

TSearch: Target-Oriented Low-Delay Node Searching in DTNs with Social Network Properties

Presenter: Fangming Liu

Authors: Li Yan, Haiying Shen and Kang Chen Dept. of Electrical and Computer Engineering Clemson University, SC, USA

Outline

- Introduction
- Related work
- Rationale of TSearch design
- System design of TSearch
- Evaluation
- Conclusion

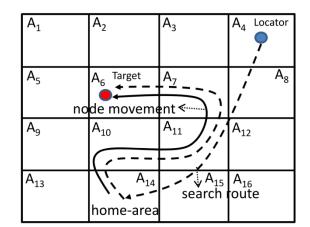
Introduction

- Nodes form delay tolerant networks in distributed manner
 - Without infrastructure for communication
- Nodes move autonomously in the network
 - Example 1: malfunctioning sensors on animals
 - Example 2: malicious nodes in the network
 - Example 3: mobile devices held by people on campus

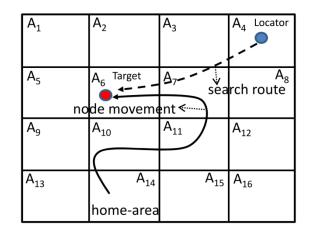
Introduction (cont.)

Node searching is important

- Find a node carrying a malfunctioning device
- Locate malicious nodes timely
- Enable the search of device holders
- Node searching is also **non-trivial**
 - No central controller to guide node movement
 - No infrastructure to collect node location information
 - Information transmission follows the "delay tolerant" manner


Related Work

- Infrastructure-based methods [SIGCOMM'07, ICNP'13]
 - Rely on infrastructure to collect node mobility information
 - Drawbacks:
 - Not applicable to the DTN scenario
- DTN routing methods [SIGCOMM'07, INFOCOM'10]
 - Can achieve node searching
 - Drawbacks:
 - Low efficiency due to hop-by-hop routing
- DTN node searching methods [INFOCOM'14]
 - Summarize node mobility information
 - Let nodes store & distribute mobility information in the network for node searching



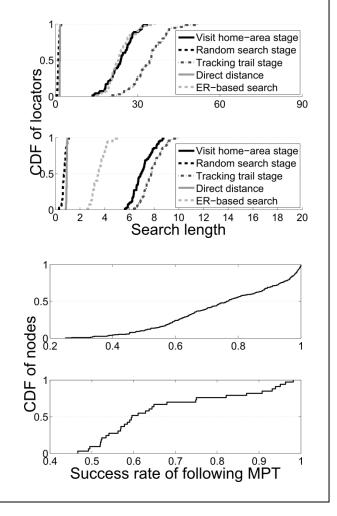
Related Work (cont.)

- DTN node searching methods [INFOCOM'14]
 - Drawbacks:
 - Tracing target along its movement is not sufficiently efficient

- Proposed method
 - Locators move to the most recent location of target
 - Use nodes' preference in specific locations for search
 - Use nodes' friends for search

Rationale of TSearch Design

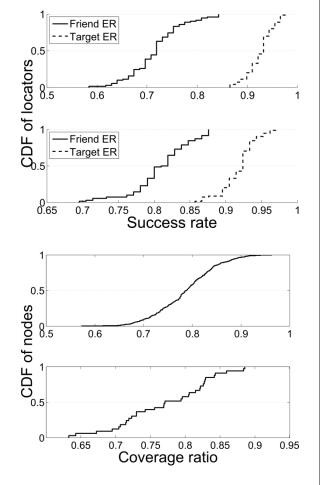
- Real traces for analysis
 - Dartmouth trace (DART) [1]:
 - A 119-day record for wireless devices carried by students on Dartmouth College campus
 - Initial period: 30 days
 - 70 locators were generated periodically (1 day) for 90 times
 - DieselNet trace (DNET) [2]:
 - A 20-day record for WiFi nodes attached to the buses in the downtown area of UMass college town
 - Initial period: 2.5 days
 - 70 locators were generated periodically (4 hours) for 90 times


 ^[1] T. Henderson, etc. "The changing usage of a mature campus-wide wireless network," in Proc. of MobiCom, 2004.
 [2] X. Zhang, etc. "Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing," in Proc. 7 of MobiCom, 2007.

