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Abstract—In cloud systems, efficient resource provisioning is
needed to maximize the resource utilization while reducing the
Service Level Objective (SLO) violation rate, which is impor-
tant to cloud providers for high profit. Several methods have
been proposed to provide efficient provisioning. However, the
previous methods do not consider leveraging the complementary
of jobs’ requirements on different resource types and job size
concurrently to increase the resource utilization. Also, by simply
packing complementary jobs without considering job size in the
job packing, it can decrease the resource utilization. Therefore,
in this paper, we consider both jobs’ demands on different
resource types (in the spatial space) and jobs’ execution time (in
the temporal space); we pack the complementary jobs (whose
demands on multiple resource types are complementary to each
other) belonging to the same type and assign them to a Virtual
Machine (VM) to increase the resource utilization. Moreover, the
previous methods do not provide efficient resource allocation for
heterogeneous jobs in current cloud systems and do not offer
different SLO degrees for different job types to achieve higher
resource utilization and lower SLO violation rate. Therefore,
we propose a Customized Cooperative Resource Provisioning
(CCRP) scheme for the heterogeneous jobs in clouds. CCRP
uses the hybrid resource allocation and provides SLO availability
customization for different job types. To test the performance of
CCRP, we compared CCRP with existing methods under various
scenarios. Extensive experimental results based on a real cluster
and Amazon EC2 show that CCRP achieves 50% higher or more
resource utilization and 50% lower or less SLO violation rate
compared to the previous resource provisioning strategies.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds have emerged as

appealing computing infrastructures, which allow customers

to rent resources such as CPU, memory (MEM in short),

storage, etc. in terms of Virtual Machines (VM) from cloud

providers. Customers benefit IaaS from being able to adjust

capacity to demand without practical limits (resource capacity)

while shifting fixed infrastructure cost to providers. In practical

scenarios, however, elasticity does not come true [1]. Most

IaaS cloud providers (e.g., Amazon EC2) offer different VM

types (e.g., small, medium, large and extra large) with a fixed

amount of CPU cores, MEM, and disk. Moreover, in cloud-

scale clusters, an increasing number of jobs are submitted for

processing. The jobs can vary significantly in size and have

diverse requirements regarding the job completion time, laten-

cy [2–5]. Short jobs (e.g., queries) are latency sensitive while

long jobs (e.g., graph analytics) can tolerate long latencies.

Therefore, efficiently processing heterogeneous workloads in

data centers and determining the most appropriate resource

provisioning strategy for the jobs with different sizes are

challenging and become important problems [6–8].
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Fig. 1: Allocate resource to jobs by leveraging complementary jobs’ require-
ments on different resource types and job size to increase resource utilization.

Continuous resources (e.g., computing resource) are

required to process jobs, and different jobs have different

resource demands. For example, some jobs such as a scientific

computing type are CPU intensive, the other jobs such as

games are MEM intensive, and even some jobs like I/O

bound jobs are storage intensive [9–11]. Therefore, allocating

the resource to multiple jobs with complementary resource

requirements can decrease resource fragmentation and thereby

increasing resource utilization.

To reduce resource waste and improve the resource uti-

lization, some works [12, 9] use packing strategies to pack

the jobs (tasks) whose demands on multiple resource types

are complementary to each other, and then allocate resources

to the jobs (tasks). The work [12] presents Tetris, a multi-

resource scheduler that packs tasks to machines based on their

requirements of all resource types. Tetris [12] packs tasks to

machines based on the alignment score (the weighted dot

product value between the vector of a machine’s available

resources and the task’s peak usage of resources). The task

with the highest alignment score is scheduled and allocated its

peak resource demands. The work [9] packs jobs to servers

to improve resource utilization and throughput. However, the

limitation of these works is that they neglect the diversities on

the size (execution time) of jobs (tasks) when they pack jobs

(tasks) together. Nevertheless, our workload analysis according

to Facebook 2009 (FB09), Facebook 2010 (FB10), Google

cluster trace data, Yahoo cluster trace, and Cloudera Hadoop

workload (Cloudera-b) is shown in Figs. 2 and 3. Figs. 2 and 3

show the distribution of jobs and resource usage based on job

size in various commercial systems. The sizes of jobs vary

significantly as shown in Fig. 2, and long jobs consume a

large portion of resource as presented in Fig. 3. Therefore, the

diversities on job size can still result in resource wastage when

the sizes of the packed jobs are different from each other.



TABLE I: Comparison of resource allocation strategies with respect to: utilization, cost, flexibility, SLO violation rate and performance unpredictability.

Strategy Utilization Cost Flexibility SLO violation rate Perf. unpredictability
Demand-based Low High Yes Low Yes
Opportunistic High Low Yes High Yes
Hybrid High Median Yes Median Yes

0%

20%

40%

60%

80%

100%

120%

Job
 dis

trib
uti

on
 

Production Workloads 

Long Short

Fig. 2: Job distribution based on job size of various commercial workloads.
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Fig. 3: The distribution of jobs’ resource consumption based on job size of
various commercial workloads.

To increase the resource utilization, the work [13] proposes

Wrangler, a system that proactively avoids situations causing

stragglers. Wrangler automatically learns to predict such a situ-

ations using a statistical learning technique based on cluster re-

source utilization counters. The work [14] presents Hopper to

dynamically allocate the resource (slots) to jobs by considering

the speculation requirements for predictable performance. The

work [15] presents High Utilization with Guarantees (HUG) to

achieve maximum attainable network utilization without sacri-

ficing the optimal isolation guarantee, strategy-proofness. The

work [16] presents CloudCache, an on-demand cache manage-

ment solution to meet VM cache demands and minimize cache

wear-out. To support on-demand cache allocation, the paper

proposes a new cache demand model, Reuse Working Set

(RWS), to capture only the data with good temporal locality.

However, these methods do not consider the job (or workload)

size for job packing and resource reallocation to improve the

resource utilization, and thus cannot fully utilize the resource.

