems that
this hybrid architecture improves the performance of small
jobs at the cost of the performance of large jobs because
the traditional Hadoop cluster has more map and reduce
slots than the hybrid architecture. However, we demonstrate
in Section V that even with the hybrid architecture, the
performance of large jobs is improved due to better I/O
performance of OFS over HDFS and less slot competition
for large jobs.

To handle the second challenge, we leverage our obser-
vations in Section III to make the decisions based on job
characteristics. Our experiments show that when a job has
shuffle/input ratio between 0.4 and 1, if the input data size
is smaller than 16GB, scale-up is a better choice, otherwise,
scale-out is a better choice. When a job has shuffle/input
ratio equals 1.6, if the input data size is smaller than 32GB,
scale-up is a better choice, otherwise, scale-out is a better
choice. We generalize 1.6 to ratios greater 1. We consider
jobs with shuffle/input ratios less than 0.4 as map-intensive
jobs, for which when the input data size is smaller than
10GB, scale-up is a better choice, otherwise, scale-out is
a better choice. Based on these observations, we design an
algorithm to decide whether scale-up or scale-out is a better
choice for a given job based on its shuffle/input ratio and
input data size.

We assume that the shuffle/input ratio is input by the users,
which means that either the users once ran the jobs before
or the jobs are well-known as map-intensive. If the users
do not know the shuffle/input ratio of the jobs anyway, we
treat the jobs as map-intensive (i.e., shuffle/input ratio less
than 0.4) and hence the cross points of the jobs are smaller

(i.e., 10GB). This is because we need to avoid scheduling
any large jobs to the scale-up machines. Otherwise, it
would result in performance degradation of small jobs. The
pseudo-code of this algorithm is shown in Algorithm 1. We
implemented this scheduler in Linux bash script.

Note the cross points in our algorithm are from the
measurement results from our architecture configurations.
A fine-grained ratio partition can be conducted from more
experiments with other different jobs to make the algorithm
more accurate. Also, different configurations of scale-up
and scale-out machines will lead to different cross point
results. In this paper, we only attempt to show the factors
affecting the scale-up and scale-out selection and how they
affect the selection decision, and provide a method to design
the selection algorithm for the hybrid architecture. Other
designers can follow the same method to measure the cross
points in their systems and develop the hybrid architecture.

Algorithm 1 Selecting scale-up or scale-out for a given job.
Inputs: NextJob: next job in the queue

Input: input data size of the job
S/I: shuffle/input ratio

1: while NextJob exists in the job queue do
2: if shuffle/input ratio > 1 then
3: if InputDataSize < 32GB then
4: Scale-up ← NextJob
5: else
6: Scale-out ← NextJob
7: end if
8: else if 0.4 ≤ shuffle/input ratio ≤ 1 then
9: if InputDataSize < 16GB then

10: Scale-up ← NextJob
11: else
12: Scale-out ← NextJob
13: end if
14: else
15: if InputDataSize < 10GB then
16: Scale-up ← NextJob
17: else
18: Scale-out ← NextJob
19: end if
20: end if
21: end while

V. PERFORMANCE EVALUATION

In this section, we use the Facebook synthesized workload
FB-2009 [10] to evaluate the performance of our hybrid
scale-up/out Hadoop architecture compared with traditional
Hadoop architecture. The CDF of input data size of this
workload is shown in Figure 3. We see that more than 80%
of jobs have an input data size less than 10GB. Due to the
limitation of space, please refer the other characteristics of
this workload to [10]. We used 2 scale-up machines and
12 scale-out machines to deploy the hybrid scale-up/out
architecture with the OFS remote file system (Hybrid in
short), and the hardware configurations of these machines
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Figure 10: Measurement results of the Facebook workload
experiment.

are the same as explained in Section III. As a baseline, we
deployed a traditional Hadoop cluster (THadoop in short)
with HDFS and a Hadoop cluster with remote file system
OFS (RHadoop in short) using 24 scale-out machines (which
have comparably the same total cost as the machines in the
hybrid architecture) and one additional namenode. Since the
trace workload is synthesized from a 600-machine cluster
and we did our experiments on 24 machines, we shrank the
input/shuffle/output data size of the workload by a factor of 5
to avoid disk insufficiency. We ran the Facebook workload
consecutively on these two architectures based on the job
arrival time in the traces. We refer to the jobs that are
scheduled to scale-up cluster and scale-out cluster by our
scheduler as scale-up jobs and scale-out jobs, respectively.

Figure 10(a) shows the CDF of the execution time of the
scale-up jobs in the workload. We see that the execution
time distribution of Hybrid is much broader than THadoop
and RHadoop. Their maximum execution time for scale-up
jobs is 48.53s, 83.37s and 68.17s, respectively. This result
demonstrates the effectiveness of the hybrid architecture in
improving the performance of small jobs. RHadoop has the
worst performance because OFS performs worse than HDFS
for small input data sizes on the scale-out Hadoop.

