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Abstract—In this paper, we study the minimum energy
broadcast problem in time-varying graphs (TVGs), which are a
very useful high level abstraction for studying highly dynamic
wireless networks. To this end, we first incorporate a channel
model, called energy-demand functions, to the current TVGs,
namely time-varying energy-demand graphs (TVEGs). Based on
this model, we formulate the problem: given a TVEG, what is
the optimal schedule (i.e., which nodes should forward a packet
in what times and at what power levels) to minimize the energy
consumption of the broadcast? We prove the problem to be NP-
hard and o(logN) inapproximable. It is a challenge to find
a solution for this problem on continuous time. Fortunately,
we prove that the problem on continuous time is equivalent
to the problem on certain discrete time points, called discrete
time set (DTS). Based on this property, we propose polynomial
time solutions for this problem with different channel models,
and evaluate the performance of these methods from real-life
contact traces.

Keywords-time-varying graphs; NP-hard; discrete time
points;

I. INTRODUCTION

In wireless networks, broadcast is particularly an im-
portant mechanism for disseminating a packet from one
source node to all other nodes in the network. Among
numerous challenges confronted in designing protocols for
broadcast, the energy problem stands out as one of the
most critical issues. Over the past years, many works have
studied the minimum-energy broadcast problem in various
types of wireless networks, such as ad hoc networks [1]–
[4] and cooperative networks [5], [6]. However, all of
these works simply assume that the network topology never
changes, which is not valid for highly dynamic networks,
where network topology and link channel condition change
over time. For example, in mobile ad hoc networks, the
network topology changes dramatically over time due to
node mobility, while in sensor networks, links only exist
when two neighbouring sensors are awake and have power.
Obviously, the previous broadcast protocols designed for
static networks are not applicable to dynamic networks.

Recently, a theoretical framework called time-varying
graphs (TVGs) [7] (or temporal networks, evolving graph-
s) has been developed for the study of highly dynamic
networks [8], [9]. Different from traditional static graphs,

where edges and vertices never change over time, in time-
varying graphs, vertices and edges appear and disappear
as a function of time. Hence, the conclusions from static
graphs may not hold true in time-varying graphs. Thus, some
typical problems (such as shortest path (or journey) [8],
reachability [10], and random walk [11]) in static networks
have been re-studied in time-varying graphs. However, there
is no previous work that has studied the minimum-energy
broadcast problem based on the TVG model. It is because
that the existing time-varying graphs cannot reflect the chan-
nel conditions of each link, which is an essential information
for studying energy problem in dynamic networks.

In this paper, our objective is to design an energy-efficient
time-constrained broadcast scheme for dynamic networks.
We first build a model called time-varying energy-demand
graphs (TVEGs) which reflects the channel condition of the
edges. Based on this model, we then formulate and analyze
the problem: given a TVEG, what is the optimal relay
allocation schedule (i.e., specifying relay nodes to forward
a packet at certain times and using certain levels of energy)
to minimize the energy consumption of the broadcast?
Finally, we propose several polynomial time solutions for
the problem for different channel models.

A TVEG is built based on current time-varying graphs
by adding the channel condition to each edge in the graph.
In our model, we consider fading channels, where transmis-
sions between nodes are susceptible to random fluctuations
in signal strength. For any single transmission, the more
energy used by the transmitter, the higher probability that
the packet can be decoded by the receiver. Hence, given an
edge and a time point, we use a probabilistic model called
energy-demand (ED) function to describe the relationship
between the energy cost and the probability of successful
transmission at this time. As a result, TVEG reflects both
topology and link channels of dynamic networks, which can
be used to study the minimum-energy broadcast problem.

Based on TVEGs, we formulate the relay allocation opti-
mization problem as Time-varying Minimum-Energy Delay-
Constrained Broadcast problem (TMEDB). This problem’s
objective is to find a relay allocation schedule to minimize
the energy consumption of the broadcast while guaran-
teeing that i) the broadcast can be completed within a



time constraint, and ii) the delivery ratio is higher than a
threshold. We prove this problem is NP hard and o(logN)
inapproximable, where N is the number of nodes in the
network.

It is a challenge to solve TMEDB defined on contin-
uous time. Fortunately, we prove that it is equivalent to
TMEDB defined on some specified discrete time points,
called discrete time set (DTS). Based on the existing method
for minimum-energy multicast tree problem [3], we propose
polynomial time solutions for TMEDB with different chan-
nel conditions. Specifically, we build an auxiliary graph for
TMEDB with static channel and present an approximate
algorithm, which delivers an approximate solution with a
bounded performance guarantee O(N ε), where ε (0 < ε ≤
1) is a constant. For TMEDB with fading channels, we first
find the relay nodes and their packet transmission times, and
then model the energy allocation problem as a non-linear
programming problem. We summarize the contributions of
this paper as follows:

• Time-varying energy-demand graphs. TVEGs enhance
the existing time-varying graphs by mapping each edge
to an energy-demand function to reflect the change of
each link’s channel in the network, which enables to
study the minimum-energy broadcast problem.

• Problem formulation and analysis. Based on TVEGs,
we formulate the TMEDB problem. The objective of
this problem is to find a relay allocation schedule
to minimize the energy consumption of the broadcast
while guaranteeing that i) the broadcast can be complet-
ed within a time constraint; and ii) the delivery ratio
is higher than a threshold. In addition, we prove this
problem is NP-hard and o(logN) inapproximable.

• Discrete time set. It is a challenge to find a solution for
this problem on continuous time. Fortunately, we prove
that it is equivalent to the problem on DTS.

• Solutions to the formulated problem. To solve this prob-
lem, we first prove that TMEDB defined on continuous
time is equivalent to the problem defined on some
specified discrete time points, called discrete time sets
(DTS).