To increase the resource utilization, we propose a

customized cooperative resource provisioning (CCRP)

scheme to process the heterogeneous jobs existing in current

cloud systems. CCRP uses the hybrid resource allocation

strategy for heterogeneous jobs. CCRP customizes SLO

availability by offering different degrees of SLO availability

for different job types so that CCRP can achieve higher

resource utilization and lower SLO violation rate. Table I

shows the comparison of resource allocation strategies with

respect to utilization, cost, flexibility, and performance

unpredictability. The hybrid resource allocation strategy has

the potential to offer the best of both worlds by allowing

users to leverage on-demand resource for the long term jobs

and opportunistic resource for short term jobs [6]. The key

contributions of this paper are summarized below.

• CCRP presents a customized cooperative resource provision-

ing scheme for high resource utilization and low SLO violation

rate. Specifically, CCRP uses the hybrid resource allocation

strategy for heterogeneous jobs by applying the opportunistic-

based resource allocation for short jobs with lower SLO

availability guarantee and the demand-based resource alloca-

tion for long jobs with higher SLO availability guarantee.

• CCRP accurately predicts the execution time of jobs and

classifies jobs into two types: short jobs and long jobs for job

packing to fully utilize the resource. Also, CCRP combines

the deep learning algorithm and the Semi-Markov Model

(SMM) model with considering the fluctuations of the amount

of unused resource to accurately predict the amount of unused

resource, and it increases the resource utilization and reduces

the SLO violation rate by avoiding resource over-provisioning

and under-provisioning.

• CCRP leverages the complementary of jobs’ requirements

on different resource types and jobs’ heterogeneity in job size,

and it packs complementary jobs whose demands on multiple

resource types are complementary to each other and allocates

them to a VM to further increase the resource utilization.

• Extensive experiments have been conducted based on a

real cluster and Amazon EC2. The results show that CCRP

achieves 50% higher or more resource utilization and 50%

lower or less SLO violation rate compared to previous

resource provisioning strategies.

The rest of this paper is organized as follows: Section II

describes the system model in CCRP. Section III presents the

system design of CCRP. Section IV presents the performance

evaluation of CCRP. Section V reviews the related work.

Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we first introduce some concepts and as-

sumptions, and then we formulate our problem based on the

concepts and assumptions. The physical machines (PMs) are

deployed in a cloud system, and their resources are allocated

to VMs (or containers). The VM capacity comprises multiple

resource types (e.g., CPU, MEM, and storage). In the cloud

system, we assume that each user can get a set of VMs [17,

15]. A user can execute as many jobs as she can fit in each VM

she gets. For long jobs, CCRP uses a demand-based resource

allocation to ensure higher availability SLO, and the VMs

allocated to users’ jobs cannot be reallocated to other jobs until

users’ jobs finish execution [18, 1]. For short jobs, CCRP uses

opportunistic-based resource allocation, and the VMs allocated

to users’ jobs can be reallocated to other jobs so that the

resource utilization can be increased. In this paper, we consider

the problem of allocating multiple resource types to users’ jobs

for achieving high resource utilization and low SLO violation

rate. To reduce resource fragmentation and increase resource

utilization, jobs with different resource intensities (e.g., a job

with high demand on CPU and a job with a high demand on

MEM) can be allocated resources in a VM together.



A. The Overall Utilization

Denoted Np as the number of PMs (servers), Nv as the

number of VMs, and Nu as the number of users in the

cloud system. Let nt be the number of jobs J = {J1, ..., Jn}
submitted at time slot t in the cloud system. Denoted s1, ..., snt

as sizes of jobs J1, ..., Jnt . Suppose there are l resource

types (e.g., CPU, MEM, storage). Different jobs have different

resource demands on different resource types. Let dij be job

Ji’s demand on resource type j (j ∈ {1, ..., l}), rij be type j
resource allocated to job Ji, and ruij be the amount of unused

type j resource allocated to job Ji. Denoted Uj,t as the type

j resource utilization at time slot t, and Ua,t as the overall

resource utilization at time slot t. Then, the type j resource

utilization at time slot t can be expressed as follows:

Uj,t =

∑nt

i=1
(rij − ruij)∑nt

i=1
rij

. (1)

The overall resource utilization at time slot t can be obtained as

Ua,t =

∑l

j=1
(wj

∑nt

i=1
(rij − ruij))∑l

j=1
(wj

∑nt

i=1
rij)

, (2)

where wj is the weight for type j resource and
∑l

j wj = 1.

The reason for setting different weights for distinct resource

types is that sometimes some resources are more important

than other resources. For example, CPU and MEM are more

important than storage because storage is not the bottleneck

resource [1]. Our goal is to maximize the overall resource

utilization, which will be shown in the formulated problem

in the following subsection.

B. The Optimization of the Overall Utilization

Problem Statement: Given a certain amount of resources

(e.g., CPU, MEM, etc.) in terms of VMs, resource demands

of each job, and resource capacity constraints of VMs, how to

allocate the VM resources to the heterogeneous jobs to achieve

higher resource utilization while avoiding SLO violation rate

as much as possible?

Let xik = {0, 1} be a binary variable representing if job Ji
is assigned to VM vk. To maximize the resource utilization,

we present an integer linear programming (ILP) model and

formulate the problem as a linear optimization problem below:

Max{Ua,t}, (3)

s.t. rij ≥ dij (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}), (4)nt∑
i=1

xik · rij ≤ Rkj (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}, k ∈ {1, ..., Nv}), (5)

xik ∈ {0, 1} (∀i ∈ {1, ..., nt}, k ∈ {1, ..., Nv}), (6)

dij ≥ 0 (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}), (7)

ruij ≥ 0 (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}), (8)

where Rkj is the remaining type j resource of VM vk.

Constraint (4) is to ensure that the allocated resource meets

each job’s demand on each resource type. Constraint (5) is to

ensure that the amount of the allocated resource from each VM

does not exceed its capacity of each resource type. Constraint

(7) is to ensure that job Ji’s demand on type j resource is

non-negative. Constraint (8) is to ensure that job Ji’s unused

type j resource at time slot t is non-negative.