Rationale of TSearch Design

Drawback of DSearch

- Long distances to the home-area and movement trail of the target node
- Solution: let locator move directly to the most recent locations of the targets.
- Effectiveness of preferred locations on searching
 - Nodes have preference on multiple locations

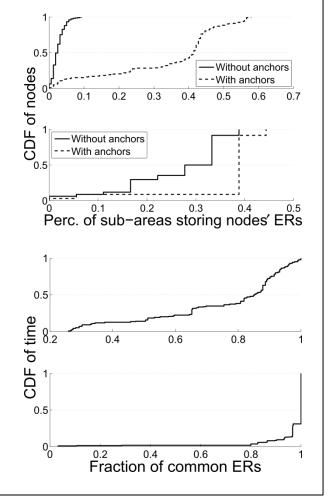

Rationale of TSearch Design (cont.)

Friends

- Each node has certain frequently meeting nodes
- ERs of the target's friends can be used as complementary method for node searching.

Search range constraint

 Nodes' possible locations can be determined based on the normal node velocity and the time and location in the nodes' latest ER



Rationale of TSearch Design (cont.)

Information dissemination

- Anchors: nodes that stay in certain sub-area for a long time
- Anchors store mobility information of nodes for easy access.
- Ambassadors: nodes that frequently transit between two subareas
- Ambassadors help maintain consistency of mobility information among anchors

Design: Problem Definition

- A DTN with *n* nodes
 - N_i , $i = 1, 2, 3, \cdots, n$
- Whole DTN is split into sub-areas
 - Each sub-area contains one landmark, e.g., a popular place
 - The area between two landmarks is evenly split
 - No overlap among sub-areas
- Node searching
 - Enabling the locator to find the sub-area where the target node resides in

Design: Info. for Searching

- Encounter record (ER)
 - Generated when nodes encounter with each other
 - Shows a historical location of the node

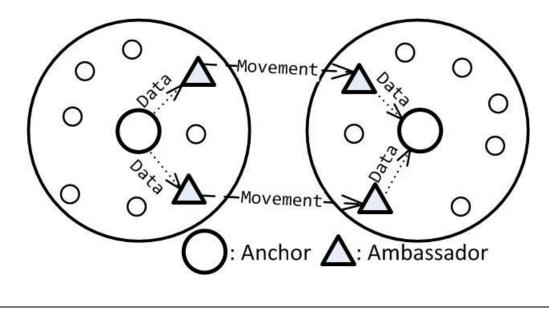
 $< N_i, N_j, L_{ij}, T_{ij} >$

- N_i and N_j represent the two encountering nodes
- L_{ij} and T_{ij} represent the current sub-area and the current time, respectively
- Purpose of ER
 - Providing the information on recent locations of the target

Design: Info. for Searching

- Friends and preferred locations
 - Friends: nodes that take up at least a high percentage (60%) of all contacts with the node
 - Preferred locations: The top ranked sub-areas that constitute 60% of visiting frequency of the target node.
- Purpose of friends and preferred locations
 - Providing the information on target's preference in meeting nodes and visiting sub-areas

