iASK: A Distributed Q&A System Incorporating Social Community and Global Collective Intelligence

Guoxin Liu and Haiying Shen Department of Electrical and Computer Engineering Clemson University, Clemson, SC 29631, USA {guoxinl, shenh}@clemson.edu

Abstract—Traditional web-based Question and Answer (Q&A) websites cannot easily solve non-factual questions to match askers' preference. Recent research efforts begin to study social-based Q&A systems that rely on an asker's social friends to provide answers. However, this method cannot find answerers for a question not belonging to the asker's interests. To solve this problem, we propose a distributed Q&A system incorporating both social community intelligence and global collective intelligence, named as iASK. iASK improves the response latency and answer quality in both the social domain and global domain. It uses a neural network based friend ranking method to identify answerer candidates by considering social closeness and Q&A activities. To efficiently identify answerers in the global user base, iASK builds a virtual server tree that embeds the hierarchical structure of interests, and also maps users to the tree based on user interests. To accurately locate the cooperative experts, iASK has a fine-grained reputation system to evaluate user reputation based on their cooperativeness and expertise. Experimental results from large-scale trace-driven simulation and realworld daily usages of the iASK prototype show the superior performance of iASK. It achieves high answer quality with 24% higher accuracy, short response latency with 53% less delay and effective cooperative incentives with 16% more answers compared to other social-based Q&A systems.

I. INTRODUCTION

Question and Answer (Q&A) systems play a vital role in our daily life as one of the most important information sources. Q&A websites such as Ask.com [1], Answers.com [2], Yahoo! Answers [3], stackoverflow [4] and Quora [5] publish the questions on the web, making them available to all users to answer. These Q&A websites may allow users to build directed relationships, such as follower-followee. However, they cannot easily solve non-factual questions [6], because followers are unaware of their followees' personnel preferences. Also, due to the anonymous global users, a question may not receive answers or the response delay may be long, and the provided answers may not be trustable (such as spam) or accurate [7]. To address these problems, more and more research efforts begin to study social-based Q&A systems [6, 7, 8, 9, 10, 11, 12]. Since social friends always share common-interests and they trust and like to help each other, the social-based Q&A systems rely on an asker's social friends to provide answers.

However, users sometimes may be more likely to seek the information not related to their social community. For instance, a researcher in "distributed systems" may ask questions on "social networks"; a football fan at New York may already know much information about the football sports in New York, but needs suggestions when he decides to watch a melodrama in New York. Then, it may be difficult to find the best answerers from an asker's social community for questions irrelevant to this social community. Indeed, previous social network studies show that weak ties play a more dominant role in the dissemination of information online than strong ties in social network [13, 14]. By limiting the search scope to a user's strong ties, it confines the Q&A activities within individual social communities and prevents the knowledge sharing between different social communities. Therefore, neither a pure socialbased Q&A system nor a global Q&A website suffices as a both comprehensive and personalized Q&A system. Thus, we face a challenge of connecting different social communities to fully utilize the cohesive power of weak ties for users to efficiently receive answers outside of their social communities.

To solve this challenge, we propose a unified system that incorporates social community intelligence and global collective intelligence into a single distributed Q&A system, named as iASK. Compared to other socialbased Q&A systems, iASK is the first work that uses the global collective intelligence to complement the social community intelligence in order to efficiently and accurately locate potential answerers outside the asker's social communities. When an answer cannot be found within the social network of an asker, it is forwarded to the global user base. iASK does not simply combine the previously proposed social-based Q&A system and global Q&A website platform. It improves the response latency and answer quality (trust and accuracy) in both the social domain and global domain. In the social domain, by using neural network, iASK considers multiple factors (e.g., response delay, quality, social closeness) in answerer candidate identification, and also gives users options to set different priorities on the factors. In the global domain, there exist three challenges. First, the system must identify potential answerers in an efficient and scalable manner. Second, it is important to identify potential answerers that can provide accurate and trustable answers and are willing to answer the question. Third, it is critical to encourage users to cooperatively answer questions. To handle the first challenge, iASK builds central servers into a virtual server tree that embeds the hierarchical structure of interests (i.e., categories). In iASK, interests not only includes long term interests (i.e., music, book, movie), but also includes short term activities (i.e., job hunting, falling in love). It also classifies the global user base based on user interests and maps the user groups to the virtual servers, so that the potential answerers in a specific interest can be efficiently located along the tree. To handle the second and third challenges, iASK has a fine-grained reputation system to evaluate user reputation based on their cooperativeness and expertise.

Our contributions can be summarized as follows:

- 1) A Q&A system structure that incorporates both social community and global collective intelligences, which complement each other in potential answerer search.
- 2) A neural network based friend ranking method that considers multi-factors to identify answerer candidates in the social network that can provide quick and accurate response. It further provides users the flexibility to choose candidates based on their preference priorities on different factors.
- 3) A virtual server tree in the central servers to efficiently locate answerer candidates in the global user base. Each virtual server manages users in a fine-grained interest and is responsible for locating the answerer candidates in this interest.
- A fine-grained reputation system that accurately locates cooperative global experts to answer questions.
- 5) Experimental results from large-scale trace-driven simulation and real-world daily usages of the iASK prototype confirm iASK's superior performance. It achieves high answer quality with 24% higher accuracy, short response latency with 53% less delay and effective cooperative incentives with 16% more answers compared to other social-based Q&A systems.