The linear optimization problem can be solved by using

the CPLEX linear program solver [19]. The ILP optimization

problem is an NP-hard problem and has a high computational

complexity [20]. Therefore, we propose a heuristic method

called CCRP. CCRP first accurately estimates the run time of

jobs [4], and it then classifies the jobs into long and short jobs

based on the estimated run time of jobs. Next, CCRP lever-

ages the complementarity of jobs’ requirements on different

resource types by using a packing strategy to pack the comple-

mentary jobs together and then allocates resource to the packed

jobs. For long jobs, CCRP uses the demand-based resource

allocation to obtain higher SLO availability, and for short jobs,

CCRP uses the opportunistic-based resource allocation.

III. SYSTEM DESIGN

In this section, we introduce the design of our proposed

method CCRP. CCRP uses opportunistic-based resource al-

location strategy for short jobs with lower SLO availability

guarantee to achieve higher resource utilization, and uses

demand-based resource allocation for long jobs with higher S-

LO availability guarantee to achieve higher resource utilization

and lower SLO violation simultaneously. The reason behind

this approach is that short jobs usually can tolerate some SLO

unavailability [1], and long jobs do not.
Fig. 4 shows the architecture of the hybrid resource allo-

cation scheme of CCRP. In the left part, CCRP first predicts

if the job is short job based on the selected features shown

in Table II. The right part of Fig. 4 shows that CCRP

first packs the same type jobs. Then, CCRP uses demand-

based resource allocation for long jobs and opportunistic-

based resource allocation for short jobs. To have such a hybrid

scheme, jobs need to be classified. Below, we describe the job

classification based on jobs’ execution time.

A. Job Classification
The reasons that we prefer to use a classification model

are as follows: (i) For job classification, we care about the

approximate execution time rather than the exact execution

time. From the machine learning point of view, a classification

model usually performs better than a two-step approach (i.e.,

step 1: use the regression model to estimate the execution

time by minimizing the mean square error; step 2: compare

the estimated value with a threshold of execution time) [21].

(ii) Regression models only give the single point estimation,

and the single point estimation does not include enough

information for CCRP to make profit-aware decisions [21].

However, the classification model gives the probabilities that

a job falls in the category of short job or long job.

We use a non-linear classification model to predict jobs’

execution time. The reason is that the execution of a job may

depend on many factors in a non-linear fashion [21]. We

choose Support Vector Machine (SVM) as the classification

model. SVM [22] constructs a hyperplane or set of hyperplanes

in a high- or infinite-dimensional space, which is used for

classification, regression, or other tasks. Support Vector

Machines are widely used classifier because of its robustness

in the presence of noise, and high reported accuracy. We use

the WEKA implementation of SVM of SMO [23, 24].
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Fig. 4: Architecture of the hybrid resource allocation scheme CCRP: DRA
(demand-based resource allocation for long jobs) and ORA (opportunistic-
based resource allocation for short jobs)

1) Predicting Execution Time of Jobs: To more accurately

predict the execution time of jobs, we extract two types of

features: job-related features and system-related features [21,

13, 25]. We use the historical data from the Google trace [26]

to estimate the run time of jobs. We extract the numerical

values of the features from the historical data for predicting

the jobs’ execution time (see Table II). In the historical data,

we consider part of them as training data, and use part of

the data as testing data. To improve the accuracy, we use the

cross-validation to perform classification.

We classify jobs into two types: short jobs and long jobs.

We consider jobs with execution time no more than 10 minutes

as short jobs [2], and we consider jobs with execution time

more than 10 minutes as long jobs. To achieve high resource

utilization, CCRP packs the complementary jobs belonging to

the same type together and allocates the resource to the packed

job. Below, we introduce the resource allocation algorithm.

B. Resource Allocation Algorithm

After classifying jobs based on jobs’ execution time, CCRP

uses opportunistic-based resource allocation for short jobs,

and uses demand-based resource allocation for long jobs. In

opportunistic-based resource allocation, the resource allocated

to short jobs can be reallocated to other short jobs with a

certain probability. Below, we introduce the opportunistic-

based resource allocation for short jobs and demand-based

resource allocation for long jobs, respectively.

1) Opportunistic-based Resource Allocation: For short job-

s, the allocated resource (e.g., VM) can be reallocated to other

jobs [1]. To determine the amount of unused resource, CCRP

uses the deep neural network (DNN) to predict the amount of

unused resource of VMs. This is because the resource usage

of short jobs usually does not have certain patterns [27], and

the prediction accuracy of DNN does not rely on the existence

of resource utilization patterns [28]. However, the prediction

accuracy of other methods such as time series forecasting and

fast Fourier transform [29, 1, 30, 31], rely on the existence

of resource utilization patterns of short jobs. Also, DNN is

more accurate as its multiple hidden layers are capable of

modeling complex data with great efficiency and it has an

advantage over shallow machine learning methods [32, 33].

Below, we present the details of the method for predicting

the amount of unused resource of VMs.

a) Predicting Unused Resource Using DNN: We use

CPU as an example to illustrate the prediction of the amount

TABLE II: Features for predicting jobs’ execution time.

Feature Description
Job-related features

Required CPU Amount of CPU resource required by the job
Required MEM Amount of MEM resource required by the job
Required storage Amount of storage resource required by the job
# of tasks Number of tasks which the job contains

Priority of job The priority of the job

System-related features
CPU utilization VM’s CPU utilization
MEM utilization VM’s MEM utilization
Storage utilization VM’s storage utilization

of unused resource. Each input data contains CPU utilization

at each slot in last � slots. To build the DNN, for each

input, there are three steps: feed-forward evaluation, back-

propagation, weight update. In the feed-forward evaluation,

the neurons take input data and perform simple operations on

the data, and pass the results on to the up-layer neurons. In the

back-propagation, the neurons calculate errors at output units

and the errors are then back-propagated for each neuron in the

lower layer of the output layer. In the weight update step, the

errors are used to update the weights. Below, we introduce the

details of each step.