We present an approximate algorithm for TMEDB with
static channel. For the fading channel case, we model the
energy allocation problem as a non-linear programming
problem. Finally, we evaluate the performance of these
methods from real-life contact trace in the Huggle project
[12].

The remainder of this paper is organized as follows.
Section II presents related work. Section III builds the
mathematical model of TVEGs. Section IV defines the
TMEDB problem and proves the hardness of this problem.
Section V proves that TMEDB defined on continuous time
is equivalent to TMEDB defined on DTS. Guided by these
properties, in Section VI, we propose schemes for TMEDB

in both static channel and fading channels. Section VII
evaluates the performance of our proposed schemes in
comparison with other schemes. Section VIII concludes this
paper with remarks on our future work.

II. RELATED WORK

Minimum-energy broadcast. The problem of minimizing
the energy consumption of broadcast in wireless networks
has received significant attention over the last few years
[1]–[6]. Čagalj et al. [1] and Li et al. [4] considered
the minimum-energy broadcast problem in all-wireless net-
works, where all nodes are linked via short-range ad hoc
radio connections and the communication is supported
by multi-hop transmissions. Both works proved the NP-
hardness of the problem in general case, and the work in
[1] further proved that the problem remains NP-hard in two-
dimensional Euclidean metric space. Liang [3] assumed a
different kind of wireless network, in which the transmitting
power of each node is finitely adjustable. The author proved
the NP-hardness of the problem and presented an approxi-
mation algorithm by reducing the problem to an optimization
problem on an auxiliary weighted graph. Ashwinder et al.
[2] addressed the minimum-energy broadcast problem in ad
hoc wireless networks and proposed a distributed algorithm
that computes all possible broadcast trees simultaneously
with O(N2) message complexity. Maric et al. [5] and
Hong et al. [6] proved that the energy-efficient broadcast
problem is NP-hard in cooperative communication, where
each packet receiver can cooperatively combines received
weak signals from different senders to recover the original
packet. Hermann et al. [13] showed that optimal broadcast
solutions in non-fading environments may suffer a low
delivery ratio in fading environments. Then, they reformu-
lated the problem by incorporating fading channel models
to broadcast backbone construction. They proved that the
problem is still NP-hard, and proposed a heuristic algorithm,
which uses probability of successful communication as a
metric to select relay nodes. Though these previous works
have discussed the minimum-energy broadcast problems in
various scenarios, to the best of our knowledge, none of
them studied the problem in dynamic networks, in which
the network topology and channel conditions of each link
change over time.
Time-varying graphs. Time-varying graphs are a very
useful high-level abstraction for studying topology over time
in highly dynamic networks. Many of the normal concepts
of static graphs have no obvious counterpart in time-varying
graphs. Hence, a number of important concepts in static
graphs have been redefined in TVGs, e.g, temporal distance,
journey (path) [8], and reachability [9]. Casteigts et al. [7]
integrated the collection of these concepts into a unified
coherent framework, and first formally defined TVGs.
Furthermore, some typical problems (e.g., reachability and
broadcast) which have been well-understood in static graphs



need be re-studied in time-varying graphs. For example,
Whitbeck et al. [10] introduced temporal reachability graphs
to record the connectivity of any pair of nodes during
any time interval in TVGs, and proposed a time efficient
algorithm for computing these graphs. Daniel Figueiredo et
al. [11] studied the behavior of a continuous time random
walk on a stationary and ergodic TVG, and characterized the
stationary distribution of the walker in some specified cases.
However, as far as we know, there is no previous work
that has studied the minimum-energy broadcast problem
using the TVG theoretical framework, since existing TVGs
cannot reflect the channel conditions of each link.

III. TIME-VARYING ENERGY-DEMAND GRAPHS

In this section, we first introduce TVGs (Section III-A).
Based on TVGs, we build the mathematical model of TVEG-
s (Section III-B), which maps each edge in a TVG to an
energy-demand function that reflects the channel conditions
of edges (i.e., links). Finally, we present energy-demand
functions based on different channel models (Section III-C).
TVEGs enable us to study the minimum-energy broadcast
problem in dynamic networks, which will be presented in
Section IV.

A. Time-Varying Graphs

We introduce TVGs formally defined in [7] along with
definitions and notations. Consider a finite set of nodes
V and a set of possible edges E ⊆ V × V . Events
occur over a time span T ⊆ T, where T is the temporal
domain (T=N for discrete time systems and T = R+ for
continuous time systems). In the general case, a TVG is
a tuple G = (V,E, T , ρ, ζ). ρ: E × T → [0, 1] is called
presence function, which indicates the probability that a
given edge exists at a given time. ζ : E × T → T is called
latency function, which indicates the latency to traverse a
given edge at a given time and the latency may vary at
different times.

Since continuous time systems are more practical and
complex than the discrete time systems, in this paper, we
consider a continuous time TVG and assume a constant ζ
function such that ∀(e, t) ∈ E × T , ζ(e, t) = τ (τ ≥ 0) is
our uniform edge traversal time. A TVG is deterministic if
ρ: E × T → {0, 1}; otherwise is non-deterministic. In this
paper, we only consider deterministic TVGs. We denote the
edge connecting two vertices vi and vj (vi, vj ∈ V ) by evi,vj
or ei,j . Also, we use R∗ to denote R+ ∪ 0.

Definition 3.1: (Journey) [7] A journey in G is a se-
quence of couples J = {(ei1,j1 , t1), ..., (eik,jk , tk)} such
that ∀l < k: (i) jl = il+1; (ii) ∀t s.t. tl ≤ t < tl + τ ,
ρ(eil,jl , t) = 1; and (iii) tl+1 ≥ tl + τ .