The rest of the paper is organized as follows. Section II

presents related work. Section III presents the design of the iASK system, describes our strategies and presents a real implementation of the iASK prototype. Section IV shows the trace-driven simulation results of iASK compared to other systems. Section V demonstrates iASK's performance in the wild testing. We conclude this paper with remarks on the future work in Section VI.

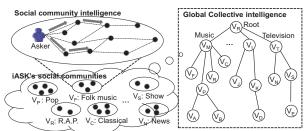
II. RELATED WORK

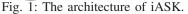
Recently, many research efforts began to study socialbased Q&A systems [6, 7, 8, 9, 10, 11, 12]. The systems in [6, 7] are based on broadcasting. Morris et al. [6] studied the answer quality and response speed of questions asked through status messages in an online social network as well as how to format questions in order to improve the performance. By posting questions on the status wall, a user can broadcast the questions to all of his/her friends. Harper et al. [7] investigated the question quality predictors, and found that the reward strategy and community networks lead to better answer quality. The works in [8, 9] are centralized based systems that identify the most appropriate friends of a user to answer his question. These works and [11] also studied the influence of different factors (e.g., users' profiles, system interactions and community size) in the social networks on Q&A performance. The study results lay the foundation of social-based Q&A systems to leverage social network properties in the design. However, a broadcasting method generates high overhead and a large number of received questions make users hard to find what they can answer. Centralized methods have problems of single point of failure, higher bandwidth and server maintenance costs [10]. Zhang et al. [12] proposed an expert finding mechanism coupling with profile matching and social acquaintance prediction methods in order to forward referral requests through social links to experts. SOS [10] is a distributed Q&A system based on a social network that forwards questions in a distributed manner in an asker's social network, and uses knowledge engineering techniques to find the potential answerers of questions in the social network. Different from SOS and all the previous Q&A systems, iASK focuses on incorporating social community intelligence and global collective intelligence to find answerer candidates for higher user quality of service (QoS) (i.e., lower response latency, higher accurate and trustable answers).

The works in [15, 16, 17, 18] focus on locating experts and authoritative users as potential answers for Q&A systems. Zhang *et al.* [15] measured the performance of a set of network-based algorithms for finding experts on a large-size social network, and found several structural characteristics in the social networks that affect the algorithms' performance for online communities. In [16], the reputation of answerers is calculated in Q&A systems to increase the credibility of answers. In [17], authoritative users for specific question subjects are discovered in order to improve the quality of answerers and answer ranking. In [18], an Opinion-based Cascading (OC) model is proposed to identify the user with positive opinions of a product promotion, and by spreading promotions to these users, OC maximizes the spread of positive influence. Different from these works, iASK's fine-grained reputation system considers more factors for more accurate reputation evaluation, and it further uses the reputation system in its reward strategy to incentivize users to respond to non-friends.

III. IASK: INCORPORATING SOCIAL COMMUNITY AND GLOBAL COLLECTIVE INTELLIGENCE

A. Design Rationality


The QoS of a Q&A system depends on whether an asker receives answers, the response latency, answer quality and whether the answers match the asker's needs. The QoS of Q&A systems can be improved by leveraging social networks due to social friend properties. It can improve the answer quality [7] since the friendship is altruistic and trustable [19]. Also, friends in an online social network tend to share similar interests, and be clustered based on their interests [20]. Friends inside the same community may know the asker well so they can provide with satisfied answers. Thus, the friends are better potential answerers for non-factual questions to match askers' personnel preferences and personalized needs. For example, in real life, the persons a student resorts to for answers of questions such as "Is the computer organization qualify exam in our ECE Department difficult?" are usually those in his social community in the ECE Department at his university. Therefore, we can leverage social community intelligence to solve the questions based on interest topics.


It is critical to identify potential answerers in an asker's social community that can provide high-quality answers. Inside the social community, the interaction frequencies between a user and his friends are largely different and vary over time [21], which means that the willingness, availability and trust of a user's different friends to answer his questions need to be evaluated individually and updated over time. iASK considers the dynamic social interactions, which represent friend social closeness, and other Q&A activity factors (e.g., response rate, response delay, answer quality) to identify friends who are willing and trustable to provide answers [22]. iASK also allows users to set different weights on these multi-factors based on their preference to rank friends for potential answerer identification.

In real life, users also ask questions outside of their social communities, so the questions may not be answered within a user's social community, as indicated in Section I. Posting a question to the web and passively waiting for answers as in current web-based Q&A websites (e.g., Ask.com, Answers.com and Yahoo! Answers) cannot guarantee timely and high-quality answers. In order to proactively find appropriate answerers, users need to forward questions to the global experts of these subjects. iASK fulfills this task by incorporating the global collective intelligence to complement the social community intelligence in order to increase the probability that a question is successfully resolved. By a "resolved question", we mean that the asker have received best answers with respect to this question. Unlike the trustable and altruistic social community, the global domain needs another strategy to locate and motivate users who are willing and able to answer questions to unknown unfamiliar users. iASK has a fine-grained reputation system to evaluate user reputation based on their cooperativeness and expertise.