Feed-forward evaluation: The output of each neuron i in layer

d (called activation and denoted by φi(d)) is computed as a

function of its c inputs from neurons in the lower layer d− 1.

Let ωij(d−1, d) be the weight associated with a connection be-

tween neuron j in layer d−1 and neuron i in layer d, we have

φi(d) = F ((Σc
j=1ωij(d− 1, d) · φj(d− 1)) + bi) (9)

where bi is a bias term for the neuron. Equ. (9) is a sigmoid

function, which is a nonlinear function associated with all

neurons in the network, and is more accurate [34].

Back-propagation: For each neuron i in the output layer, the

error terms E are computed using the following equation:

Ei(dh) = (ti(dh)− φi(dh)) · F ′(φi(dh)) (10)

where t(x) is the true value of the output and F ′(x) is

the derivative of F (x). Then, these error terms are back-

propagated for each neuron i in layer d connected to v neurons

in layer d+ 1:

Ei(d) = (

v∑
j=1

Ej(d+ 1) · ωji(d, d+ 1)) · F ′(φi(d)) (11)

Weight updates: The error terms are used to update the weights

by using the following equation:

Δωij(d− 1, d) = β · Ei(d) · φj(d− 1), ∀j = 1, ..., c (12)

where β represents the learning rate parameter, and c is the

number of inputs from neurons in layer d− 1.
The process of these three steps repeats for each input

until the entire training dataset has been processed, which

constitutes a training epoch. At the end of a training epoch, the

model prediction error is computed on a held-out validation

set. Normally, the training continues for multiple epochs,

reprocessing the training data set each time, until the validation

set error converges to a low value. The deep learning algorithm

for predicting the amount of unused resource comprises two

parts: training and testing. In training, it first computes the

hidden activation. Next, it computes the reconstructed output

from the hidden activation. Then the algorithm computes the



error gradient, and it back-propagates error gradient to update

weight. In testing, the algorithm autoencodes the input and

generates the output.

b) Predicting Fluctuations of Unused Resouce using
SMM: Short jobs usually exhibit fluctuations in resource

usage [35], and the amount of unused resource of VMs

running short jobs may fluctuate from time to time. Thus,

we use a SMM to predict the fluctuations of the amount of

unused resource of VMs.
Consider a continuous time chain {C(t)}t∈[0,∞). Denote

Tn (n ≥ 1) as time of the occurrence of the nth transi-

tion occurs after t = 0. Define the duration between two

consecutive transitional epochs (say Tn−1, Tn) as the time

chain’s nth holding time hn. In the semi-Markov process, the

chain’s development after each transition is independent of the

chain’s behavior before that time, that is, the distribution of

the chain’s the holding time hn = Tn − Tn−1 is independent

of the chain’s behavior before Tn−1 but may be a function

of Cn−1 = C(Tn−1) and Cn = C(Tn). For convenience, we

denote hn = Tn − Tn−1 by hij if Cn−1 = i and Cn = j.

Denote S = {S1, ..., SM} (M = 3) as the set of states in

SMM (S1, S2, S3 represent “peak”, “center”, “valley”, respec-

tively). Let A be the transition probability matrix, and we have

A = {aij} (aij ≥ 0,

M∑
j=1

aij = 1, i, j ∈ {1, ...,M}) (13)

where M is the total number of states in the model [36].
Before state Si transits to state Sj , the process remains in Si

for a time hij (i.e., holding time). In SMM, the holding times

are positive, integer-valued, random variables. All holding

times are finite, and each holding time is no less than 1

time unite. The probability mass function Hij in hij is called

holding time mass function for the transition from state Si to

state Sj . Thus we have,

Hij(m) = Pr{hij = m}, m ∈ {1, ..., n} (14)

where n is the number of time intervals. To describe a discrete-

time semi-Markov process completely, the holding time mass

functions and transition probabilities need to be specified.

Denote B(m) as the core matrix, and Bij(m) is the probability

of the joint event that the system entered state Si at time 0
and transits to Sj after a holding time m. Thus we have,

Bij(m) = Pr((Cn = j|Cn−1 = i), (hij = m))

= Pr(Cn = j|Cn−1 = i) · Pr(hij = m)

= Aij ·Hij(m), i, j ∈ {1, ...,M},m ∈ {1, ..., n}
(15)

For simplicity, we denote Equ. (15) in congruent matrix

multiplication form by
B(m) = A⊗H(m) (16)

where the operator ⊗ means multiplication of corresponding

elements. The waiting time mass function wi(m) for the ith
state (i.e., The probability that the waiting time for the ith
state equals m) is the summation of the elements of B(m)
across the ith row

wi(m) =

M∑
j=1

Bij(m) =

M∑
j=1

AijHij(m) (17)

Thus, the probability that the waiting time for the ith state is

less than or equal to n, denoted by cwi(n), is

cwi(n) =

n∑
m=1

wi(m) (18)

Hence the cumulative probability distribution of the waiting

time can be obtained from Equ. (18). We can get the proba-

bility of the waiting time for the ith state being greater than

n (denoted by cwi(n)) by complementing cwi(n).

cwi(n) =

∞∑
m=n+1

wi(m) (19)

To know the transition in an interval, we need to compute

the interval transition probability matrix, in which the proba-

bility of a transition from state Si to state Sj in the interval

(0, n) requires that the process transits at least once during

that interval. The process may transit from Si to some other

state at time m (0 ≤ m ≤ n) first, and then makes its way to

Sj at time n by the sum of a succession of transitions. Hence,

F(n) = CW (n) +

n∑
m=0

A⊗H(m)F(n−m)

= CW (n) +

n∑
m=0

B(m)F(n−m), n ∈ {0, 1, 2...}
(20)

where CW (n) is a diagonal matrix with its ith element

equaling cwi(n). The interval transition probability F(n) can

be obtained using recursive process, and F(n) is obtained for

the interval 1 ≤ m ≤ n because H(0) = 0. In the case n = 0,

F(n) equals the following Kronecker Delta or identity matrix.