Here, |J | = k is journey J ’s topological
length (i.e., the number of hops). A journey
J = {(ei1,j1 , t1), ..., (eik,jk , tk)} is called non-stop
journey if ∀l < k, tl+1 = tl + τ . We say vi is in J

Table I
NOTATIONS AND DEFINITION

Notation Description Notation Description
V Node set vi The ith node;
E Edge set ρ Presence function
J Journey τ Edge traversal time
ϕ ED-function S Broadcast relay schedule
W Cost vector R Relay node vector
T Time vector Pad

i Adjacent partition of vi
DV DTS on V Pst

i Status partition of vi
ei,j or Edge between Pdi

i Discrete time partition
evi,vj vi and vj of vi

if ∃(eil,jl , tl) ∈ J such that vi is a vertex of eil,jl . We
say a journey has no circle if it has no repeated node.
In the following, we only consider the journey without
circle. For any pair of nodes vi and vj in a journey J ,
we say vi is precede to vj or vj is succeeding to vi
(denoted by vi ≺J vj), if J arrives at vi before vj . In
addition, vi �J vj means vi ≺J vj or vi = vj . Finally,
departure(J ) and arrival(J ) denote the starting time t1
and the ending time tk + τ of J , respectively. Table I lists
the main notations used in this paper.

B. Time-Varying Energy-Demand Graphs

In this section, we introduce how to build a TVEG by
embedding energy-demand (ED) functions to each edge of
the existing TVG to reflect the link channels. We assume a
continuous energy cost (or cost in short) set W that each
node can use, which has lower bound wmin and higher
bound wmax. Given G = (V,E, T ,F , ρ, ζ), for each edge
ei,j ∈ E, we use an ED-function ϕei,jt : W → R∗ to reflect
the relationship between the cost of vi (the sender) and the
probability of failure transmission to vj (the receiver) at time
t. We use F = {ϕet , e ∈ E, t ∈ T } to represent the set of all
ED-functions, called ED-function class. ED-functions have
the following properties:

Property 3.1: (ED-function) For each ϕet ∈ F
(i) If ρ(e, t) = 1 and wmax →∞, limw→∞ ϕet (w) = 0;
(ii) If ρ(e, t) = 1 and wmin = 0, ϕet (0) = 1;
(iii) If ρ(e, t) = 0, ϕet (w) = 1,∀w ∈ W;
(iv) ϕet (w) is non-increasing.
Then, we formally define TVEG as follows:
Definition 3.2: (Time-varying energy-demand graph)

Given an ED-function class F and a TVG G, TVEG GF
is extended from G by embedding an ED-function in F to
each edge in E. In general, GF can be represented by a
tuple GF = (V,E, T ,F , ρ, ζ, ψ), where cost function ψ:
E × T → F indicates which ED-function is embedded to
an edge at a given time.

C. ED-functions for Different Channel Models

To build a TVEG, we need to embed each edge in TVG
with an ED-function, which is determined by the channel
model of the network. In this section, we demonstrate how



to model the ED-function from the step function for static
channel [14], and from the Rayleigh fading ED-function for
fading channel model [13]. We call the two ED-functions
step ED-function and Rayleigh ED-function, respectively.
Step ED-function. For a single transmission, whether or
not a packet is successfully received depends on the instanta-
neous SNR equals Si,j,t/N0 at the receiver, where N0 is the
noise power density and Si,j,t is the signal power received at
vj from vi at time t. In a static channel environment [14],
given time t, the radio propagation gain from vi to vj is
modeled as a constant hi,j,t, so SNR equals w × hi,j,t/N0,
where w is the cost of vi. The necessary and sufficient
condition for successful decoding at vj is

w × hi,j,t
N0

≥ γth (1)

where γth is the fixed decoding threshold. From Formula
(1), we can derive the ED-function ϕei,jt as follows

ϕ
ei,j
t (w) =

{
0 if N0γth

hi,j,t
≤ w ≤ wmax

1 if wmin ≤ w < N0γth
hi,j,t

(2)

It implies that vj can successfully decode a packet from vj
at time t iff the cost of vi is no less than N0γth

hi,j,t
. We call

N0γth
hi,j,t

the minimum cost of vi to vj .
Rayleigh fading ED-function. In the Rayleigh fading model
with a frequency-flat time-varying wireless channel [13], for
the transmitted signal received by vj from sender vi, the
channel effect can be modeled by a single, complex, random
channel coefficient hi,j,t. As [13], we consider a Rayleigh
fading channel in which all |hi,j,t|2 are independent and
exponentially distributed with a mean value

σ2
i,j,t = wd−αi,j,t (3)

where w, di,j,t and α represent the transmission power of
vi at time t, the distance between vi and vj at time t and
the path loss exponent. The instantaneous signal power Si,j,t
received at vj from vi at time t is a random variable with
Cumulative Distribution Function (CDF)

FSi,j,t = 1− exp

(
− x

σ2
i,j,t

)
. (4)

We use a non-negative random variable Xi,j,t = Si,j,t/N0

to represent the SNR transmitted from vi to vj at time
t (Xi,j,t ∼ Xj,i,t), and then vj can successfully receive
a packet iff Xi,j,t ≥ γth. Xi,j,t has CDF FXi,j,t =
1 − exp(−N0x/σ

2
i,j,t). Then, the probability of the packet

that failes to be received by vj from vi at time t equals
1 − exp(−N0γth/σ

2
i,j,t) or 1 − exp(−N0γth/d

−α
i,j,tw). Ac-

cordingly, the Rayleigh fading ED-function ϕei,jt (w) can be
derived as follows:

ϕ
ei,j
t (w) = 1− exp

(
−βi,j,t

w

)
(5)

where βi,j,t = N0γth/d
−α
i,j,t and w ∈ [wmin, wmax].

IV. THE TIME-VARYING MINIMUM-ENERGY
DELAY-CONSTRAINED BROADCAST PROBLEM

Now that we have built the mathematical model for
studying energy problem in highly dynamic networks, in
this section we formally formulate the problem based on
this problem, namely time-varying minimum-energy delay-
constrained broadcast (TMEDB) problem, and analyze the
hardness of the problem.