B. System Architecture

iASK is an online social-based Q&A system. Users register their profiles as in online social networks, including interests, education and so on, and build their social networks. There are two types of social networks in iASK: i) friend network as in Facebook, and ii) contact-fan (i.e., followee-follower) network as in Yahoo! Answers. The friendship is bidirectional, being used to locate potential answerer by leveraging social community intelligence; the contact-fan relationship is unidirectional, being used for leveraging global collective intelligence. In our real-world software development, iASK has 5 predefined categories (i.e., music, book, movie, television and research) and 40 subcategories (e.g., pop music, data mining). From the lists, users choose their interests and question topics. Users also can enter any new category and subcategory under a category as their interests and question topics, and the redundant userdefined categories will be combined based on synonyms.

iASK incorporates potential answerer location strategies in both the social community intelligence (within an asker's social communities) domain and the global collective intelligence domain (outside an asker's social communities) that are likely to provide high-quality answers in time. Figure 1 shows the high-level architecture of iASK based on the two domains. If a question cannot be solved within an asker's social communities, the question is forwarded to global collective intelligence. In the social community intelligence domain, it has a neural network based friend ranking method to identify potential answerers to forward a question in a distributed manner. In the global collective intelligence domain, it has a virtual server tree that helps to locate potential answerers with the interest of the question. We adopt the concept of virtual server from [23]. All virtual servers form a tree that mirrors the filiation among categories and subcategories. Therefore, each virtual server represents a group of all users with a specific interest category or subcategory, and is hosted by a physical server. That is, a virtual server's jobs, including user join and leave management and expert location, are executed by its host physical server. To avoid user redundant efforts to forward or answer the same questions and hence reduce network traffic in both social community and global collective intelligence domains, a duplicated received question from the same asker is dropped. In order to choose answerers that will provide high-quality answers quickly, iASK has fine-grained reputation evaluation. We introduce the details of each component of iASK below.

C. Integrated Social and Global based Answerer Location

When a user asks a question, he specifies the question's topic by selecting or entering an interest. If the interest is not within the asker's interests, it is directly forwarded to the central servers. Otherwise, it is forwarded to the best K answerer candidates among his friends having this interest. Section III-C1 introduces how to select the answerer candidates. When a user receives a question, if he cannot answer it, he further forwards it to his friends. After the question is forwarded by TTL hops, the receiver forwards the question to the central servers. After the central servers receive a question, based on the virtual server tree, the question is then efficiently forwarded to the virtual server which manages the group of all users in the system with this interest. The responsible virtual server chooses Kexperts based on their reputations in this interest. The details of the global answerer candidate identification are presented in Section III-C2. If the answer is still not answered satisfactorily, the question is posted to the question forum as in Yahoo! Answers.

1) Social based Potential Answerer Location: To evaluate the qualification of an asker's friends to answer his question, iASK considers the following factors: answer quality, willingness (cooperativeness) and response delay. In iASK, an asker gives a precision score ranging from 0 to 5 to each received answer [3], which represents the accuracy of this answer. Since a friend may have different degrees of knowledge in different interests, for

each interest I_j , we measure the friend's precision rate to evaluate his answer quality in this interest. To accurately reflect a friend's current qualification to be an answerer, for each of user u_a 's friends (denoted by f_i), iASK periodically calculates the following social and Q&A activities: response rate, mutual interaction frequency, response delay and precision rate.

- 1) Response rate (R_{f_i}) : It is measured by the percentage of questions of u_a answered or forwarded by f_i , because forwarding a question is also considered as a responding behavior. This metric reflects the cooperativeness of a friend.
- 2) Mutual interaction frequency (M_{f_i}) : It is measured by the number of interactions between f_i and u_a in a unit time period. This metric reflects the social closeness of the two users.
- 3) Response delay (D_{f_i}) : It is measured by the average delay of all interactions between f_i and u_a per unit time. This metric reflects the responsiveness of interactions and Q&A activities between the two users.
- 4) Precision rate (P^{I_j}_{f_i}): It is measured by P^{I_j}_{f_i} = G^{I_j}_{f_i}/G, where G is the upper bound precision score of an answer in the system, and G^{I_j}_{f_i} is the average precision score of all answers from friend f_i under interest I_j.

The response rate and mutual interaction frequency represent the willingness of friends to answer or forward a question [6]. The response delay represents the timeliness of a friend's response. The precision rate reflects the degree that a friend's answer can precisely answer the user's question.

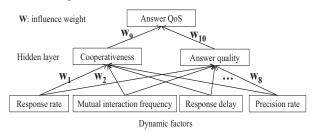


Fig. 2: The neural network model for friend ranking.

