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Abstract—Present approaches to achieve k-coverage
for Wireless Sensor Networks still rely on centralized
techniques. In this paper, we devise a distributed method
for this problem, namely Distributed VOronoi based
Cooperation scheme (DVOC), where nodes cooperate in
hole detection and recovery. In previous Voronoi based
schemes, each node only monitors its own critical points.
Such methods are inefficient for k-coverage because the
critical points are far away from their generating nodes in
k-order Voronoi diagram, causing high cost for transmis-
sion and computing. As a solution, DVOC enables nodes
to monitor others’ critical points around themselves by
building local Voronoi diagrams (LVDs). Further, DVOC
constrains the movement of every node to avoid gener-
ating new holes. If a node cannot reach its destination
due to the constraint, its hole healing responsibility will
fall to other cooperating nodes. The experimental results
from the real world testbed demonstrate that DVOC
outperforms the previous schemes.

Keywords-Wireless Sensor Networks; k-coverage;
Voronoi diagram; hole detection; hole healing;

I. INTRODUCTION

Among numerous challenges confronted in designing

protocols for WSNs, the coverage problem stands out

as one of the most critical issues. Some WSN applica-

tions such as environment/ocean monitoring and animal

tracking require to cover each point of the target region.

However, even if we initially can deploy sensor nodes

to make the entire target region fully covered, the nodes

may die due to battery drain or environmental causes,

which may generate coverage holes in the region.

Also, nodes may deviate from their initially assigned

positions due to uncontrollable factors (e.g., motion

of ocean waves), leaving some areas uncovered [1].

Coverage holes reduce the ability of WSNs to detect

events and network reliability. Therefore, it is crucial

to equip sensor nodes with efficient hole detection and

recovery capabilities to ensure full coverage of the

target region.

A target field is termed k-covered (k ≥ 1) if every

point in the target field is in the sensing ranges of

at least k nodes. A k-coverage hole is a continuous

area in the target field comprised of points that are

covered by at most k − 1 sensors. The problem of k-

coverage is motivated by robustness concerns as well

as protocol requirements. Previous schemes [2], [3]

for k-coverage hole detection generate a high time

complexity in a large-scale WSN with a large number

of nodes. Also, their centralized method makes them

not feasible in large-scale WSNs because it burdens

the central node while sensor nodes have limited en-

ergy and computation capacity, thus easily generating

bottlenecks. Besides hole detection, hole recovery is

a key issue in the coverage problem. Numerous hole

recovery schemes [2], [4]–[8] use sensor movement to

improve network coverage. In these schemes, sensor n-

odes equipped with mobile platforms move around after

the initial deployment. However, most of these schemes

use centralized methods, which are not feasible in large-

scale WSNs due to the aforementioned reasons. Also,

they assume that accurate location information of each

node is known, which are impractical for WSNs in

some cases [9].

Some previous schemes [10], [11] use distributed

approaches to build 1-order Voronoi diagrams (VDs)

for 1-coverage detection. A VD is composed of nu-

merous Voronoi cells, each of which has one sensor

called generating node residing in it. All points within

a Voronoi cell are closer to their generating node in

the cell than to those in other cells. Thus, a Voronoi

cell is fully covered if a generating node covers all of

its Voronoi cell’s vertices. However, it would be very

energy-expensive to directly extend these schemes for

the k-order coverage problem because each sensor node

requires much more location information for building

k-order VD and must monitor its distant critical points.

Our work aims to solve two formidable challenges:

1) How can k-coverage holes be efficiently detected

in a distributed manner? And 2) how can new holes

be avoided while healing current holes? Accordingly,

we propose a Distributed VOronoi based Cooperation

scheme (DVOC) based on mathematical models for

k-coverage in WSNs. In DVOC, nodes cooperate in

hole detection and recovery by node movement, which

significantly saves energy by reducing message trans-

2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems

978-1-4673-9101-6/15 $31.00 © 2015 IEEE

DOI 10.1109/MASS.2015.115

73



mission and avoiding generating new holes during node

movement.

We first introduce a definition of kth generating (n-

earest) node of a critical point (i.e., Voronoi vertex), so

that as long as the kth generating node covers its critical

point, this point is k-covered. We also introduce a warm

up method to find a point’s kth generating node from

a set of nodes. Thus, simply enabling Voronoi vertex

to be monitored by its kth nearest node can achieve

k-coverage hole detection. However, their long moni-

toring distance would lead to high transmission cost. To

solve this problem, in DVOC, each node builds local k-
order VD (LVD) that enables it to find its nearby critical

point’s generating nodes and check if the generating

nodes cover this critical points. Thus, nodes cooperate

in monitoring each other’s critical points and informing

the generating nodes of uncovered critical points. We

have proven that DVOC never misses any holes if the

accuracy of the LVD is guaranteed, and it alleviates

the transmission burden for each node significantly.