Given a TVEG GF and a source node vs, broadcast
relay schedule (or simply schedule) determines which nodes
should be selected as relay nodes at what times and at
what power should communication take place. Suppose a
schedule contains totally n transmissions, then this schedule
can be represented by an n × 3 non-homogenous matrix
S = [R,T,W], where R ∈ V n (called relay node vector)
records each transmission’s relay node, T ∈ T n (called time
vector) records each transmission’s time, and W ∈ Wn

(called cost vector) records each transmission’s cost. We
use rk, tk and wk to represent the kth element in R, T,
and W, respectively. Then, S can be also represented by
[s1, ..., sn]T, where each element sk = [rk, tk, wk] describes
the information of the kth transmission in the schedule (i.e.,
relay node, time, and power level). We define the cost of S
as the total cost of all its transmissions, i.e.,

∑n
k=1 wk. Note

that a relay node may forward a packet multiple times in a
schedule, which implies that a node can be repeated in R.

For each vi ∈ V , let pi,t (or pvi,t) denote the probability
that vi cannot successfully receive the packet by time t.
Obviously, ∀t1, t2 ∈ T , if t1 ≤ t2, then pi,t1 ≥ pi,t2 . We
say vi has been informed by t iff pi,t ≤ ε, where ε is the
error acceptable rate; otherwise, we say vi is still uninformed
by t. At any time, the status of a node is either “informed”
or “uninformed”.

Suppose a packet is transmitted from vi to vj at time
t, to complete this transmission, it requires ρ(ei,j , t

′) = 1,
∀t′ ∈ [t, t+ τ ]; that is, there is a link between vi and vj at
time t′. We use ρτ (ei,j , t) to denote whether vi and vj are
connected during [t, t+ τ ]:

ρτ (ei,j , t) =

{
1 if ρ(ei,j , t

′) = 1, ∀t′ ∈ [t, t+ τ ]
0 otherwise

In this paper, we assume that τ is small enough so that for
any pair of nodes vi and vj , cost ϕei,jt is unchanged during
[t, t + τ ], ∀ρτ (ei,j , t) = 1. We say vi is adjacent to vj at
time t iff vi can complete a transmission to vj at time t,
i.e., ρτ (ei,j , t) = 1.

For each node vi ∈ V , vi is uninformed by time
t iff there is no successful transmission to vi before t.

1In these fading models 1. σ2 is the expected value of r2; v2 is the power
of the Line-of-Sight (LOS) signal component; k is the fading figure (degrees
of freedom related to the number of added Gaussian random variables) [15].
2. I0(·) is the modified Bessel function of the first kind with order zero;
Γ(a, b) =

∫∞
b ta−1e−tdt, and γ(a, b) =

∫ b
0 t

a−1e−tdt [16].
2When w = 0, ED-function ϕ(w) = 1.



Then, given a broadcast schedule S = [s1, ..., sn]T, where
sk = [rk, tk, wk] (1 ≤ sk ≤ n), the probability that vi is
uninformed by time t can be calculated by

pi,t =
∏

tk≤t,sk∈S,ρτ (erk,vi ,tk)=1

(
ϕ
erk,vi
tk

(wk)
)
. (6)

The objective of the TMEDB problem is to find a schedule
that takes the minimum energy cost such that all the nodes
can be informed. Formally, the decision version of TMEDB
is defined as follows:

Instance: A finite set of nodes V = {v1, ..., vN}, a source
node vs ∈ V , a set of edges E ⊆ V ×V , a cost setW , a time
domain T , a ED-function class F , a presence function ρ, a
latency function ζ, a cost function ψ, and three constants C,
T , and ε.

Question: Existence of a schedule S = [R,T,W] such
that the following conditions are satisfied:
(i) All relay nodes have been informed by they forward

the packet: prk,tk ≤ ε, ∀rk in R;
(ii) All nodes will eventually be informed by time T : ∃t ≤

T − τ such that pi,t ≤ ε, ∀vi ∈ V ;
(iii) Broadcast latency is no larger than T : max{t1,..., tn}+

τ ≤ T ;
(iv) The cost of S is no larger than C:

∑n
k=1 wk ≤ C.

We say a schedule is feasible if the schedule satisfies the
above four conditions. In the following we analyze the
complexity of TMEDB (Theorem 4.1, Corollary 4.1 and
Corollary 4.2). Due to space constraints, detailed proofs of
the theorem and corollaries are omitted here and can be
found in our technical report [17].

Theorem 4.1: TMEDB is NP-hard and it remains NP-
hard if restricted on the ED-function class F and cost set
W that satisfy the condition in which for all ε, there exists
ϕ ∈ F and w ∈ W such that ϕ(w−) ≥ 1 − ε and ϕ(w) <
1− ε.

Proof: Due to space constraints, detailed proofs of
above results are omitted here. The basic idea is to construct
a polynomial time reduction of the NP-hard problem of Set
Covering [18] to TMEDB with the restriction. That is, for
any instance in Set Covering, we can always construct a
TMEDB instance such that a solution exists for the Set
Covering instance iff there exists a feasible schedule for the
TMEDB instance. After proving TMEDB with the restric-
tion is NP-hard, NP-hardness of the unrestricted problem
follows immediately by restriction.

Corollary 4.1: TMEDB is o(logN) inapproximable and
remains o(logN) inapproximable with the restrictions in
Theorem 4.1.

Proof: The reduction used in constructing the instance
in Theorem 4.1 preserves the approximation factor. That
is, if one can find an α-approximation for TMEDB given
the above restrictions, by extension, there must exist an α-
approximation for Set Cover. Because the Set Cover problem

is o(logN) inapproximable [18], thus TMEDB with the
restrictions must be o(logN) inapproximable.