The satisfaction score of an answer is given by the asker based on different answer QoS factors including the response delay, answer precision, interaction frequency and response rate. If the asker does not receive an answer from an identified potential answerer, he gives 0 precision and satisfaction scores to this user. The 0 answer score helps exclude users who are not appropriate answerers and hence increase the probability to find good answerers. This answer score represents the overall answer QoS to users. iASK aims to identify potential answerers that will receive high answer scores (i.e., high satisfaction) from the asker. For this purpose, iASK

depends on a neural network [24], as shown in Figure 2, to find out the influence weight of each factor on the QoS of friends' answers, denoted as $W_{u_a} = \langle w_1, ..., w_{10} \rangle$. The training process is the process to determine the W_{u_a} vector and the non-linear relationship between the four factors and the answer QoS. When a user needs to identify K friends in his social network to forward a question, he uses the trained neural network to calculate the output QoS value for each friend. Then, he chooses the K friends having the interest of the question and the highest QoS values to forward the question. Note that W_{u_a} determined by the training process represents the general influence degree from the factors on the QoS derived from many friends' activities. However, a user may have his own preference priorities on measuring the QoS. For example, users asking simple questions in urgency may prefer short response delay than the precision rate. Also, a user's preference may change over time. Thus, an asker can adaptively adjust the value of W_{u_a} when evaluating the QoS of each of his friends:

$$\forall i \in [1...8], w_i = \alpha_i w_i \wedge \sum_{i=1}^8 \alpha_i = 1.$$

In this case, the asker needs to forward the question along with his own specified W_{u_a} to identified top K friends. Each question receiver uses the received W_{u_a} in selecting the top K friends to forward the question in order to meet the QoS preference of the asker.

The W_{u_a} vector is updated periodically through training. The training time period represents a tradeoff between the sensitivity of environment variance and computation cost for training. A smaller time period leads to more accurate derived W_{u_a} , but also generates a higher computation cost due to the frequent updating. When a user receives a question, if he cannot answer it, he further forwards it to his friends. After the question is forwarded by TTL hops, the receiver forwards the question to the central servers.

2) Global based Potential Answerer Location: iASK builds the central servers into a virtual server tree overlay to efficiently identify potential answerers that have the question's interest in the global user base. The entire interest space can be classified into pre-defined categories. For example, Yahoo! Answers has 17 categories such as "Pets", "Travel" and "Sports". Each category can be classified into sub-categories, each of which can further be classified to smaller categories and so on. Based on such classification, an interest tree can be established. Assume that in the interest tree, each node has at most *d* children. Then, iASK builds a *d*-nary virtual server tree, as shown in Figure 3, to map to the interest tree.

In the tree, $v_{i,j}$ represents the j^{th} virtual server on the i^{th} level of the tree. Each child is responsible for a sub-category of the category in its parent. Each physical server runs a number of virtual servers, and iASK can deploy its virtual server tree to a cloud. This tree is a locality-aware tree, where virtual servers in the same subtree are physically close to each other and also physically close to their parent in order to reduce the communication overhead.

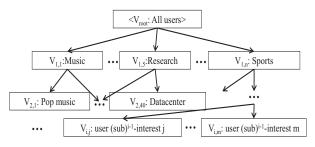


Fig. 3: The virtual server tree in the central servers.

A virtual server responsible for category interest I_i records all users with interest I_i , and also is responsible for locating the answerer candidates among these users for questions in interest I_i . When user u_a enters his interests, the system translates each interest to identifier $v_{i,i}$ in the tree accordingly. The virtual server with identifier $v_{i,j}$ in the tree becomes u_a 's server holder. The server holder stores the information of u_a , and the information is forwarded in the bottom-up manner until reaching the tree root and stored in the virtual servers along the path. When u_a sends a question to the central servers, u_a 's server holder finds answerer candidates for the question. Specifically, this question is forwarded in the bottom-up manner until it reaches a virtual server responsible for the question's interest. Then, this question is forwarded in the top-down manner until it reaches a virtual server responsible for this question's smallest interest category. This virtual server then identifies the answerer candidates from its responsible users. In this way, the workload of answerer candidate identification is distributed among the different central servers, thus avoiding single point of failure and workload bottlenecks.

For the candidate identification, a virtual server $v_{i,j}$ needs to rank its responsible users, i.e., the users with interest $v_{i,j}$. In order to measure a user's cooperative behavior and his expertise in the category of a question, a virtual server calculates each user's reputation as introduced in the next section, and then selects the users with the highest reputations as potential answerers.

D. A Fine-Grained Reputation System

A virtual server calculates each user u_j 's rank score by two different reputations: the global reputation denoted as $R_{u_j}^g$, and an expertise reputation in an interest I_i denoted as $R_{u_j}^{I_i}$. The root server, which holds all users, is responsible for calculating $R_{u_j}^g$ for every u_j in the system. Recall that iASK has a contact-fan network. As users like to be fans of others who are more knowledgeable than them [11], a more trustable and knowledgeable answerer usually has more fans. Then, the root server considers the global reputations of a user's fans to estimate the user's global reputation: $\sum_{u_i \in f(u_j)} R_{u_i}^g / |f(u_j)|$, where $f(u_j)$ is the set of u_j 's fans, and $R_{u_i}^g$ is fan u_i 's reputation. As in Yahoo! Answers, users select the best answer for each question in iASK. We use B_{u_j} to denote the percentage of u_j 's expertise. Then, $R_{u_j}^g$ is calculated as the harmonic mean of user u_j 's expertise (B_{u_j}) and the reputations of his fans.

$$R_{u_j}^g = \frac{1}{\frac{1}{\frac{1}{2} * \left(\frac{1}{B_{u_j}} + \frac{1}{\sum_{u_i \in f(u_j)} R_{u_i}^g / |f(u_j)|}\right)},$$
 (1)