“Accuracy” here means the degree that the constructed

VD approximates the actual VD. Further, in order to

avoid generating new holes during node movement, we

mathematically identify the safe area of each node,

where the node should be located to avoid new hole

generated. If a node cannot reach its destination due

to the constraint, its hole healing responsibility falls to

another kth generating node. Compared with previous

schemes, DVOC costs less for both transmission and

mechanical movement; since DVOC can avoid oscillat-

ing movement with its cooperation mechanism, it con-

verges more rapidly than previous movement schemes.

Specially, DVOC consists of three components.

1) Distributed k-coverage checking: each node first

collects location information from its neighbor nodes,

and builds a LVD, which allows it to find the critical

points of others around itself within the diagram. Then,

nodes cooperate in monitoring nearby critical points for

each other. When a node detects a hole, it informs the

generating nodes to move towards the hole.

2) Safe area identification: By transforming the k-

coverage problem to the problem that whether the

radius of circumcircle of each k-order Delaunay tri-

angle (DT) [12] formed by each critical point’s three

generating nodes is smaller than the radius of nodes’

sensing ranges, we calculates each node’s safe area.

3) Movement-based hole healing strategy: When a

sensor is informed to move a point, it calculates its safe
area using the information of its critical points retrieved

from nearby nodes. Once the sensor finds itself unable

to reach the destination due to the constraint of its safe

area, its hole healing responsibility falls to the point’s

another generating node (sensor).

The rest of this paper is organized as follows. Section

II presents related work. Section III introduces the

models for the coverage problem and presents the

movement-assisted scheme for detecting and healing

coverage holes. Section IV presents a performance e-

valuation of DVOC in comparison with several previous

schemes. The final section concludes with a summary

of contributions and discussions on further research

work.

II. RELATED WORK

Over the past years, intensive research efforts have

been devoted to the study of the coverage problem

(including hole detection and hole healing) in WSNs

and VD has been served as a very useful tool to solve

this problem [2], [4], [5]. In VD based schemes, each

node checks its critical points (i.e., vertices of the

Voronoi cell). Once a sensor finds holes at its critical

points, it moves to heal the holes (e.g., in [4], a node

moves to the furthest vertex of its Voronoi cell). A

challenge for VD based algorithm is how to build VD

distributively and efficiently. Some previous works have

introduced distributed algorithms for constructing 1-

order VD, which only exploits locality information,

rather than broadcasting location information to all

nodes in the WSN. For example, Sharifzadeh and

Shahabi [10] proposed a method in which a node uses

its collected location information of some nodes to

build a 1-order VD. Bash and Desnoyers [11] proposed

a method to improve the accuracy. The method begins

with an initial approximation of a local k-order Voronoi

cell at each node based on its neighboring nodes and

then leverages geographic routing primitives (e.g., GP-

SR [13]) to systematically refine the Voronoi cell and

verify its correctness. To judge whether its constructed

Voronoi cell is accurate, a node only needs to check

whether there is a node unknown by itself that is closer

to any of the cell’s vertices than itself. However, none

of previous works propose an algorithm for building

a k-order VD in a distributed manner, which requires

each node to hold much more location information

of other nodes and generates higher energy costs for

transmission and computing.

Besides VD based schemes, many other methods

have also been proposed for coverage detection and

recovery. For example, “Virtual force”, as a movement

strategy for healing coverage holes, have been used for

hole recovery [6]–[8] to adjust the distance between

any two nodes, i.e., when the distance between two

sensors is too long, the attractive force makes them

“pull” each other closer; and when the distance is too

short, the repulsive force makes them “push” each other

further. Consequently, sensor nodes are exploded from

dense regions to sparse regions or holes. However,

these methods require sensors to move over a series
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of iterations to balance “virtual forces” between them-

selves, which may take a long time to converge and

is not practical for real applications due to the high

energy costs of moving. Luo et al. [1] assumed that

the entire target region is fully covered initially, and

each node dominates a number of interest points which

are randomly and uniformly distributed throughout the

entire region. When some nodes lose their interest

points, their neighbors move to inherit them. Though

the above movement-assisted schemes have their own

merits., most of these schemes only focus on the 1-

coverage case, or require nodes to have a knowledge

of location information of all other nodes.

III. THE DESIGN OF DVOC

A. Network scenario

Consider a WSN comprised of N mobile nodes,

denoted by S = {s1, s2, ..., sN}, that are uniformly

distributed over a target field Λ to detect specified

events. The location of each si can be represented by

(xi, yi). We use the Euclidean metric to measure the

distance, use dist (si, sj) or dij to denote the distance

between any two nodes si and sj , and use B (si, sj)
to denote the perpendicular bisector of si and sj . Each

node si can sense specified events in its sensing range
modeled as a disk Di with radius Rs. We assume that

each sensor knows its location (e.g., by GPS), and the

sensor nodes are dense enough to enable the entire

network to be well connected. We also assume that

sensors can freely move in any direction in the target

region, and there is no obstruction area where sensors

cannot move in.