Fij(0) =

{
1, i = j
0, i �= j

(21)

Denote ξ̂ as the predicted amount of unused resource CPU

using the deep learning algorithm. Let ût+L represent the

predicted amount of unused resource CPU corrected by the

SMM model at time t for a future time t+L. If the predicted

state of the amount of unused resource falls in the peak,

CCRP increases the amount by ût+L = ξ̂ + min(hcpu −
mcpu,mcpu − lcpu), where mcpu is the average value of

unused CPU resource in the historical data, hcpu is the highest

amount of unused resource within a period, and lcpu is the

lowest amount of unused resource within a period. If the

predicted state falls in the valley, CCRP makes the adjustment

by ût+L = ξ̂ −min(hcpu −mcpu,mcpu − lcpu).

c) Prediction with Confidence Intervals: To improve the

prediction accuracy, we generate a confidence interval for the

probability that the resource will be available. The confidence

interval is an estimate of the range of values within which

the true value should lie with a certain confidence level (in

the form of probability denoted by η). The higher the confi-

dence level, the wider the confidence interval, and the more

conservative the predictions. The calculation of confidence

interval depends on the variance of the prediction errors and

the confidence level η. Let α = 1−η be the significance level.

Hence, the confidence interval is
ût+L ± σ̂ · zα

2
(22)

where ût+L is the forecast for the amount of unused resource

at time t for a future time t+ L, σ̂ is the estimated standard

deviation (SD) for the prediction errors, and zα
2

is the value

for the 100 · α
2 percentile in the standard normal distribution.
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Fig. 5: Comparison of opportunistic-based resource allocation and semi-
opportunistic-based resource allocation.

Based on the confidence interval, we adjust the predicted

amount of unused resource for time t+ L as follows

ût+L = ût+L − σ̂ · zα
2

(23)

We use the lower bound of the confidence interval in Equ. (23)

because the underestimation of the amount of unused resource

makes it conservative in reallocating allocated resources, thus

lowering the risk of SLO violations.
Based on the historical data with prediction error samples,

we calculate the prediction error in a time window as follows

δt+τ = ut+τ − ût+L, ∀τ ∈ [1, L] (24)

That is, we calculate the prediction error for each time slot in

the window τ ∈ [1, L] by subtracting the predicted amount of

unused resource at time t from the actual amount of unused

resource at each time slot.
Let ε be pre-specified prediction error tolerance and Prth be

a pre-defined probability threshold. For the predicted unused

resource with prediction error δt+L, if δt+L satisfies the

following inequality [37]

Pr(0 ≤ δt+L < ε) ≥ Prth (25)

then it can be allocated to a new arriving job.

2) Semi-opportunistic-based Resource Allocation: To im-

prove the SLO availability for short jobs, CCRP introduces

a concept called semi-opportunistic-based resource allocation

(SORA), that is, the cloud provider reallocates only the

amount of resources beyond the job’s demand to other jobs.

Current public cloud providers offer resources to users’ jobs

in the form of pre-defined VMs [38]. As users usually do

not know how much resource their jobs need, and they are

usually allocated resources up to their ceiling [1, 38]. The

actual amount of unused resource of jobs may be more

than the amount of resource allocated to users’ jobs beyond

jobs’ demands. Denote rij as the allocated amount of type

j resource to job i. Then the amount of type j resource

beyond job j’s demand is rij − dij . The amount of type j
resource that CCRP will allocate to other jobs is rij − dij . In

this case, it is more conservative in reallocating the allocated

resource as it can better ensure that the reallocation of the

resource will not affect job j’s execution and the availability

of the unused resource, and thus it reduces the chance of

the occurrence of SLO violation due to the unavailability of

the resource [1, 39]. Also, the SORA improves the resource

utilization. Fig. 5 shows the comparison of ORA and SORA.

Fig. 5(a) shows that ORA reallocates the actual amount of

unused resource of the job to other jobs, and Fig. 5(b) shows

that SORA reallocates the amount of resource beyond the

job’s demand to other jobs. From Fig. 5, we see that SORA
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Fig. 6: Comparison of packing-based resource allocation. CCRP: allocate
resource to jobs based on unused resource volume and demand volume of
jobs; DPA: allocate resource to jobs based on the dot product of the unused
resource of VMs and jobs’ resource demands.

reallocates part of the actual unused resource to other jobs,

which has more chance of ensuring higher SLO availability.

In practical scenarios, the selection of ORA and SORA can

be based on users’ SLO requirements.

3) Demand-based Resource Allocation: For long jobs, C-

CRP uses demand-based resource allocation to provide high

SLO availability. In demand-based resource allocation, the

resources (e.g., VMs) allocated to jobs cannot be reallocated to

other jobs. For demand-based resource allocation, CCRP first

classifies jobs, and then it packs the complementary jobs with

the same job type whose demands on multiple resource types

are complementary to each other together, and then finds the

VM that can best fit the resource demands of the packed jobs.

After classifying jobs, CCRP packs the complementary jobs

together to increase the resource utilization. Each job has

a dominant resource, defined as the one that requires the

most amount of resource. CCRP first packs the jobs with

complementary dominant resources such that the summation

of the deviation of the two jobs’ resource demands on each

resource type is the largest. Note that it is possible that job

Ji’s complementary job cannot be found from the list. In this

case, the job Ji solely constitutes an entity to be allocated with

resources in a VM. To find Ji’s complementary job, CCRP

calculates its deviation with every other job Jj if Jj has dif-

ferent dominate resource from Ji. The deviation is calculated

by DV (j, i) =
∑l

k=1((djk − djk+dik

2 )2 + (dik − djk+dik

2 )2).
Finally, the job with the highest deviation value is the com-

plementary job of Ji. We use an example shown in Fig. 6 to

illustrate the process of job packing in CCRP. Consider jobs

1-4 with resource requirements < 7, 0.5, 2 >, < 2, 0.5, 7 >,

< 3, 0.5, 6 > and < 7, 0.5, 1.5 >, respectively. The dominant

resource of job 1 and job 4 is CPU, and the dominant resource

of job 2 and job 3 is storage. The resource demand deviation

of job 1 and job 2 is 25, and the resource demand deviation of

job 1 and job 3 is 16. Since 25>16, job 1 and job 2 are packed

together. Similarly, job 3 and job 4 are packed together.