Figure 10(b) shows the CDF of the execution time of
the scale-out jobs in the workload. In order to illustrate
the figure clearly, we only show the scale-out jobs with
execution time less than 200s in the main figure, and use the
embedded small figure to show those with execution time
greater than 200s. For scale-out jobs, the maximum execu-
tion time is 1207s, 3087s and 2734s on Hybrid, THadoop
and RHadoop, respectively. The percent of jobs completed
after 1207s on THadoop and RHadoop are 4.4% and 1.4%,
respectively. Benefitting from the higher I/O performance of
OFS, RHadoop outperforms THadoop for large input sizes.

Intuitively, it seems that we improve the performance of
scale-up jobs at the cost of the performance of scale-out jobs
and the scale-out jobs should have better performance on
THadoop because THadoop has more map and reduce slots
than Hybrid. However, Figure 10(b) shows that Hybrid still
outperforms THadoop and RHadoop even for scale-out jobs,
indicating that Hybrid improves not only the performance

of scale-up jobs but also the scale-out jobs. There are
two main reasons. The first reason is because Hybrid is
configured with the remote file system, which provides better
performance for jobs with large input sizes than HDFS, as
shown in Section III. The second reason is that although
there are more map and reduce slots in THadoop, a large
amount of scale-up jobs in the workload occupy the slots
and have poor performance due to less powerful CPU, thus
resulting in a long time before releasing the occupied slots to
scale-out jobs. On the contrary, in Hybrid, all the scale-up
jobs are run on the scale-up cluster, while scale-out jobs
run on the scale-out cluster. Therefore, scale-out jobs in
Hybrid do not need to compete with scale-up jobs for slots
or with other scale-out jobs because only 15% of the jobs
in the workload are scale-out jobs. Similarly, this is also the
reason that Hybrid outperforms RHadoop for scale-out jobs.
Therefore, scale-out jobs in Hybrid can always be provided
with more map and reduce slots than THadoop or RHadoop,
resulting in the best performance in Hybrid.

VI. RELATED WORK

MapReduce [13] has been a popular framework that
performs parallel computations on big data. Cluster provi-
sioning, configuring and managing for the Hadoop clusters
is essential, which requires thorough understanding of the
workloads. Recently, there are many efforts devoted to
characterizing the workloads in real-world cluster. Chen et
al. [10] analyzed two production MapReduce traces from
Yahoo! and Facebook in order to establish a vocabulary for
describing MapReduce workloads. Ren et al. [19] character-
ized the workload of Taobao production Hadoop cluster to
provide an understanding of the performance and the job
characteristics of Hadoop in the production environment.
Kavulya et al. [17] analyzed MapReduce logs from the M45
supercomputing cluster. Appuswamy et al. [8] conducted
an evaluation of representative Hadoop jobs on scale-up
and scale-out machines, respectively. They found that scale-
up machines achieve better performance for jobs with data
size at the range of MB and GB. Our work is different
from the above workload characterization works is that
our work is the first that compare the performance of the
Hadoop workloads in the four architectures shown in Table
I. Many works focus on improving the performance of
the MapReduce clusters from different aspects such as job
scheduling [2], [4], [15], [16], intermediate data shuffling
[6], [11], [12], [22] and improving small job performance
[14]. Unlike these previous works that focus on improving
the performance of traditional Hadoop, our work focuses
on designing a new hybrid scale-up/out Hadoop architecture
that fully utilizes both the advantages of scale-up and scale-
out machines for different jobs in a workload to improve its
performance.
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VII. CONCLUSION

Since a real-world workload usually has many jobs with
increasingly diverse mix of computations and data size
levels, solely using either scale-up or scale-out cluster to run
a workload cannot achieve high performance. Thus, in this
paper, we explore building a hybrid scale-up/out Hadoop
architecture. However, building such an architecture faces
two main challenges. First, how to distribute data blocks
of a workload dataset to avoid degrading node performance
caused by limited local disk or data transmission between
nodes. Second, how to decide whether to use scale-up or
scale-out cluster for a given job. To handle these challenges,
we have conducted performance measurement of different
applications on four HPC-based Hadoop platforms: scale-up
machines with OFS, scale-out machines with OFS, scale-up
machines with HDFS, and scale-out machines with HDFS.
Based on our measurement results, we design a hybrid
scale-up/out Hadoop architecture, which uses a remote file
system rather than HDFS and has a scheduler to determine
using scale-up or scale-out for a given job to achieve better
performance. We further conducted experiments driven by
the Facebook synthesize workload to demonstrate that this
new architecture outperforms both the traditional Hadoop
with HDFS and with OFS. This is the first work that
proposes the hybrid architecture. We consider our work as a
starting point and expect it will stimulate many other works
on this topic. In our future work, we will try to optimize
the scheduler such as the load balancing between the scale-
up machines and scale-out machines. For example, if many
small jobs arrive at the same time without any large jobs, all
the jobs will be scheduled to the scale-up machines, resulting
in imbalance allocation of resources between the scale-up
and scale-out machines.
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