The virtual server for interest I_i calculates $R_{u_i}^{I_i}$:

$$R_{u_j}^{I_i} = N_{u_j}^{I_i} / N^{I_i}, (2)$$

where $N_{u_j}^{I_i}$ is the number of best answers under interest I_i provided by u_j and N^{I_i} is the total number of best answers in interest I_i . $R_{u_j}^{I_i}$ reflects u_j 's expertise in interest I_i . The virtual server requests the global reputations of its responsible users from the root server and calculates the harmonic mean of $R_{u_j}^g$ and $R_{u_j}^{I_i}$ as the final reputation of each user u_j :

$$R_{u_j} = \frac{1}{\frac{1}{\frac{1}{2} * \left(\frac{1}{R_{u_j}^g} + \frac{1}{R_{u_j}^{I_i}}\right)}}.$$
(3)

It identifies the top K users with the highest R_{u_j} values as the answerer candidates and sends the question to them. If there is no best answer after a timeout, the virtual server posts the question on the forum, where each user can see and answer the question.

E. Real Implementation

We implemented iASK client in Java based on the Applet framework, and built a neural network for friend ranking. We also implemented the virtual server tree overlay in Java running on Tomcat 7.0 with MySQL database. Each virtual server was implemented as an independent thread. In order to avoid overloading a physical server, we ran each ten threads on a server in Palmetto [25], which has 771 8-core servers. The client can run in any browser supporting Java runtime environment 1.7. When asking or forwarding questions, each client selects K potential answerers to send a question independently according to iASK's algorithms. The screen shots for iASK are shown in Figure 4.

Figure 4(a) shows the main menu of iASK. Users can manage their profiles, ask and answer questions to help each other, manage personal friendship and contact-fan network, and rate the answers in order to update the weights of different factors for their QoS preference.

Update profile	Category: Research Court Court converses of the court of	Who ask: jinwei Bypass who: Category: Research Sub-categ Question: Is there any good data m
Add/Delete friends		
Ask question		Previous Next
Add/Delete contact		Answer question Forward Drop
Answer question		Refresh questions Main menu
Check answer	Input a question:	Input answer here:
LogOut	^	A

(a) Main menu (b) Ask questions (c) Answer questions Fig. 4: Client software execution in a web browser.

Figures 4(b) and 4(c) show the interfaces for asking and answering questions, respectively. Users choose interest categories of their questions. In this example, the user wants to ask a question in the "Research" category, which has subcategories including "Social network", "Cloud computing" and "Data mining". Each question will be forwarded to two users with the highest scores. Each potential answerer can answer, forward and drop each question. The TTL was set to 3. If a question cannot be resolved within TTL hops, it will be sent to the central servers. Based on the virtual server tree, all users with the interest of the question are located, and then two global potential answerers with the highest reputation values are selected to forward the question. We present the performance of this real-world prototype in Section V.

IV. PERFORMANCE EVALUATION

We conducted trace-driven experiments to evaluate the performance of iASK. We used the Yahoo! Answers question/answer trace data from [11] and Facebook user friendship trace from [26]. The Yahoo! Answers trace has 119,175 users and their profiles, including the number of contacts and fans, and the asked and answered questions. The Facebook trace has a list of all user-to-user links for 60,101 unique users from the Facebook New Orleans networks. We constructed a virtual server tree overlay with three layers according to the categories and subcategories in the trace.

To construct the social network in the simulation, we randomly selected 100,000 users from the Yahoo! Answers trace. For each user, we regard his/her most frequent select subcategories as his/her interests, which include at least 80% of his/her total questions. The distribution of the number of friends of all users follows the Facebook trace. According to the trace, a user u_i has c_i contacts and f_i fans. To construct the contact-fan network, u_i randomly selected c_i other users as his/her contacts. The number of fans of each contact of u_i should be no larger than f_i . For the answers of

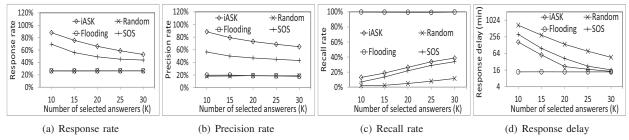


Fig. 5: Effectiveness and efficiency of different Q&A systems in the social community.

each question, we randomly assigned the best answers to users with the question's subcategory according to the distribution of the number of best answers of each user in this subcategory in the trace. We then randomly assigned the other answers to users that have not been assigned any answers of this question.

The score for a best answer was set to 10, and the score for a non-best answer was set to a random value from [0, 5]. When forwarding questions to friends or global potential answers, the number of selected answerers K was set to 10. The distribution of response time to a question follows the trace in [10]. When receiving a question, a user decides whether to respond to or drop it based on his/her response rate. In responding, if the user has the answer, the question will be answered; otherwise, the question is forwarded to the potential answerers based on the iASK algorithms. The timeout for a question routing inside the social network was set to 800 minutes.

Recall that iASK allows users to set different weights to factors (Figure 2) in QoS calculation for answerer selection. Since current Q&A systems do not have such a function, the weights of all factors of all friends were set to 0.5 initially. Before each experiment, we let each user ask 100 questions to initialize the weights of the factors. We use BA to denote the set of best answers of asked questions in the simulation, and use RA to denote the set of retrieved answers in the system from the trace. The following metrics are used to evaluate iASK's performance:

- Response rate. It is the number of successful interactions (including forwarding and answering) divided by the total number of all interactions.
- 2) Precision rate. It is defined as $|RA \cap BA|/|RA|$ to represent the quality of received answers.
- 3) Recall rate. It is defined as $|Unique(BA \cap RA)|/|Unique(BA)|$ to denote the completeness of received answers, where Unique(s) retrieves the set of all unique elements contained in s.
- Response delay. It is time period between asking a question and receiving the first best answer for it.