After packing jobs, CCRP needs to assign jobs to VMs.

To increase the resource utilization, CCRP assigns the job

entity (packed jobs or job) to a VM that on the one hand

can satisfy the job entity’s resource demand and on the other

hand can best fit its requirements. Below we introduce the

method that CCRP finds the VM for a job entity. To more

fully utilize the resource, CCRP chooses the VM that has the



least remaining unused resource (referred to as best fit VM). To

find the best fit VM, we introduce two concepts called unused

resource volume and demand volume, respectively. Denote

C∗ =< C∗
1 , ..., C

∗
l > as the vector of the maximum capacity

of each resource type among all VMs. Let R̂j = (R̂j1, ..., R̂jl)
be the amount of predicted unused resource of VM j. The

unused resource volume of VM j is obtained as follows

V OLj =

l∑
i=1

R̂ji

C∗
i

(26)

Suppose the resource demands of job entity i (job 1, job 2)

is (ri1, ..., ril). Then the demand volume of job entity i is

voli =
∑l

k=1
rik
C∗

k
. CCRP utilizes the logical operation “∧” to

check if a VM (say VM j) satisfies the resource demands of a

job entity (say job entity i). Specifically, it uses a l-bit number

to represent the result of the comparison for each resource

type, i.e, R̂jk ≥ rik (k ∈ {1, ..., l}), where “1” means true.

If R̂j1 ≥ ri1 ∧ ... ∧ R̂jl ≥ ril = 1, then VM j satisfies the

resource demands of job entity i. Then CCRP chooses the VM

that satisfies the resource demand of job entity i and has the

smallest unused resource volume as the best fit VM.

Fig. 6 illastrutes an example which compares the packing-

based resource allocation in CCRP with dot product-based

approach (DPA) [12]. In Fig. 6, for VMs, the numerical values

from top to bottom indicate VMs’ capacities, unused resource,

and used resource of different resource types (VM3’s used

resource is not shown in Fig. 6 because VM3 is an idle

VM). The dominant resource of job 1 and job 4 is CPU,

and the dominant resource of job 2 and job 3 is storage. The

maximum capacities of CPU, MEM and storage among all

VMs are C∗ =< 25, 2, 40 >. According to Formula (26),

the unused resource volumes of VMs 1-4 are 1.175, 1.15,

2.35 and 1.1, respectively. To allocate resource to job entity

(job 1, job 2), CCRP finds only VM2 and VM3 can satisfy

the resource demands of job entity (job 1, job 2). Since the

V OL2 = 1.15 < V OL3 = 2.35, job entity (job 1, job 2) will

be allocated to VM2. Similarly, only VMs 2-4 can satisfy the

resource demands on each resource type of job entity (job 3,

job 4). Since V OL4 = 1.1 < V OL2 = 1.15 < V OL3 = 2.35,

job entity (job 3, job 4) will be allocated to VM4. In DPA, to

allocate resource to job entity (job 1, job 2), DPA calculates

the dot product of the job entity’s resource demands and the

unused resource of VM2 and VM3, and they are 181 and

496.5, respectively. Since 496.5>181, DPA chooses VM3 as

the best fit VM for job entity (job 1, job 2). Similarly, 451.5 >
176 > 161 (VM3>VM2>VM4 for unused resources), but

VM3 has been allocated to job entity (job 1, job 2), DPA

chooses VM2 as the best fit VM for job entity (job 3, job 4),

and allocates job entity (job 3, job 4) to VM2. Therefore, in

this scenario, CCRP can reduce more resource fragmentation

than DPA, and CCRP thus has higher utilization than DPA.

IV. PERFORMANCE EVALUATION

In this section, we present our trace-driven

experimental results on a large-scale real cluster,

Clemson University’s high-performance computing (HPC)

TABLE III: Parameter settings.

Parameter Meaning Setting Parameter Meaning Setting
Np # of servers 30-50 h # of layers in DNN 4 [40]
Nv # of VMs 100-400 Nn # of units per layer 50
|J| # of jobs 300-1500 M # of states in SMM 3
l # of resc. types 3 α Significance level 5%-30%

Prth Prob. threshold 0.95 η Confidence level 50%-90%

resource [41], and Amazon EC2 [42], respectively.
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Fig. 7: Prediction accuracy of different
methods on a real cluster.

To show CCRP’s performance,

we compared CCRP with R-

CCR [1], CloudScale [29], D-

DA [38] and Tetris [12] in var-

ious scenarios since all these

methods share the same ob-

jective of maximizing the re-

source utilization while avoid-

ing SLO violation.

RCCR uses time series forecasting to predict the fraction

of unused resources that will almost certainly not be required

in the future based on historical resource usage patterns and

allocates the unused resource to long-term service jobs in

an opportunistic manner. CloudScale employs online resource

demand prediction and prediction error handling to adaptively

allocate the resources on PMs to VMs to achieve high resource

utilization. DDA purchases capacity for the customers, and

then re-distributes the purchased capacity among customer’s

VMs based on their demand. Specifically, DDA considers

the share value and the demand value of customer’s VMs

and allocates the aggregate amount of capacity among the

VMs. Tetris adopts DPA approach to pack tasks to machines.

Specifically, when resources on a machine become available,

Tetris first selects the set of tasks (jobs) whose peak usage of

each resource can be accommodated on that machine. Then,

for each task (job) in this set, Tetris computes an alignment

score to the machine. The task with the highest alignment

score is scheduled and allocated its peak resource demands.