Variable Description

S The set of sensor nodes

S The set of sensor nodes’ locations

F The target region

si Sensor node i
pi The location of si
dij The Euclidean distance between pi

and pj , which can also be denoted

by dist (pi, pj)
Vk(pi) The 1-order Voronoi cell of pi
Vk(S) The k-order VD of S , where

S is a set of nodes

V̂ i
k (Ni) The local k order VD of si, where

Ni is a set of nodes stored in si
B (pi, pj) Perpendicular bisector of pi and pj
h (pi, pj) Use B (pi, pj) to divide F into two

half planes, and h (pi, pj) denotes

the half plane that contains pi
Gv The set of kth generating nodes of

a Voronoi vertex v.

Ni The node set stored in si’s storage

(a) 1-order VD (b) 2-order VD

Figure 1. 1-order and 2-order VDs.

Definition 3.1: A region Λ is k-covered by all nodes

S if

∀p ∈ Λ, ∃S ⊆ S, where |S| = k

s.t. p ∈
⋂
si∈S

Di. (1)

In other words, Λ is k-covered by S when every point

in Λ is covered by the sensing ranges of at least k
sensors. If there exists a point that is covered less than

k times, then this point is called a coverage hole.

B. Preliminary of VD

The VD of a collection of nodes partitions the plane

into Voronoi cells (or cells for simplicity) with one node

inside each cell. The node located in a cell is called

the cell’s generating node and the cell is called this

generating node’s cell. Every point in a cell is closer

to the cell’s generating node than to any other nodes

[4], [14]. Every vertex is called the critical point of

the generating node of the cell. Fig. 1 (a) shows an

example of a 1-order VD consisting of 8 cells.

Given any pair of nodes si, sj ∈ S, we use their per-

pendicular bisector (dotted line in the figure) to divide

the plane into two half-planes: h (si, sj) containing si
and h (sj , si) containing sj . Then, the 1-order Voronoi

cell of si, denoted by V1 (si), is the intersection of

N − 1 half-planes with all other nodes (the grey part

in Fig. 1 (a)). It can be represented by:

V1 (si) �
⋂

1≤j≤N, j �=i

h (si, sj) . (2)

The 1-order VD consists of the 1-order Voronoi cell of

each node in the network. Notice that we use V and V
to denote Voronoi cell and VD respectively.

An extension form of the 1-order VD is a k-order

VD [15]–[17], in which each cell Vk (S) is associated

with a subset of points, denoted by S (S ⊂ S, |S| = k).

Vk (S) can be calculated by

Vk (S) �
⋂

si∈S, sj∈S\S
h (si, sj) . (3)

Vk (S) is the locus of points; each node’s maximum

distance to all points in S is shorter than its distance to

any other points not in S . Fig. 1 (b) shows the 2-order

VD for the 8 points.
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Property 3.1: To detect whether an entire target

region is k-covered, it is sufficient to check whether the

vertices of each Vk (S) are k-covered by k sensors [2].

C. Distributed k-coverage checking

We order the distances between a vertex and the k
sensors in S from the 1st nearest to the kth nearest

(i.e., from the shortest distance to the longer distance).

Based on Property 3.1, if the vertex can be covered by

the kth nearest sensor, then it definitely can be covered

by other k−1 sensor in S. Thus, we define the critical
points and kth generating nodes as below, and extend

Property 3.1 to Property 3.2.

Definition 3.2: For a k-order Voronoi cell Vk, the

critical points of si ∈ S are the cell vertices whose

kth nearest node is si; si is called the kth generating
node of its critical points.

In a k-order VD, a vertex has at least three kth

generating nodes, and each kth generating node has

a set of critical points.

Property 3.2: To detect whether an entire target

region is k-covered, it is sufficient to check whether

each vertex of each Vk (S) is covered by its kth

generating node [2].

Theorem 3.1: Given a k-order Voronoi cell Vk (S),
if v is a point on a bisector edge B (si, sj) of Vk (S),
then the kth nearest nodes of v are si and sj [2].

Corollary 3.1: Given a k-order Voronoi cell Vk (S)
if v is one of its vertices which is intersected by

B (si, sj) and B (si, sl), then the kth generating nodes

of v are si, sj and sl.
Fig. 1 (b) gives an example for Corollary 3.1. In the

figure, B(si, sj) intersects with B(si, sl) at point v,

which implies that si, sj and sl are the kth generating

nodes of v. Based on Corollary 3.1, using a k-order

VD, the kth generating nodes of each vertex of a cell

can be easily found.