We compared iASK's friend selection algorithm in the social community intelligence domain with three

other algorithms: i) Random, which randomly selects K friends, ii) Flooding, which floods questions to all friends, and iii) SOS [10], which select K friends with highest score calculated by equal weights of social closeness and interest similarity. The Random method can simulate current web-based Q&A websites, in which a question is randomly visited by different users. The Flooding method can simulate previously proposed social-based Q&A systems, in which a question is flooded to all nodes in the social network. To compare the performance of the entire Q&A system, we compared the iASK system incorporating both global collective intelligence and social community intelligence with three other systems: i) Global(Tree) which selects potential answerers using iASK's virtual server tree, ii) Global(Flat) which selects potential answerers based on one-level categories without subcategories, and iii) SOS [10] without a forum to post unsolved questions. Global(Flat) can represent the previously proposed centralized social-based Q&A systems.

A. Performance in Social Community Intelligence

In this experiment, we measure the performance of iASK's friend selection algorithm in the social community intelligence domain. The number of selected potential answerers at each hop is increased from 10 to 30 with step size of 5. Each user in the system in turn asked one question. In order to measure the sole performance of the friend selection algorithm, askers generated questions within their interests.

Figure 5(a) shows that the response rate follows iASK> SOS>Random≈Flooding. In iASK, users choose friends with higher QoS, including the response rate, to answer or forward questions. Therefore, iASK generates higher response rate than others. SOS considers the interest similarity and social closeness in friend selection. Since SOS does not consider the response rate directly, it leads to lower response rate than iASK. Random and Flooding do not consider the response rates of friends, leading to similar lower response rates than SOS. We also see that the response rate of iASK and SOS decreases as the number of selected answerers increases because friends with lower response rates are more likely to be selected. This result implies that iASK's social based answerer identification method is the best to find cooperative friends.

Figure 5(b) shows the precision rate of each method, which follows iASK>SOS>Random≈Flooding. Random and Flooding do not consider the answer precision rate of friends, so they have the lowest precision rate in all methods. SOS chooses friends with similar interests as the question, who are likely to give best answers, leading to higher precision rate than Random and Flooding. However, unlike iASK, SOS does not always choose friends with high precision rate due to the large number of friends with this interest. Consequently, iASK has the highest precision rate in all methods. Also, due to the same reason as in Figure 5(a), the precision rates of both SOS and iASK decrease as K increases. Figures 5(a) and 5(b) together indicate that iASK outperforms other methods regarding both response rate and answer quality.

Figure 5(c) shows the recall rates of all methods, which follows Flooding>iASK>SOS>Random. Flooding sends a question to all friends, thus it produces the highest recall rate close to 100%. However, Flooding generates many more messages for question forwarding than other methods. Since both iASK and SOS consider interests, they supply many more high-quality answers than Random, leading to a higher recall rate. iASK has a higher recall rate than SOS due to its higher response rate and precision rate as shown in Figures 5(a) and 5(b), respectively. This figure indicates that iASK can resolve more questions with best answers than other non-flooding methods.

Figure 5(d) shows the average response delay for all questions. It follows Flooding<iASK<SOS<Random due to the same reason as in Figure 5(c). This figure indicates that iASK leads to shorter response delay for askers than other non-flooding methods. However, Flooding generates a low precision rate and also high overhead for dispatch messages to all friends in every hop.

B. Performance with Varying User Scale

In this experiment, we measure the performance of the iASK system with different user scales. The number of users in the system was increased from 20,000 to 100,000 with step size of 20,000. Different sets of users were randomly chosen from the selected 100,000 users. We assume that each user has equal probability to ask factual and non-factual questions. For non-factual questions, social friends supply better answers than the global users [10]. Thus, if a user is more than two hop social distance away from the asker, the probability to assign a best answer to this user is decreased by one half. The actual response rate of a global user in a virtual server is the smallest actual response rate to all of his/her friends, since friendship is more altruistic and trustable [19].

Figure 6(a) shows that the response rate follows iASK> SOS>Global(Tree)>Global(Flat). iASK has a larger response rate than SOS due to the same reason as in Figure 5(a). Both iASK and SOS depend on the social friends to answer questions, who are more willing to answer questions than strangers as the global users. Thus, they both have higher response rates than the two Global systems. Global(Tree) has a fine-grained user and interest clustering compared to Global(Flat). Since some global users with the highest reputations may have interests in several subcategories rather than all subcategories in a category, these users generate a low response rate when being asked questions in other subcategories. Thus, Global(Tree) is more effective to find global experts than Global(Flat). This figure indicates that iASK is the most effective system to find cooperative answerers by leveraging both social community intelligence and global collective intelligence, and the fine-grained virtual server tree overlay is effective in locating cooperative global experts.