However, Tetris does not have the prediction method. To

have fair comparison with Tetris, we have integrated our

prediction method to Tetris and compare the average utilization

performance.

We first deployed our testbed on the real cluster using 50

servers and then conducted experiments on the real-world

Amazon EC2 using 30 servers. The servers in the real cluster

are from HP SL230 servers (E5-2665 CPU, 64GB MEM) [41].

The servers in Amazon EC2 are from commercial product

HP ProLiant ML110 G5 servers (2660 MIPS CPU, 4GB

MEM) [7]. In both experiments, each server is set to have

1GB/s bandwidth and 720GB disk storage capacity. In both

experiments, we used the Google trace [26] which records

the resource requirements and usage of tasks every 5 minutes,

and we transformed the 5-minute trace into 20-second trace

and we set the CPU, MEM and storage consumption for

each job based on the Google trace [26]. SLO is specified

by using a threshold on the response time of a job, and the

threshold is set based on the execution time of a job in the

trace. To fully verify the performances of our method and the

other four methods, we varied the number of jobs from 300
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Fig. 8: Utilizations of different resource types vs. number of jobs of different methods on a real cluster.
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Fig. 9: Resource utilization vs. SLO vi-
olation rate on a real cluster.
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Fig. 10: SLO violation rate vs. confi-
dence levels on a real cluster.

to 1500 with step size of 300. Table III shows the parameter

settings in our experiment unless otherwise specified.

A. Experimental Results on the Real Cluster
Fig. 7 shows the prediction accuracy of different

methods. We see that the prediction accuracy follows

CCRP>RCCR>CloudScale>DDA. The prediction accuracy

in RCCR is lower than that in CCRP because CCRP takes

advantage of deep learning which can detect complex

interactions among features and learn low-level features from

minimally processed raw data. Also, the prediction accuracy

of the deep learning algorithm does not rely on the assumption

that the historical data for prediction has patterns, which

can decrease the prediction error rate generated by the data

pattern assumption. Moreover, CCRP adequately considers the

fluctuations of the amount of unused resource caused by the

bursts of jobs’ resource demands and utilizes SMM to correct

the prediction errors, which increases the prediction accuracy.

RCCA uses a time-series based forecasting of which the

accuracy relies on the existence of resource usage patterns,

to predict the unused resource, which can decrease prediction

accuracy. CloudScale has lower prediction accuracy than

CCRP and RCCR because CloudScale’s prediction accuracy

relies on the existence resource usage patterns in short

jobs. Also, CloudScale does not utilize confidence levels to

increase the prediction accuracy by increasing the probability

of making accurate prediction. DDA has the lowest prediction

accuracy because DDA’s prediction accuracy also relies on

the resource usage patterns in short jobs, and it does not have

a strategy to handle prediction errors. Also it does not utilize

confidence levels to improve the prediction accuracy.

Fig. 8 shows the relationship between the resource uti-

lization and the number of jobs. We observe that the re-

source utilization follows CCRP>RCCR>CloudScale>DDA.

The resource utilization in CCRP is higher than that in RCCR

because CCRP leverages complementarity of jobs’ demands

on different resource types and uses a job packing strategy

to reduce the resource fragmentation. Also, CCRP uses deep

learning to predict the amount of unused resource, and ad-

equately considers the fluctuations of the amount of unused

resource, and CCRP uses SMM to correct the prediction

error, and then dynamically allocates the resource to jobs to

well meet the requirement of time-varying resource demands

and decreases the probability of resource over-provisioning.

However, RCCR uses a time series forecasting to predict

the unused resource for long-term service jobs which is not

suitable for short jobs, and the prediction accuracy relies

on the existence of patterns in the training data, which can

increase the prediction error rate and thus increase the chance

of over-provisioning, decreasing the resource utilization. Also,

RCCR does not adequately consider the fluctuations of the

unused resource in short jobs, which can increase the error rate

and thereby increase the probability of over-provisioning. The

resource utilizations in CCRP and RCCR are higher than that

in CloudScale and DDA. This is because CCRP and RCCR

allocate the resource to jobs in an opportunistic approach in

which the allocated unused resource can be reallocated to

other new arriving jobs with a certain probability, which can

increase the resource utilization. DDA has the lowest resource

utilization among all the methods because DDA neglects the

fluctuations of the resource which can result in inaccurate pre-

diction of the resource and thus may lead to over-provisioning.

Also it is a demand-based resource allocation and does not

utilize the allocated but unused resource and reallocate it to

other jobs to increase the resource utilization.

To test the effects of job packing in increasing resource

utilization, we also evaluated the performance of CCRPW/oP,

a variant of CCRP in which job packing is not used, and

Tetris, a DPA job packing strategy. Specifically, we used

Equ. (2) to calculate the average resource utilization of

CPU, MEM and storage with the number of jobs varying

from 300 to 1500, respectively. Fig. 8(d) shows the average

resource utilization of different resource types in different

methods. We see that the average resource utilization follows

CCRP>Tetris>CCRPW/oP>RCCR>CloudScale>DDA. The

average resource utilization of CCRPW/oP is lower than

CCRP, Tetris and higher than RCCR. This is because both

CCRPW/oP, Tetris and CCRP allocate the resource to jobs in

an opportunistic approach, which can increase the resource

utilization. However, CCRPW/oP does not utilize the job

packing strategy to reduce the resource fragmentation, which

is considered in CCRP and Tetris, and Tetris adopts a DPA

for job packing which is less efficient than that of CCRP for

reducing resource fragmentation.

Fig. 9 shows the relationship between the overall resource

utilization and the SLO violation rate on the real cluster. We
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Fig. 11: Utilizations of different resource types vs. number of jobs of different methods on Amazon EC2.

find the overall resource utilization increases as the SLO vio-

lation rate increases because the larger the SLO violation rate,

the lower the probability that the resource over-provisioning

occurs and thus the higher the overall resource utilization.