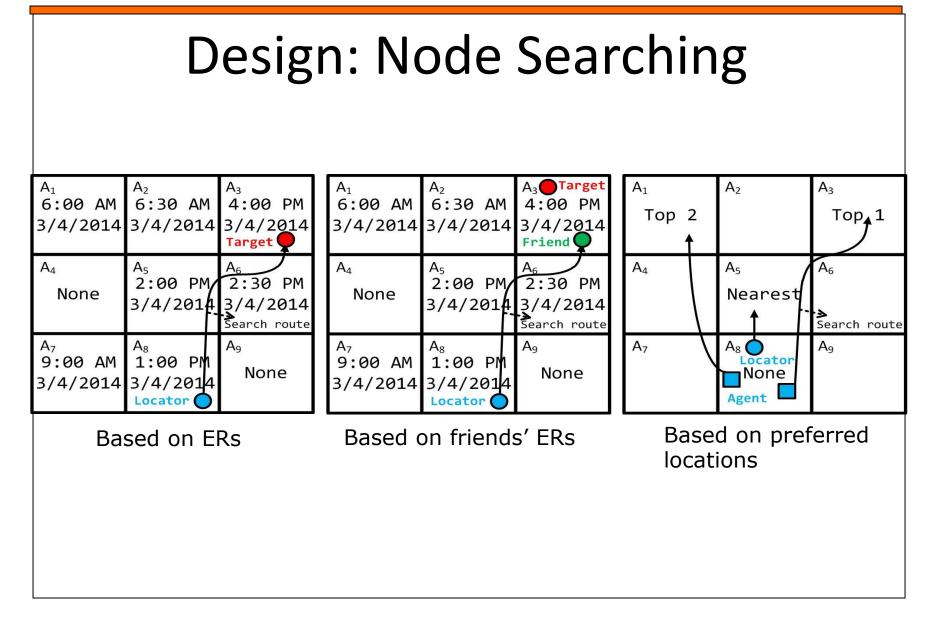
Node	Friends	Meeting prob.	Preferred locations	Visiting prob.
N ₁	N ₃	0.9	<i>A</i> ₃	0.95
	N_4	0.8	A_4	0.8
	N_6	0.7	A_5	0.75


Design: Distribute Mobility Info.

- Anchor
 - Stable node with high storage and computing capacity
 - Collect ERs, friends and preferred locations of nodes
 - Once locator moves into a sub-area, it can quickly access the information of nodes that once visited the sub-area from the anchors of the sub-area
- Ambassador
 - Nodes frequently transiting between two sub-areas
 - Maintain the consistency of information among anchors

Design: Distribute Mobility Info.

- Role determination
 - Anchor: staying probability of a node is larger than a threshold
 - Ambassador: frequency of transiting between two sub-areas is higher than a threshold



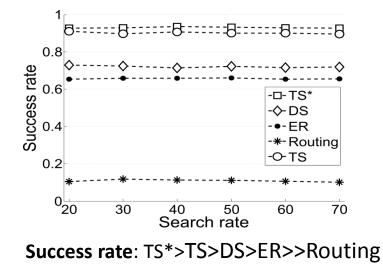
Design: Node Searching

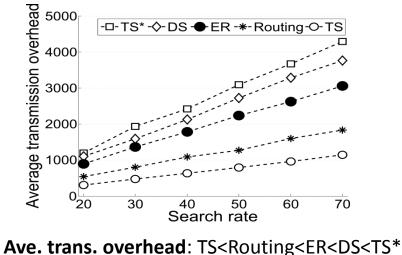
- Node searching based on ERs
 - Locator moves to the location in the ER
 - Changes destination if newer ER is found
- Node searching based on friends' ERs
 - Locator moves to the location in the ER of the friend that has the highest meeting probability with the target
- Node searching based on target's preferred locations
 - Locator moves to the nearest preferred location
 - Locator relies on M nodes (as agents) to search the next top M preferred locations
 - Agents have common preferred locations with the target
 - If an agent finds the target, it uses a routing algorithm to notify the locator

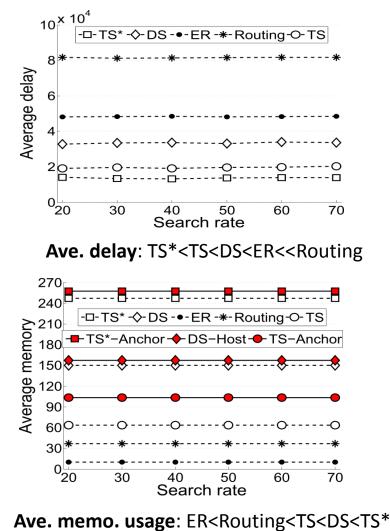
Performance Evaluation

- Simulator
 - Event driven simulator
- Node Mobility Traces
 - Dartmouth trace (DART): records of mobile devices on campus
 [1]
 - DieselNet trace (DNET): records of buses in a college town [2]
- Comparison Methods
 - TS*: TSearch with ER exchange
 - TS: TSearch without ER exchange
 - DS: DSearch distributed node searching [INFOCOM 14']
 - Routing: a routing based method [SIGMOBILE 03']
 - ER: TSearch using ER only