Corollary 4.2: TMEDB remains NP-hard and o(logN)
inapproximable if ED-function class F is a class of

(i) step ED-functions (Formula (2));
(ii) Rayleigh fading ED-functions (Formula (5)).

Proof: (i) Given vi, vj , and t, and constants w, γth,
and ε, according to Formula (2), if N0γth/wmax ≤ hi,j,t ≤
N0γth/wmin, there exists cost w = N0γth/hi,j,t (w ∈ W)
such that ϕ(vi,vj)

t (w) ≤ ε and ϕ(vi,vj)
t (w−) > ε.

(ii) Given a pair of nodes vi, vj , time t, and constants w,
α, γth, and ε, according to Formula (5), if(

N0γth
wmin ln(1/ε)

) 1
α

≤ di,j,t ≤
(

N0γth
wmax ln(1/ε)

) 1
α

, (7)

there exists cost w = N0γth
ln 1
εd

−α
i,j,t

(w ∈ W) such that

ϕ
(vi,vj)
t (w) ≤ ε and ϕ

(vi,vj)
t (w−) > ε. Based on Theo-

rem 4.1, the proof completes.

V. DISCRETE TIME SET

The continuous time systems are more complex than the
discrete time systems, which poses a formidable challenge to
determine the transmission times in broadcast relay schedule
for TMEDB (which is defined on continuous time). In this
section, we first find the discrete transmission time series,
called discrete time set (DTS), that still makes a feasible
schedule S for TMEDB feasible. We then prove that finding
the optimal schedule on continuous time is equivalent to
finding it on a DTS.

Assume there exists a feasible schedule S for the TMEDB
problem. Recall S can be represented by [s1, ..., sn]T, where
each element sk = [rk, tk, wk] represents a single transmis-
sion in which node rk is scheduled to transmit the packet at
tk using cost wk. Then, rk must be informed and connected
with a set of nodes at tk. We aim to find the earliest
transmission time point (denoted by t̂k) for each tk that
makes S still feasible. This means that at time t̂k, node rk
still has the same set of connected nodes and the same status
(informed or uninformed) as those at time tk. Therefore, we
can find the time interval series, called adjacent partition
of node vi, such that the set of vi’s connected nodes are
unchanged in each interval. We also find the time interval
series, named status partition of vi, such that vi’s status is
unchanged in each interval. By combining these two time
interval series, we then generate a new time interval series
(called DTS); in each interval, the set of vi’s connected
nodes and vi’s status are unchanged. Below, we introduce
how to generate adjacent partition, status partition, and
DTS, respectively.

Definition 5.1: (Partition) A partition P of the time span
T is a finite sequence of time points in the form of

0 = t0 < t1 < t2 < ... < tm−1 < tm = T.



Figure 1. Adjacent interval and non-adjacent time interval.

We say [tk, tk+1) (1 ≤ k ≤ m−1) is a time interval (interval
in short) in the partition P. Given T ’s three partitions: P1,
P2, and P3, P3 is called the combination of P1 and P2

(i.e., P3 = P1 ∪ P2) if P3 is composed of ordered time
points from both P1 and P2. In general,

Pn+1 ,
n⋃
k=1

Pk (8)

if Pn+1 is the combination of P1, ..., Pn, where P1, ...,
Pn+1 are all partitions of T .
Adjacent partition. As shown in Fig. 1, the link between
a pair of nodes vi and vj appear and disappear in the time-
varying graph over time; that is, two nodes are connected
and disconnected in the dynamic wireless network over time.
We call the time interval that two nodes are connected (i.e.,
adjacent in the graph) their adjacent interval, and call the
time interval that two nodes are disconnected (i.e., non-
adjacent in the graph) their non-adjacent interval. Then, the
time span T of vi to vj can be partitioned into a sequence
of intervals, denoted by Pad

i,j ; each interval is either their
adjacent interval or their non-adjacent interval. Further, we
define the adjacent partition of vi as

Pad
i ,

⋃
vj∈V/vi

Pad
i,j (9)

Obviously, the set of vi’s connected nodes are unchanged in
each interval of Pad

i . Fig. 2 gives an example for adjacent
partition of v1 with V = {v1, v2, v3, v4} and T = [t0, t11].
In the following we use Pad

V = {Pad
1 , ...,P

ad
N } to repre-

sent the set of adjacent partitions of all the nodes in V .
By definition, we can get that Pad

1,2 = {t0, t1, t2, t6, t11},
Pad

1,3 = {t0, t9, t11} and Pad
1,4 = {t0, t3, t10, t11}. By

combining Pad
1,2, Pad

1,3 and Pad
1,4 and reorder the time

points, we can get the adjacent partition of v1: Pad
1 =

{t0, t1, t2, t3, t6, t9, t10, t11}.
Proposition 5.1: (ET-law) Given a feasible broadcast re-

lay schedule S, suppose node vi is informed at time t′ and
is scheduled to transmit a packet at time t (t ≥ t′), where t
lives in an interval [ts, te) in vi’s adjacent partition. Since
the nodes connected by vi are not changed during [ts, te),
when t′ /∈ [ts, te), the nodes that receive the packet from vi
are the same when vi transmits at ts and at t. Thus, if we
change vi’s transmission time t to ts in S, S is still feasible.
Then, feasible schedule S remains feasible if we change the

transmission time t to its possible earliest time tearliest:

tearliest =

{
t′ if t′ ∈ [ts, te)
ts if t′ /∈ [ts, te)

(10)

We say a schedule follows Earliest transmission law (or
simply ET-law) if each relay node transmits its packet
at its tearliest and then we call each transmission an ET
transmission.
Status partition. Given a broadcast schedule that follows
ET-law, ∀vi ∈ V , we call an interval [ts, te) (ts, te ∈ T ) a
status interval of vi if its status cannot possibly be changed
during [ts, te). We call a T partition a status partition of vi
(denoted by Pst

i ) if the partition is composed of vi’s status
intervals. We use Pst

V = {Pst
1 , ...,P

st
N} to represent the set

of status partitions of all the nodes in V . Notice that given
a TVEG, though each node has unique adjacent partition,
it has infinite number of status partitions because its status
interval can be continuously partitioned into a set of smaller
intervals.