Also, we see given an SLO violation rate, the overall resource

utilization follows CCRP>RCCR>CloudScale>DDA due to

the same reasons in Fig. 8.
Fig. 10 shows the relationship between the SLO violation

rate and the confidence levels in the real cluster. From Fig. 10,

we find the SLO violation rate decreases as the confidence

level increases. This is because the higher the confidence level,

the more conservative the prediction, and the less the amount

of resource that will be allocated to jobs in the risk of SLO

violations. Also, we find that the SLO violation rate follows

CCRP<RCCA<CloudScale<DDA. This is because CCRP u-

tilizes deep learning to accurately predict the amount of unused

resource. Also, CCRP adequately considers the fluctuations of

the amount of unused resource which can result in prediction

errors and further lead to SLO violation, and uses SMM model

to correct the prediction errors. RCCA uses a time-series based

forecasting to predict the unused resource with confidence

interval prediction and error correction, which can decrease

SLO violation probability. CloudScale uses a prediction error

handling to correct prediction errors and perform online adap-

tive padding to avoid overestimation errors. However, DDA

does not have a strategy to handle prediction errors.
B. Experimental Results on Amazon EC2

Fig. 11 shows the relationship between the resource u-

tilization and the number of jobs on Amazon EC2. Simi-

larly, we see the resource utilization increases as the num-

ber of jobs increases, and the resource utilization fol-

lows CCRP>RCCR>CloudScale>DDA due to the same

reasons explained in Fig. 8. By examining Figs. 11(a)-

11(c), we see that the utilizations of CPU and MEM

are higher than storage. This is because the storage is

not the bottleneck resource and has more wastage in al-

location compared to CPU and MEM, thereby has low-

er resource utilization. Fig. 11(d) shows the average re-

source utilization of different resource types. In Fig. 11(d),

we also see that the average resource utilization follows:

CCRP>Tetris>CCRPW/oP>RCCR>CloudScale>DDA due

to the same reasons explained in Fig. 8(d).
Fig. 12 shows the relationship between the overall resource

utilization and the SLO violation rate on Amazon EC2. Fig. 12

mirrors Fig. 9 due to the same reasons. Fig. 13 shows the

relationship between the SLO violation rate and the confidence

level on Amazon EC2. We also find that the SLO violation
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Fig. 12: Resource utilization vs. SLO
violation rate on Amazon EC2.
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Fig. 13: SLO violation rate vs. confi-
dence levels on on Amazon EC2.

rate decreases as the confidence level increases and the SLO

violation rate follows CCRP<RCCA<CloudScale<DDA due

to the same reasons explained in Fig. 10.

V. RELATED WORK

The current resource allocation approaches used in clouds

are typically reservation-based [43] or demand-based [38].

To increase resource utilization in a cloud system, previous

works [44, 1] and product [45] provide methods of reallocating

allocated unused resources to new jobs opportunistically.

Marshall et al. [44] proposed reusing unused resources by

offering leases in an opportunistic and preemptible way with

no SLO guarantees. Amazon EC2 Spot Instances [45] offers

opportunistic resources with no SLO guarantees. Although the

above two approaches can increase the resource utilization,

they do not ensure SLOs, which affects the QoS because the

allocated resource can be preempted at any time. Recently,

Carvalha et al. [1] proposed an approach to provide a portion

of the unused resources with long-term availability SLOs. This

approach uses time series forecasting with the assumption of

the existence of resource usage patterns in short jobs. However,

this approach cannot effectively handling resource provision-

ing of short jobs because short jobs usually do not have certain

resource usage patterns. Also, it neglects the fluctuations

of the amount of unused resource caused by time-varying

resources demands of short jobs. Moreover, this method may

lead to resource wastage because it neglects jobs’ diverse

resource intensities and may cause resource fragmentation.

Many other works on resource provisioning also have been

proposed to improve the resource utilization. The works [29,

43, 38] try to improve the resource utilization by predicting the

resource demands and allocating the resources based on the

predicted demands. However, the above works do not focus

on reallocating the allocated unused resources to increase the

resource utilization.
Unlike previous works, CCRP not only considers the re-

source intensities of jobs’ resource demands but also takes

into account the diversities of jobs’ sizes for job packing;

CCRP packs the same type jobs with complementary resource



requirements to VMs to reduce the resource fragmentation

and increase the resource utilization. Moreover, CCRP predicts

the amount of allocated but unused resource using the deep

learning technique, in which the accuracy does not rely on the

existence of resource utilization patterns of short jobs. CCRP

additionally considers the fluctuations of the amount of unused

resource and uses SMM model to correct prediction errors.

Also, CCRP uses the hybrid resource allocation for heteroge-

neous jobs and customizes SLO availability for different job

types so that CCRP can achieve high resource utilization and

low SLO violation rate. Thus, our proposed method CCRP can

fully utilize the resource while reducing SLO violation rate.

VI. CONCLUSIONS

In this paper, we propose customized cooperative resource

provisioning scheme (CCRP) in clouds to increase the resource

utilization and reduce SLO violation rate by customizing SLO

availability and offering different degrees of SLO availability

for different jobs types. CCRP uses the hybrid resource

allocation strategy for the heterogeneous jobs in clouds. Also,

CCRP additionally considers the fluctuations of the amount of

unused resource and it combines the deep learning algorithm

with the SMM model to accurately predict the amount of

unused resource, and it increases the resource utilization and

reduces the SLO violation rate by avoiding resource over-

provisioning and under-provisioning. To further increase the

resource utilization, CCRP leverages the complementarity of

jobs’ requirements on different resource types and jobs’ het-

erogeneity in job size, and packs complementary jobs with the

same job type to the same VM. Our extensive experimental

results based on a real cluster and Amazon EC2 show that

our method achieves 50% higher resource utilization and 50%

lower SLO violation. Our proposed method can assist cloud

service providers in efficiently utilizing their resource.
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