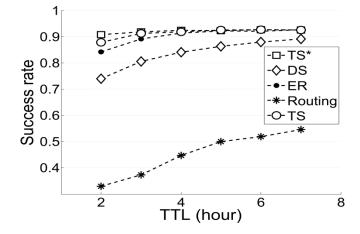
^[1] T. Henderson, etc. "The changing usage of a mature campus-wide wireless network," in Proc. of MobiCom, 2004.
[2] X. Zhang, etc. "Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing," in Proc. 18 of MobiCom, 2007.

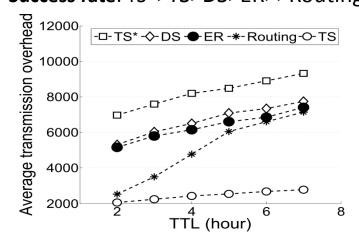

Metrics

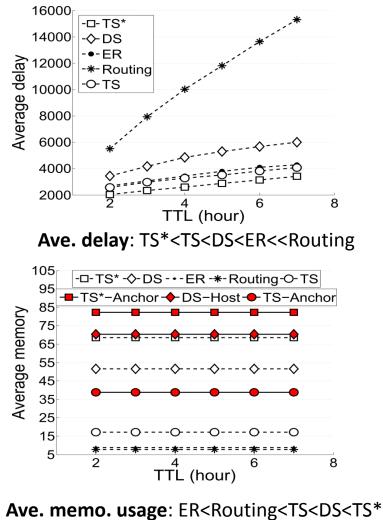

• Success rate


- The percentage of locators that can successfully locate the target nodes within the TTL
- Average delay
 - The average time used by successful locators
- Average transmission overhead
 - The average number of all packets transmitted among nodes
- Average node memory usage
 - The average number of memory units used by each node

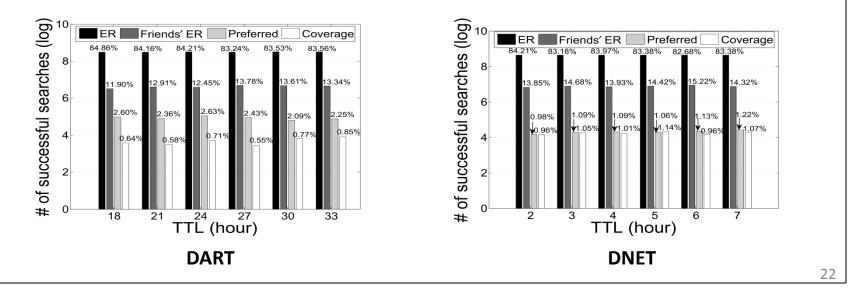
Experiment with Different Search Rates (DART)






Experiment with Different TTLs (DNET)

Success rate: TS*>TS>DS>ER>>Routing


Ave. trans. overhead: TS<Routing<ER<DS<TS*

Contribution of Different Stages in TSearch

- Most of the successful searches are achieved by following the target's ERs.
- The ERs of the target's friends have the second highest contribution on the success rate.
- The target's preferred location information has the third highest contribution on success rate.

Conclusions

- Our real trace analysis confirms the drawbacks of previous node searching methods in DTNs
- We proposed TSearch, it
 - enables a locator to always move to the target's latest appearance place known by itself
 - enables a locator to find the target through its friends
 - enables a locator to ask a limited number of nodes that share common preferred locations with the target to assist node searching
- In our future work, we plan to further exploit nodes' social network properties to reduce node searching delay and overhead.

Thank you! Questions & Comments?

Li Yan, PhD Candidate

lyan@clemson.edu

Pervasive Communication Laboratory

Clemson University