D. A warm up method: PVD based k-coverage check-
ing

DVOC conducts k-order VD construction and k-

coverage checking in a distributed manner. A question

is how to distribute these workload among sensors.

Before introducing LVD, we first introduce a warm up

method called PVD-based k-coverage checking, which

can be simply extended from the distributed method

for constructing 1-order VD [11]. Notice that in a k-

order VD, a node si may be associated with several

cells. We call the combination of these associated cells

si’s partial k-order VD (PVD) (Definition 3.3), and it

requires each node to be responsible for its partial k-

order VD in k-coverage checking.

Definition 3.3: Suppose S1
i , ..., Smk

i (mk =(
N − 1

k

)
) are the subsets of S with cardinality k

that contain node si. The combination of the cells

associated with these subsets is called the partial k-

order VD (PVD) of si.
In the previous distributed 1-order VD construction

methods [10], [11], each node initializes its tentative

cell using a small subset of nodes in its region. The

node is the generating node of the vertices of its

cell. The GPSR routing algorithm [13] always routes a

packet to the reachable node with minimum distance.

To increase the cell’s accuracy, the generating node si
checks if there exits a node that is closer to each of

the cell’s vertices than itself using GPSR; if yes, si
reduces the area of the tentative cell by excluding the

closer node from the cell. When each node stops cell

modification, the 1-order VD is constructed. Similarly,

to construct PVD, each node si first initializes its

tentative PVD using the known nodes (including itself)

in its storage. For each vertex of its PVD v, si first

locates v’s kth generating nodes and then probes nearby

nodes using GPSR to check if there is a node is closer

to v than the v’s current kth generating node. It then

adds such nodes into its storage. After the checking of

all vertex, si rebuilds its PVD to enhance the accuracy

of the PVD. Since a node’s PVD only consists of its

nearby nodes, each node only needs to probe its nearby

nodes for the PVD construction [10], [11]. Node si
stores the vertices and edges for its tentative PVD.

This process repeats until si cannot find closer node

to any of its PVD’s vertices. After all nodes build their

PVD, the k-order VD is constructed. Fig. 2 shows an

example for the 2-order PVD construction. In Fig. 2

(a), s1 modifies its PVD to 2 (b) when a new node s5
is closer to the PVD’s vertex v3 than s2 and s3 (s2 and

s3 are the 2nd generating nodes of v3). Similarly, in 2

(b), s1 continues to modify its PVD to 2 (c) because

a new node s6 is closer to the PVD’s vertex v6 than

s1 and s4 (s1 and s4 are the 2nd generating nodes of

v6). While in Fig. 2 (d), s10 will not be observed by

s1 through GPSR as s10 is not closer to any vertex in

the diagram than vertex’s 2nd generating nodes.

E. LVD based k-coverage checking

Accordingly, rather than relying on one central node

to collect the location information of all nodes in the

WSN and then build the k-order VD, PVD based

k-coverage checking distributes this workload among

the nodes by letting each node collect partial location

information and build its own k-order PVD in order to

build the k-order VD. Fig. 3 shows an example of a 16-

node WSN, where s1 has built its partial 2-order VD

with 7 critical points so far. We draw circles with the

critical points be the circle centers, and their distances

to s1 be the radius. Then, we draw the smallest circle

centered at s1 that embraces all these circles (denoted
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(a) (b)

(c) (d)

Figure 2. Construction of 2-order VD.

by C1). To guarantee the accuracy of its partial diagram,

s1 only needs to use GPSR to collect the location

information of some nodes inside C1, because nodes

outside of C1 are farther to the critical points than s1
and these nodes do not affect the PVD construction.

However, higher value of k leads to larger C1 and more

location information that s1 needs to collect by GPSR,

leading to a high energy cost.

Also, we observe that nodes’ partial k-order VDs

always overlap with each other. In other words, each

critical point is known by several nodes rather than

only one node. Thus, multiple nodes checking the

same critical point leads to duplicated checking and

unnecessary energy cost. Therefore, simply extending

the distributed 1-order VD construction method to a k-

order VD construction method still leads to a high en-

ergy cost, especially when k is large. It is crucial to find

an energy-efficient method to reduce the probing cost

for high accuracy. To this end, we propose a k-coverage

checking method based on local k-order VD (LVD).
LVD designates the node si closest to a critical point

of another node sj to conduct the accuracy checking

and k-coverage checking on this point. Thus, LVD

shrinks the circle where si needs to collect location

information, hence reducing GPSR probing distances

and the number of probed nodes of each node. It also

avoids unnecessary probing cost due to the overlapping.