As mentioned previously, each node vi’s DTS is the
combination of its adjacent partition and its status partition.
During each interval of DTS, the set of nodes that vi
connects to and vi’s status are unchanged. Then TMEDB
on continuous time can be transferred to TMEDB on DTS.

Definition 5.2: (Discrete time set) Suppose the broadcast
schedule S follows ET-law, a discrete time partition of vi is
defined as the combination of its adjacent partition Pad

i and
one of its status partitions Pst

i , i.e.,

Pdi
i , Pad

i ∪Pst
i . (11)

The DTS on V (or simply DTS), DV , is defined as a set of
discrete time partitions for all the nodes in V , i.e.,

DV , {Pdi
1 ,P

di
2 , ...,P

di
N}. (12)

We say a schedule S is a schedule on DTS DV if for any
transmission s = [vi, t, w] in S, the transmission time t is
in vi’s discrete time partition Pdi

i .
Theorem 5.2: A TMEDB instance has feasible schedule

iff it has a feasible schedule on DTS.
Proof: ⇐: If a TMEDB instance has feasible schedule

on DTS, then the instance must have feasible schedule on
continuous time.
⇒: Suppose a TMEDB instance has feasible schedule, to

prove it has a schedule on DTS, it is equivalent to prove
it has a schedule following ET-law. For the sake of contra-
diction, we assume that there is no feasible schedule that
follows ET-law. Among all feasible schedules, we denote
the schedule with the maximum number of ET transmissions
by S. By the assumption, in S, there exists a transmission
si = [ri, ti, wi] that is not an ET transmission, where ti
lives in an interval [ts, te). According to Proposition 5.1,
changing the time of si from ti to ts does not change
the feasibility of the schedule, and the new schedule has



Figure 2. Discrete time points of v1, v3, v4 triggered by v2’s starting time
t1.

more ET transmissions than S does. It contradicts with our
assumption.

Let L = max{|Pad
1 |, ..., |Pad

N |}. Hence, there are totally
O(NL) points in Pad

V . Because the length of each non-
stop journey is O(N), for each adjacent partition point,
the number of time points on DTS it creates is O(N2),
which implies that the total number of time points on DTS
is O(N3L). Notice that in some real-life contact traces [12],
transmission delay τ is much smaller than communication
time among the nodes. In this case, we approximate τ by 0,
and each adjacent partition time point only creates 1 DTS
vector, which implies that the number of time points in DTS
is O(N2L).

VI. ENERGY EFFICIENT BROADCAST SCHEMES

In Section V, we have proved that if we find an optimal
solution for TMEDB on DTS, then this solution must also
be an optimal solution on continuous time. Guided by
this conclusion, in this section we design the schemes for
TMEDB with both static channel (denoted by TMEDB-S)
and fading channels (denoted by TMEDB-R). In Section
VI-A, by constructing an auxiliary graph for TMEDB on
DTS, we show that the existing polynomial time algorithm
for minimum-energy multicast tree problem [3] can be used
to provide O(N ε) approximation ratio for TMEDB-S. In
Section VI-B, we breakdown TMEDB-R into two sub-
problems, called broadcast backbone selection and optimal
energy allocation. The first sub-problem can be solved
by the algorithm for static channel case. For the second
sub-problem, we formalize it as a nonlinear programming
problem, which can be solved by the existing methods [19].

A. Energy-efficient delay-constrained broadcast (EEDCB)

Recall that at time t for any pair of adjacent nodes
vi and vj , the minimum cost from vi to vj is given by
wji,t = N0γth/hi,j,t (Equ. (2)). Given a node vi ∈ V ,
suppose there are mi nodes v1, ..., vmi adjacent to vi at
time t with the minimum cost w1

i,t, ..., wmii,t , respectively,
where wki,t < wk+1

i,t (k = 1, 2, ...,mi−1). Then, the cost set
of vi at time t can be partitioned into a set of cost intervals:
[w1
i,t, w

2
i,t), ..., [wmii,t , wmax]. We define Wdi

i,t = {w1
i,t, ...,

wmii,t } as the discrete cost set (DCS) of vi at time t.
Property 6.1: Given node vi’s discrete cost set at time

t: w1
i,t, ..., w

mi
i,t , (i) (Broadcast nature) if vi broadcasts the

packet with cost wki,t (1 ≤ k ≤ mi), then each node vl with
1 ≤ l ≤ k can be informed by vi; (ii) if vi can inform a set
of nodes D with cost w ∈ [wk, wk+1), then vi can inform
D with cost wk.

Proposition 6.1: The existence of a feasible schedule for
TMEDB implies the existence of a feasible schedule s.t. the
cost of each transmission is selected from the relay’s DCS.

Proof: For the sake of contradiction, suppose there
exists no such feasible schedule. Among all feasible sched-
ules, let S be the feasible schedule that has the maximum
number of transmissions, the cost of which is selected from
its relay node’s discrete cost set. In S, there must exit a
transmission, in which the sender vi uses the cost w that
is not in its discrete cost set Wdi

i,t = {wki,t|1 ≤ k ≤ mi}.
Suppose w ∈ (wki,t, w

k+1
i,t ), according to Property 6.1 (ii), by

changing the cost from w to wik , we can get a new feasible
schedule S′, which has one more transmission satisfying the
condition than S, which contradicts with our assumption.