Figure 6(b) shows the precision rate of each system, which follows iASK>Global(Tree)>Global(Flat)>SOS. iASK has the highest precision rate by choosing answerers with high QoS that considers precision rate. Without using the social networks, two Global systems choose global users that may have low precision rate for non-factual answers. Due to the same reason as in Figure 6(a), Global(Tree) generates a better precision rate than Global(Flat). SOS does not directly consider precision rates to locate the experts; thus, it generates the lowest precision rate. This figure indicates that iASK supplies the highest quality answers.

Figure 6(c) shows the recall rate of each system, which follows the same distribution as in Figure 6(b) due to the same reasons. The experimental result confirms that neither a social-based Q&A system nor a web-based global Q&A system can supply a good question recall rate. Figure 6(d) shows the average response delay for all systems. It follows Global(Flat)≈Global(Tree)<iASK<SOS. iASK and SOS generate longer response delay due to their question routing time over the social network. SOS generates longer response delay than iASK due to the same reasons as in Figure 6(c). Both Figures 6(c) and 6(d)indicate that iASK generates shorter response delay than social-based Q&A systems, and a better recall rate than all others by incorporating both the social community intelligence and global collective intelligence.

V. IASK IN THE REAL-WORLD TESTING

We organized a testing with 42 students at our university. They built the social network according to their actual friendship between each other. An asker needs to rate each answer with 0-10 stars, where 0 is totally

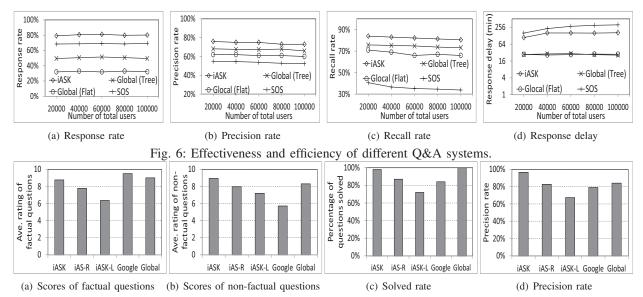


Fig. 7: Effectiveness of Q&A systems in the real-world testing.

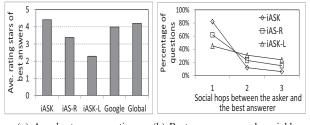

unsatisfied, 5 is correct and 10 is very satisfied. In order to estimate the factors and weights, we first let users to ask five questions, rate all answers and follow others as fans. Then, we let users to ask another five questions for the measurement. We compared iASK with other four systems: i) iASK-R, which randomly selects two answerers; ii) iASK-L, which chooses the answerers with the lowest scores; iii) Global, which always sends questions to global experts and simulates Yahoo! Answers [3]; iv) Google, in which the asker gives the score for the first three answers from the Google search engine.

Figure 7(a) and Figure 7(b) show the rating scores of answers of factual questions and non-factual questions, respectively. The factual questions are like "What are the service models in Cloud computing?". These questions can be easily answered by an expert in this interest. The non-factual questions are like "How to learn data mining in our university?". As shown in Figure 7(a), the scores of answers follows Google>Global>iASK>iASK-R>iASK-L. Google has the highest answer quality, because an expert among all users has limited knowledge compared to Google for factual questions. Global has a larger average score than all iASK methods because the expert is chosen from all users, who may have better knowledge in this interest. iASK chooses friends with better QoS scores, so it has a better performance than iASK-R, which does not consider the QoS scores in answerer selection. iASK-L has the worst performance because it always chooses friends with the lowest scores. The figure indicates the effectiveness of iASK's social based answerer identification method to locate the expert, and the lower rating score of iASK than Google should be improved under a larger user scale with more friends to choose from.

Figure 7(b) shows the rating scores of answers of non-factual questions of all methods, which follows iASK>Glo-bal≈iASK-R>iASK-L>Google. Google has the lowest score without considering the askers' preferences. iASK has better performance than iASK-R and iASK-L due to the same reasons as in Figure 7(a). iASK has the highest score because it always chooses answerers with high QoS values evaluated by its neural network friend ranking method that considers many factors. Global has similar performance as iASK-R, because the selected global answerers may know askers due to the small user scale. This figure indicates that iASK can supply the quality of best answers for non-factual questions.

Figure 7(c) shows the question solved rate of different methods, which is measured by the percentage of questions, each of which has at least one answer with rating no less than 5. It follows Global>iASK>iASK-R>Google>iASK-L. Global always chooses users with high reputations, and due to the small size of the users, the selected answerer may know the asker's preferences. Thus, it generates 2% higher solved rate than iASK. iASK chooses friends with the best QoS scores, so it has a better performance than iASK-R, which randomly selects answerers. iASK-L has worse performance than iASK-R because it always chooses friends with the lowest scores. Google does not perform well in answering non-factual questions, leading to a worse performance than iASK. This figure indicates that iASK is effective in solving questions.

Figure 7(d) shows the precision rate of all different methods. The precision rate is measured by the percentage of answers, which have scores no less than 5. It shows that the precision rate of all methods except

(a) Ave. best answer rating(b) Best answers on each social hopFig. 8: The quality of best answers.

Global follows iASK>iASK-R>Google>iASK-L due to the same reasons as in Figure 7(c). However, since Global cannot always supply correct answers for nonfactual questions, it has a lower precision rate than iASK. Figures 7(c) and 7(d) together show that iASK solves more questions with better answer quality than other systems.