A challenge in LVD is how to distribute the set of all

critical points in the target field to sensors so that each

critical point is only assigned to one sensor that is clos-

est to itself. We notice that a point si’s 1-order Voronoi

cell is mutually exclusive to any 1-order Voronoi cell

of other node’s location. We then define LVD as the

intersection of si’s 1-order Voronoi cell and the k-order

VD. Then, the local k-order VD of each node must be

mutually exclusive. Also, the combination of LVD form

Figure 3. LVD vs. PVD.

the intact k-order VD, which will be proved later.

Definition 3.4: Given a set of nodes Ni known by

si, the local k-order VD of a node si (denoted by

V̂ i
k (Ni)) is defined as the intersection of si’s 1-order

Voronoi cell and the k-order VD of Ni, or formally

V̂ i
k (Ni) � Vk (Ni) ∩ V1 (si) . (4)

We say a LVD V̂ i
k (Ni) is accurate if V̂ i

k (Ni) = V̂ i
k (S).

Lemma 3.1: To guarantee si’s LVD’s accuracy,

there cannot be any node unknown to si that is closer to

any of the cell’s vertex than any of the cell’s generating

nodes.

Proof: Lemma 3.1 can be easily derived from [11].

Below, we present how a node builds its LVD (Algo-

rithm 1). Similar to PVD construction, each node also

conducts the accuracy check on its identified critical

points of other nodes. Basically, it checks whether there

is a node within the circle with the critical point as the

center and the distance between the critical point and

its generating node as the radius. If yes, it additionally

considers the location of the closer node to build a more

accurate local k-order VD. We use Ni to denote the set

of location points that node si has collected. Each node

si calculates its LVD by Equ. (4).

For example, in Fig. 3, s1 builds its local k-order

VD (marked by bold lines in the center). It finds the

6 critical points within the diagram, whose generating

nodes are s2 − s7. Then, s1 only needs to probe

nodes within circle C2, which is the smallest circle

that embraces all the circles; each having a critical

point as the center and its distance with its generating

node as the radius. When s1 finds that a critical point

cannot be reached by its kth generating nodes’ sensing

ranges, s1 informs the generating nodes. Compared to

the PVD-based scheme, the LVD-based scheme reduces

the number of critical nodes that should be checked by

s1, and reduces the probing scope from circle C1 to

C2. In the following, we proves the correctness of our

LVD-based scheme in Lemma 3.2.
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Algorithm 1: Pseudo code for LVD.

input : Ni = {si} // At beginning si
only has its own location;

output: V̂ i
k ;

1 repeat
2 accuracy ← TRUE; // Denote

whether the LVD is
accurate

3 Calculate V̂ i
k based on the current Ni

(Equ. (4));

4 for each v ∈ V̂ i
k do

5 Find a kth generating node of v, say

sj ;

6 Use GPSR to probe the nearest node to

v in S/Ni, say sl;
7 if sl is closer to v than sj then
8 Add sl to Ni;

9 accuracy = FALSE;

10 until accuracy = TRUE;

Lemma 3.2: The union of all nodes’ LVDs forms

the VD and no critical points will be missed if the

accuracy of every LVD is guaranteed.

Proof: Assuming the accuracy of every local k-

order VD is guaranteed, by definition we can retrieve:

∪N
i=1V̂

i
k (Ni) = ∪N

i=1V̂
i
k (S)

= ∪N
i=1 (Vk (S) ∩ V1 (si))

= Vk (S) ∩
(∪N

i=1V1 (si)
)
= Vk (S) ∩ Λ = Vk (S)

We then compare the running time of building PVD

and LVD. Here we use the k-order VD construction al-

gorithm in [16] with time complexity O
(
k2 (N logN)

)
,

where N denotes the number of nodes in S. Due to

limitations of space, we do not introduce the details

of this algorithm. In this algorithm, whenever a new

node location is added to Ni, si needs to execute the

algorithm one more time for accuracy checking. We

denote c as the number of nodes’ locations that si needs

to collect to build a PVD. After the cth node’s location

has been probed, the algorithm for building PVD is fin-

ished. The running time equals
∑c

u=1 O
(
k2ulogu

)
=

O
(
k2c2logc

)
. Similarly, the running time of LVD can

be calculated as O
(
k2e2loge

)
, where e denotes the

number of nodes’ locations that si needs to collect

for the accuracy checking of the diagram. Since e
is always less than c, the running time of k-order

LVD construction scheme is less than that of the k-

order PVD construction scheme. Thus, LVD is more

Figure 4. 1-order DT in 2-order VD

computation- and energy-efficient, and hence is more

practical than the previous schemes.

F. Safe Area Identification

In DVOC, after nodes build their own k-order LVDs,

they collaborate to detect whether the vertices of the

cells in the diagram (i.e., critical points) are k-covered

by finding out if each vertex is covered by its kth

generating node. In previous works such as VOR [4], a

sensor node simply moves towards the Voronoi vertex

that is not covered. However, such node movements

might cause some areas to become uncovered, and

several iterations might be needed to converge when

a new hole cannot be covered by some other nodes.