Guided by Proposition 6.1, to find the solution of
TMEDB-S, we only need to find the solution of TMEDB
in which the cost of each transmission is in the sender’s
DCS. Then, by building an auxiliary graph, TMEDB-S can
be transferred to a previous problem called minimum-energy
multicast tree problem (MEMT) [3], which is defined as
follows: given a wireless network M = (U ,L), where each
node has k power levels, a source node vs, and a terminal
set D (D ⊂ U), the objective is to broadcast a packet from
vs to the nodes in D such that the total transmission energy
of all involved nodes is minimized. In [3], the author has
proposed an approximate algorithm with approximation ratio
upper bound O(N ε) and time complexity O((k + 1)

1
εN

3
ε ).

Below, we introduce the problem transferred by building an
auxiliary graph.

Our goal for building auxiliary graph is to map TMEDB-
S to MEMT in the auxiliary graph. We first build the virtual
node set Vaux = {ui,l|1 ≤ i ≤ N, 1 ≤ l ≤ hi}, where hi
is the number time points in vi’s discrete time partition Pdi

i

and ui,l corresponds to the lth time point in Pdi
i . Then, we

need to add edges in the graph to reflect the transmission cost
among these nodes. (i) For any pair of nodes ui,l and ui,l+1,
we build a 0-weight edge from ui,l to ui,l+1. It means that if



(a) Discrete time set (b) Auxiliary graph

Figure 3. Auxiliary graph derived from a discrete time set.

vi has received the packet at time ti,l, it must have received
the packet at time ti,l+1. (ii) If vi is adjacent to vj at time
ti,l (tj,f = ti,l−τ ) with minimum cost wki,ti,l , then we build
a directed edge from ui,l to uj,f with cost wki,ti,l . It means
that if vi has received the packet at time ti,l, vi needs to use
energy wki,ti,l to inform vj at this time. Then, TMEDB-S
is equivalent to finding the minimum-energy multicast tree
on the auxiliary graph Gaux(Vaux, Eaux), where the terminal
nodes are D = {u1,h1

, u2,h2
, ..., uN,hN }. Fig. 3 gives an

example on this map: Fig. 3 (a) shows the discrete time
set of v1, v2, v3, and v4: DV = [Pdi

1 ,P
di
2 ,P

di
3 ,P

di
4 ], where

v2 is the source node; Fig. 3 (b) shows the corresponding
auxiliary graph, where u2,0 is the source node and D =
{u1,4, u2,1, u3,3, u4,3} is the destination node set.

According to the complexity analysis in Section V, the
number of nodes in Gaux is O(N2L), and the size of
each discrete cost set is O(N). Finally, using the algorithm
introduced in [3], we can get the solution with upper
approximation ratio bound O(N ε), and the time complexity
of the solution is

O((N + 1)
1
ε (N2L)

3
ε ) = O(N

7
εL

3
ε ) (13)

B. Fading-resistant EEDCB (FR-EEDCB)

We then discuss the TMEDB problem in the Rayleigh
fading environment (TMEDB-R), in which the ED-function
class is composed of a set of Rayleigh ED-functions (Equ.
(5)). In fading environment, the signal power received by
each node is random fluctuated and the probabilities of
successful transmissions are always smaller than 1. Hence,
in multi-hop transmissions, the energy used by each relay
node determines the probability of successfully decoding the
packet of not only its successor but also the nodes after the
successor. Therefore, we cannot directly use the auxiliary
graph introduced in Section VI-A to solve TMEDB-R.
Recall that a solution includes relay nodes, their transmission
times and energy levels. To solve the TMEDB-R problem,
we then breakdown this problem to two sub-problems,
namely broadcast backbone selection, which determines
relay nodes R = [r1, r2, ..., rn] and their transmission times
T = [t1, t2, ..., tn], and optimal energy allocation, which

determines the energy level W = [w1, w2, ..., wn] that each
relay node uses for transmitting the packet.
Broadcast backbone selection. We simply use the broad-
cast algorithm for the static channel model (introduced in
Section VI-A) to select relay nodes R and determine their
transmission times T. To build the auxiliary graph, we need
to give each edge a weight, which is determined by the
channel condition of the edge. Here, for any edge ei,j , it
has ED-function ϕei,jt (w) = 1 − exp

(
−N0γth
wd−α

)
(Equ. (5)).

When ϕ
ei,j
t (w0) = ε, we calculate the weight of this edge

to be w0 = N0γth
ln(1/(1−ε))d−α , which is the cost that can make

the probability of failure transmission equal the acceptable
error rate ε in single hop.
Optimal energy allocation. After broadcast backbone se-
lection, relay nodes R and their transmission times T have
been determined. For a schedule, what remains to solve is
how much energy relay nodes should use for forwarding the
packet, i.e., W = [w1, w2, ..., wn]. Recall that the objective
of TMEDB is to minimize the total energy consumption
while guaranteeing that (1) the broadcast can be completed
within the time constraint; and (2) the delivery ratio is higher
than a threshold. Accordingly, we can formulate the optimal
energy allocation problem as a nonlinear programming prob-
lem (NLP):

min

n∑
k=1

wk (14)

s.t.
∏

[rk, tk] ∈ [R,T],
ρτ (erk,vj , tk) = 1

ϕ
erk,vj
tk

(wk) ≤ ε, ∀ vj ∈ V

(15)∏
[rk, tk] ∈ [R,T],

tk ≤ tj , ρτ (erk,rj , tk) = 1

ϕ
erk,rj
tk

(wk) ≤ ε, ∀ rj ∈ R

(16)
wmin ≤ wk ≤ wmax

where w1, w2, ..., wn are decision variables [20]. The first
constraint (Formula (15)) means that all the nodes in V
must have received the packet after all the relay nodes in
R forward the packet. The second constraint (Formula (16))
means that for each relay node rj , which forwards the packet
at time tj , it must have received the packet by time tj .