In our test, if a question does not have a best answer, the rating of its best answer was set to 0. We then measure the average star ratings of best answers as shown in Figure 8(a). It shows that the star ratings of all methods follows iASK>Global>Google>iASK-R>iASK-L due to the same reasons as in Figure 7(d), except that Google and Global have a better performance than iASK-R. That is due to the lower solved rate of iASK-R than Google and Global as shown in Figure 7(c). Figure 8(b) shows the percentage of best answers distribution over each social distance hop between the best answerer and asker. It shows that there are more best answers given by direct friends in iASK than in other two methods, due to the same reason as in Figure 7(d). Both Figures 8(a) and 8(b) indicate the effectiveness of iASK to select cooperative answerers in the social community intelligence.

VI. CONCLUSION

In this paper, we propose iASK, a unified distributed Q&A system incorporating both social community intelligence and global collective intelligence. To find good answerer candidates in a user's social network, iASK uses a neural network to consider multiple factors in evaluating the answer QoS of the user's friends. If a question cannot be answered in a user's social community, the answerer candidates will be located from the global user base. iASK builds central servers into a virtual server tree overlay to efficiently locate answerer candidates in the interest of the question. iASK has a fine-grained reputation system to locate cooperative global experts. Our comprehensive trace-driven experiments and daily usage results from an iASK's prototype show that iASK outperforms other systems in enhancing answering QoS and efficiency. In our future work, we will test iASK on a larger user base in the real world and add more features to rank users in order to more precisely and efficiently locate the experts.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603, and Microsoft Research Faculty Fellow-ship 8300751.

REFERENCES

- [1] Ask, http://www.ask.com, [Accessed in May 2015].
- [2] Answers, http://www.answers.com, [Accessed in May 2015].
- [3] Yahoo! Answers, http://answers.yahoo.com, [Accessed in May 2015].
- [4] stackoverflow, http://stackoverflow.com/, [Accessed in May 2015].
- [5] Quora, http://www.quora.com, [Accessed in May 2015].
- [6] M. R. Morris, J. Teevan, and K. Panovich. What Do People Ask Their Social Networks, and Why?: A Survey Study of Status Message Q&A Behavior. In *Proc. of CHI*, 2010.
- [7] F. Harper, D. Raban, S. Rafaeli, and J. Konstan. Predictors of Answer Quality in Online Q&A Sites. In Proc. of SIGCHI, 2008.
- [8] R. W. White, M. Richardson, and Y. Liu. Effects of Community Size and Contact Rate in Synchronous Social Q&A. In *Proc. of CHI*, 2010.
- [9] D. Horowitz and S.D. Kamvar. The Anatomy of a Large-Scale Social Search Engine. In *Proc. of WWW*, 2010.
- [10] Z. Li, H. Shen, G. Liu, and J. Li. SOS: A Distributed Mobile Q&A System Based on Social Networks. In *Proc. of ICDCS*, 2012.
- [11] Z. Li and H. Shen. Collective Intelligence in the Online Social Network of Yahoo!Answers and Its Implications. In Proc. of CIKM, 2012.
- [12] L. Zhang, X. Li, Y. Liu, Q. Huang, and S. Tang. Mechanism Design for Finding Experts Using Locally Constructed Social Referral Web. In *Proc. of INFOCOM*, 2012.
- [13] E. Bakshy, I. Rosenn, C. Marlow, and L. A. Adamic. The Role of Social Networks in Information Diffusion. *CoRR*, 2012.
- [14] M. Granovetter. *The Strength Of Weak Ties*. American Journal of Sociology 78, 1360-80, 1973.
- [15] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise Networks in Online Communities: Structure and Algorithms. In *Proc. of WWW*, 2007.
- [16] J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning to Recognize Reliable Users and Content in Social Media with Coupled Mutual Reinforcement. In *Proc. of WWW*, 2009.
- [17] M. Bouguessa, B. Dumoulin, and S. Wang. Identifying Authoritative Actors in Question-Answering Forums: the Case of Yahoo! Answers. In *Proc. of KDD*, 2008.
- [18] H. Zhang, T. N. Dinh, and M. T. Thai. Maximizing the Spread of Positive Influence in Online Social Network. In *Proc. of ICDCS*, 2013.
- [19] E. Pennisi. How did Cooperative Behavior Evolve? Science, 2005.
- [20] A. Mtibaa, M. May, C. Diot, and M. Ammar. Peoplerank: Social Opportunistic Forwarding. In *Proc. of Infocom*, 2010.
- [21] G. Liu, H. Shen, and H. Chandler. Selective Data Replication for Online Social Networks with Distributed Datacenters. In *Proc.* of ICNP, 2013.
- [22] B. M. Evans and E. H. Chi. Towards a Model of Understanding Social Search. In Proc. of CSCW, 2008.
- [23] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable peer-topeer lookup protocol for internet applications. *IEEE/ACM Trans. Netw.*, 2003.
- [24] S. Haykin. Neural Networks: A Comprehensive Foundataion. Second Edition. Prentice-Hall Publisher, 1999.
- [25] Palmetto Cluster. http://citi.clemson.edu/palmetto/, [Accessed in May 2015].
- [26] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in facebook. In *Proc. of WOSN*, 2009.