Therefore, we introduce a method to enable a node to

identify its safe area that it should not move out. If the

node moves out of the safe area, it no longer covers its

critical point.

Definition 3.5: (k-order Delaunay triangle (DT)
[12]) Let S be a set of sensor nodes locations in the

plane. For si, sj , sl ∈ S, a triangle �sisjsl is a k-order

DT if the circle through si, sj , and sl has at exactly k
nodes of S inside.

Based on Corollary 3.1, in a VD, the three generating

nodes si, sj and sl of a critical point v are the kth

nearest nodes to v (i.e., the center of the circle of

�sisjsl). Therefore, in the circle of �sisjsl, there

must exist (k − 1) nodes nearer to the center of circle

than the triangle’s three vertices, which means that the

circle must contains exactly (k − 1) nodes. Therefore,

by connecting the three kth generating nodes of any

critical point in a node’s LVD, we can always get a

(k − 1)-order DT.

If the kth generating nodes’ sensing ranges covers

their critical point, then the radius of their (k − 1)-
order Delaunay triangle is smaller than their sensing

range. Consequently, the problem that whether every

point of target region is k-covered can be transformed

to the problem that whether the radius of each of such

(k − 1)-order DTs is smaller than the sensing ranges

of the kth generating nodes. In Fig. 4, s1 builds its
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Algorithm 2: Hole detection conducted by si.

input : V̂ i
k

output: [Chole, Ghole]
1 for each critical point v in V̂ i

k do
2 Find v’s kth generating nodes Gv;

3 for each node sj ∈ G do
4 if sj cannot cover v then
5 Add v to Chole;

6 Add sj to Ghole;

2-order LVD, which contains v and its 2nd generating

nodes are s2, s3 and s7. The �s2s3s7 is a 1-order DT.

In order to make the three kth generating nodes (i.e.,
three vertices of a triangle) to cover their critical point

(i.e., the center of the circle), from the law of sine and

cosine, we can derive that the relationship among the

radius of triangle’s circumscribed circle (denoted as r)

and triangle’s three edges (denoted as dij , dil and djl).
That is,

r =
dijdildjl√(

d2ij + d2jl + d2il

)2

− 2
(
d4ij + d4jl + d4il

) (5)

According to Equ. (5), we can retrieve that, any vertex

of a k-order Voronoi cell can be covered by its kth

generating nodes iff the relationship of its (k−1)-order

DT’s three edges satisfy the following condition:

Rs ≥ dijdildjl√(
d2ij + d2jl + d2il

)2

− 2
(
d4ij + d4jl + d4il

) .
(6)

Definition 3.6: (Safe area) Consider a (k−1)-order

DT �sisjsl, where si and sj are not moving, the

safe area of sk for �sisjsl is defined as the area,

where sk can be located to guarantee that the triangle’s

circumcenter is k-covered (satisfying Equ. (6)).

According to Definition 3.6 above, we calculate sl’s
safe area for �sisjsl. According to Equ. (6), we can

get that the location of sl should satisfy one of the

following two equations, where (xl, yl), (xi, yi) and

(xj , yj) represent the Cartesian coordinates of sl, si
and sj respectively:

(xl − x′ + fx)
2
+ (yl − y′ + fy)

2 ≤ Rs (7)

(xl − x′ − fx)
2
+ (yl − y′ − fy)

2 ≤ Rs (8)

(a) Single safe area (b) United safe area

Figure 5. Calculating the movement destination according to safe
area

where

x′ =
xi + xj

2
, fx = |xj − xi|

√(
Rs

dij

)2

− 1

4

y′ =
yi + yj

2
, fy = |yj−yi|

√(
Rs

dij

)2

− 1

4
×xi − xj

yj − yi
.

Note that a node can be the generating node for multiple

critical points. When node sl needs to move to cover

a hole (i.e., an uncovered critical point), it should not

move out of its safe area of another covered critical

point, that is, its location (xl, yl) should satisfy Equ. (7)

and Equ. (8). Then, we achieve Proposition 3.2, which

presents a necessary condition to k-cover a point.

Proposition 3.2: Let dij denote the distance be-

tween any pair of two vertices of a (k − 1)-order DT,

then dij ≤ 2Rs is a necessary condition to k-cover the

center of the circumcircle of the triangle.

Proof: Suppose for the sake of contradiction

that dij > 2Rs, then xl and yl have no solutions in

Equ. (7) and Equ. (8), implying that dij should be no

larger than 2Rs.