VII. PERFORMANCE EVALUATION

We conducted the trace-driven simulation based on the
real trace from the Huggle project [12] for performance
evaluation. We compared EEDCB and FR-EEDCB with
the greedy algorithms GREED and FR-GREED, both of
which select the node that can inform the largest number of
nodes as relay node at each step, and also with the random
algorithms RAND and FR-RAND, both of which randomly
select an informed node as relay node at each step. In the
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Figure 4. Delay-energy tradeoff of EEDCB and FR-EEDCB.
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Figure 5. Delay-energy tradeoff of different algorithms.

simulation, we randomly chose a source node for broadcast.
In GREED and RAND, the transmission cost equals the
minimum cost in the relay’s discrete cost set, and in FR-
GREED and FR-RAND, it is calculated by NLP (Equ. (14)-
(17)). The parameters were set as follows [13]: the noise
power density N0 equals 4.32× 10−21 W/HZ, the decoding
threshold γth equals 25.9 dB, the date rate equals 1 Mbit/s,
the path lose exponent α equals 2, and the acceptable error
rate ε equals 0.01. We considered both static channels and
fading channels using the Rayleigh fading model. Unless
otherwise specified, the number of nodes was set to 20
and the delay constraint was set to 2000s. Each experiment
lasted for approximately 17000s. We mainly measured the
following metrics:

1) Normalized energy consumption. It is defined as the
total energy consumption of all the nodes in a broadcast
normalized by the decoding threshold γth [14].

2) Packet delivery ratio. It is defined as the percent of the
nodes that have successfully received the broadcasted packet
when every node transmits the packet once.

Fig. 4 (a) and Fig. 4 (b) show the normalized energy
consumption versus the delay constraint of our methods
with different number of nodes (N ) with static channels and
fading channels, respectively. We varied the delay constraint
from 2000s to 6000s with 500s increase in each step. Both
figures demonstrate that the energy consumption decreases
as the delay constraint increases. The reason is that when
the delay constraint is smaller, a node needs more energy to
reach more nodes so that all nodes can receive the packet
within the delay constraint. Also, both figures show that the
normalized energy consumption increases as N increases
since more nodes consumes more energy in total.
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Figure 6. Performance in the fading scenario.
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Figure 7. Energy consumption and average node degree over time.

Fig. 5 (a) and Fig. 5 (b) compare the energy consumption
of different algorithms with static channels and fading
channels, respectively. We find that energy consumption
follows EEDCB<GREED<RAND and FR-EEDCB<FR-
GREED<FR-RAND. EEDCB and FR-EEDCB outperform
the greedy algorithms and the random algorithms because
EEDCB and FR-EEDCB try to achieve the global optimal
solution to minimize energy consumption while the greedy
algorithms always find the local optimal solution, and the
random algorithms only randomly select a relay node at
each step.

Fig. 6 (a) and Fig. 6 (b) show the energy consumption and
packet delivery ratio of the different algorithms with differ-
ent number of nodes in fading environment, respectively. We
see that the energy consumption follows FR-RAND>FR-
GREED>FR-EEDCB>RAND>GREED>EEDCB, and the
packet delivery ratio follows FR-RAND≈ FR-GREED ≈
FR-EEDCB>RAND>GREED>EEDCB. EEDCB, GREED
and RAND consume lower energy and also produce low-
er delivery ratio than others because they are only for
non-fading environment, which requires lower energy in
transmission. Thus, they generate lower packet delivery
ratio in the fading environment. These algorithms fail to
broadcast the packet to about 33%-37% nodes when the
network has 20 nodes, and their packet delivery ratio rapidly
decreases as the network grows. As the network grows, the
broadcast tree becomes larger and the probability of link
failure increases. By incorporating the fading model into
these algorithms, FR-EEDCB, FR-GREED, and FR-RAND
achieve nearly full delivery constantly for different network
sizes. This result indicates the effectiveness of considering
fading model in guaranteeing high packet delivery ratio in



a fading environment.
We then study the effect of node degree in the network

graph on the energy consumption for broadcast. We calcu-
lated the average degree of the 20 nodes in the network
and their total normalized energy consumption every 500s
from 5000s to 15000s. Fig. 7 (a) and Fig. 7 (b) show the
total normalized energy consumption and average degree
during [5000s, 15000s] with static channels and fading
channels, respectively. The figures show that the average
degree increases rapidly in [5000s, 8000s], and remains
nearly constant afterwards. It is interesting to see that the
energy consumption of all methods decreases rapidly during
[5000s, 8000s], and stays nearly constant afterwards. This is
because that as the average degree increases, each rely node
is more likely to inform more nodes when it forwards the
packet. Hence, both the size of broadcast backbone and the
total number of transmissions decrease, thus reducing the
total energy consumption.

VIII. CONCLUSION

In this paper, to build a model for studying dynamic
wireless networks, we have introduced the notation of time-
varying energy-demand graphs, which enhance the existing
time-varying graphs by mapping each edge to an energy-
demand function, which is improved from the existing
time-varying graphs by mapping each edge to an energy-
demand function. Based on this model, we have formulated
a problem called time-varying minimum-energy delay-
constrained broadcast problem (TMEDB). The objective
of this problem is to find a relay allocation schedule to
minimize the energy consumption of the broadcast within
constraint time while guaranteeing that the delivery ratio is
higher than a threshold. We have proved that this problem
is NP-hard and o(logN) inapproximable. To facilitate
designing an algorithm for this problem, we additionally
have proved that TMEDB defined on continuous time is
equivalent to TMEDB defined on discrete time sets (DTS).
Guided by these property, we propose schemes for TMEDB
for either static channels or fading channels. Finally, we
evaluate the performance of these schemes. In our future
work, we will take into account non-deterministic time-
varying graphs and the interference among transmissions.
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