According to Equ. (7) and Equ. (8), we know that

a generating node must know the other two generating

nodes of this critical point in order to know its safe area

for their critical point. Hence, when a node si notifies

the three generating nodes that their critical point is

not covered, it also tells them the location information

(x, y) of the critical point and the other two generating

nodes. Based on Equ. (7) and Equ. (8), the node limits

its movement within its safe area when it is moving.

Previously, we consider the safe area of a node when

it belongs to only one (k − 1)-order DT. Next, we

consider the safe area of a sensor when it belongs

to multiple (k − 1)-order DTs. Suppose node si is

in a number of (k − 1)-order DTs denoted by DTi,1,

...,DTi,m and the corresponding safe area of si in the

triangles are Ai,1, ..., Ai,m, where m is the number of

the triangles. The united safe area Ai
united for si can be

calculated as Ai
united =

⋂m
j=1 Ai,j . We define coverage

rate of a WSN as the ratio of the area k-covered by
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(a) When one node cannot
move to its destination

(b) When two nodes cannot
move to their destinations

Figure 6. Cooperative movement.

given sensor nodes to the area of the entire target region

of the WSN. Finally, once the sensor finds itself unable

to reach the destination due to the constraint of its safe

area, its hole healing responsibility falls to the point’s

another generating node (sensor).

Lemma 3.3: The coverage rate of a WSN increases

monotonically with node movements if the nodes do

not break the united safe area constraint.

Proof: Consider that when a node, say si, moves

towards one hole, the area size of this hole is decreased;

whereas if si stays in the united safe area it originally is

located in, no new hole is generated. Thus, the coverage

rate is increased monotonically with node movements.

Lemma 3.3 indicates that by obeying the constraint

of the safe area, DVOC is guaranteed to converge if the

density of sensor nodes is high enough.

IV. PERFORMANCE EVALUATION

In this section, we present the experimental results

of DVOC in comparison with typical VORonoi-based

algorithm (VOR) [4], [11]. Also, we compare DVOC

with the other two typical movement-assist schemes for

full coverage in WSNs: Scan-based Movement-Assisted

Sensor Deployment (SMART) [18] and Sea Surface

Coverage (SSC) [1] on GENI Orbit testbed [19], [20].

The testbed uses a large two-dimensional grid of 400

802.11 radio nodes, which can be dynamically inter-

connected into specified topologies.

Since GENI-Orbit testbed has limited number of

nodes (less than 400 nodes), here we only take the 2-

coverage as an example for the k-coverage. The target

field is a 400m × 400m area. The number of sensors

was varied from 200 to 250. The radius of the sensing

ranges of sensors was varied from 45 to 50m. We

measured the following metrics: 1) total number of
probes 2) number of messages (includes messages for

probing, informing other nodes to move, and asking

help from partners) 3) total moving distance
Transmission Cost. Fig. 7 (a) and (b) show the trans-

mission costs between DVOC and VOR measured by

the total number of probes and messages, respectively,
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Figure 7. Transmission cost of DVOC and VOR.
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Figure 8. Total moving distance of different schemes

when the sensing range was set to 50m and the trans-

mission range was set to 70m. Both schemes require

that each node probes the locations of its surrounding

nodes for building a VD. The difference is that under

DVOC, every node needs to send messages when

finding a hole or moving to heal it. The number of

messages of DVOC includes the messages for probing

(Probe), informing other nodes to move to heal holes

(MOV), and asking for help from partners (HELP). We

did not count the number of messages forcing partner

to move (FORCE) since the number of such messages

is extremely small. For VOR, only the messages for

probing are included. From Fig. 7 (a) and (b), we find

that in both metrics, DVOC is significantly superior to

VOR. The total number of messages in VOR (all for

probing) is about 2 (range from 1.936 to 2.176) times of

that of DVOC, and the number of messages transmitted

in DVOC is only about half of VOR’s (range from

0.512 to 0.546). We also measured the proportion of

different types of messages in DVOC; on average,

probe messages constitute 98.60% (this explain why

in Fig. 7 (b) the curve of the number of probes and the

curve of the total number of messages are very close);

MOV messages constitute 1.21% and HELP messages

constitute 0.19%. The reason why DVOC has higher ef-

ficiency than VOR in terms of transmission cost is that

DVOC uses a cooperation mechanism based on a local

k-order VD, which requires less location information

than the partial k-order VD used in VOR. Admittedly,

DVOC still makes nodes communicate with each other

after the VD is built, but such communication cost is

very small compared with the cost for probing location

information.

Energy Cost and Delay. Fig. 8 (a) and (b) show
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that the total moving distance versus the number of

nodes in different schemes. From the figures, we find

that DVOC has the shortest total moving distance. On

average, the total moving distances of VOR, SMART,

and SSC are respectively 1.23, 2.45 and 6.65 times as

long as that of DVOC when the sensing range is 45m,

and are respectively 1.25, 2.08 and 8.65 times as large

as that of DVOC when the sensing range is 50m. SSC

generates a much longer total moving distance than

VOR and DVOC. This is because SSC is a cell-based

algorithm, in which every node is only able to move in

four directions and cannot move along a straight line

to the target. In contrast, VOR enables nodes to move

in all directions, leading to a shorter total moving path

than SSC. Both DVOC and VOR use VDs for hole

detection and healing. The difference between DVOC

and VOR’s movement patterns is that DVOC is a

cooperation based algorithm where each node needs

to calculate whether it will move out of its safe area
when informed to recover holes. If the destination is

outside of its safe area, the node stops moving and

asks for partners’ help in covering the hole. Though

it is possible that all the partners cannot move to their

destinations, the cooperation mechanism in DVOC can

prevent new holes from being generated in most cases.

V. CONCLUSIONS

In this paper, we propose a Distributed VOronoi-

based Cooperation Mechanism for full coverage

(DVOC). In this scheme, each node builds its own

local k-order VD and helps other nodes to detect holes

within their own diagrams. With the guarantee of the

accuracy of the local k-order VDs, DVOC can greatly

alleviate the burdens on nodes for transmission while

ensuring no holes are missed. Further, DVOC uses

a cooperation mechanism to prevent generating new

holes during node movement, which greatly increases

the efficiency of node movements. Experimental results

from GENI’s ORBIT testbed shows that DVOC has

superior performance than previous schemes in terms

of energy-efficiency and efficiency of coverage. In our

future work, we will study techniques to shorten the

moving distance to minimize the sum of all moving

paths, i.e., globally optimized paths.

VI. ACKNOWLEDGEMENT

This research was supported in part by U.S. NS-

F grants NSF-1404981, IIS-1354123, CNS-1254006,

CNS-1249603, and Microsoft Research Faculty Fellow-

ship 8300751.

REFERENCES

[1] J. Luo, D. Wang, and Q. Zhang, “Double mobility: Cov-
erage of the sea surface with mobile sensor networks.,”
in Proc. of INFOCOM, 2009.

[2] A. M.-C. So and Y. Ye, “On solving coverage problems
in a wireless sensor network using voronoi diagrams,”
in Proc. of WINE, 2005.

[3] C.-F. Huang and Y.-C. Tseng, “The coverage problem
in a wireless sensor network,” in Proc. of WSNA, 2003.

[4] G. Wang, G. Cao, and T. F. L. Porta, “Movement-
assisted sensor deployment,” in Proc. of INFOCOM,
2004.

[5] A. Ghosh, “Estimating coverage holes and enhancing
coverage in mixed sensor networks,” in Proc. of IEEE
LCN, 2004.

[6] Y. Zou and K. Chakrabarty, “Sensor deployment and
target localization based on virtual forces,” in Proc. of
INFOCOM, 2003.

[7] S. Poduri and G. Sukhatme, “Constrained coverage for
mobile sensor networks,” in Proc. of IEEE ICRA, 2004).

[8] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile
sensor network deployment using potential fields: A dis-
tributed, scalable solution to the area coverage problem,”
in Proc. of DARS, 2002.

[9] D. Niculescu, “Positioning in ad hoc sensor networks,”
in IEEE Network Volume, 2004.

[10] M. Sharifzadeh and C. Shahabi, “Supporting spatial ag-
gregation in sensor network databases,” in International
Symposium of ACM GIS, 2004.

[11] B. A. Bash and P. J. Desnoyers, “Exact distributed
voronoi cell computation in sensor networks,” in SIAM
Journal on Computing, 2007.

[12] J. Gudmundsson, M. Hammar, and M. van Kreveld,
“Higher order delaunay triangulations,” in Computation-
al Geometry: Theory and Applications, 2002.

[13] B. Kar and H. T. Kung, “GPSR: Greedy perimeter
stateless routing for wireless networks,” in Proc. of
MobiCom, 2000.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars, “Computational geometry: Algorithm and appli-
cations,” Springer, 2008.

[15] M. I. Shamos and D. Hoey, “Closest point problems,”
in Foundations of Computer Science, 1975.

[16] D. T. Lee, “On k-nearest neighbor voronoi diagram in
the plane,” in IEEE Transaction on Computers, 1982.

[17] H. Edelsbrunner, J. O. Rouke, and R. Seidel, “Con-
structing arrangements of lines and hyperplanes with
applications,” in SIAM Journal on Computing, 1986.

[18] S. Yang, M. Li, and J. Wu, “Scan-based movement-
assisted sensor deployment methods in wireless sensor
networks,” in IEEE TPDS, 2007.

[19] “GENI project.” http://www.geni.net/.

[20] “Orbit.” http://www.orbit-lab.org/.

81


