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Abstract—In cloud systems, achieving high resource utilization
and low Service Level Objective (SLO) violation rate are im-
portant to the cloud provider for high profit. For this purpose,
recently, some methods have been proposed to predict allocated
but unused resources and reallocate them to long-running service
jobs. However, the accuracy of their prediction method relies on
the existence of patterns in jobs’ resource utilization. Therefore,
these methods cannot be used for short-lived jobs, which usually
do not have certain patterns but exhibit frequent fluctuations
in resource requirements. Also, these methods may result in
resource fragmentation and lead to low resource utilization
because they neglect job resource intensity in multi-resource
allocation and may allocate much more resources to jobs. To
handle this problem, we propose a Cooperative Opportunistic
Resource Provisioning scheme (CORP) for short-lived jobs.
CORP uses the deep learning method to predict the amount
of temporarily-unused resource of each short-lived job. It also
predicts the fluctuations of the amount of unused resource using
Hidden Markov Model, and adjusts the predicted amount for the
peak and valley of unused resource, and dynamically allocates
the corrected amount of resource to jobs. Further, CORP
uses a job packing strategy by leveraging complementary jobs’
requirements on different resource types and allocates such jobs
to the same VM to fully utilize unused resources, which increases
resource utilization. Extensive experimental results based on a
real cluster and Amazon EC2 show that CORP achieves high
resource utilization and low SLO violation rate compared to
previous resource provisioning schemes.

I. INTRODUCTION

Cloud computing, as a paradigm for the on-demand pro-
vision of virtualized resources, attracts many interests. Cloud
providers typically offer resources for leasing with elastic in-
frastructure as a service (IaaS) paradigm. In order to maximize
the profit, the cloud provider aims to achieving high resource
utilization and low Service Level Objective (SLO) violation
rate, which, however, are mutually contradictory to each other.
Higher resource utilization (i.e., lower allocated resources
to jobs) leads to lower SLO violation rate and vice versa.
Although the elastic and on-demand nature of cloud computing
enables cloud users to meet their dynamic and fluctuating
demands (i.e., low SLO violation rate) with minimal man-
agement overhead, users usually are allocated more resources
than their jobs’ demand, resulting in resource wastage [1], [2].

Currently, the resource allocation in a cloud is either
reservation-based or demand-based to achieve low SLO viola-
tion rate. In reservation-based resource allocation, the cloud
reserves resources for each user [3]. In demand-based re-
source allocation, the cloud imposes a small resource ceiling
for each user, allows users to scale on demand, and copes
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Fig. 1: Allocate resource to jobs by leveraging complementary jobs’ require-
ments on different resource types to increase resource utilization.

with workload variations [4]. Reserved resources ensure long-
term availability (e.g., over a year), and on-demand resources
ensure short-term availability (e.g., hours) [5]. A user usually
does not fully utilize the reserved resources or the imposed
ceiling. Even if its peak resource demand reaches the reserved
resources or the imposed ceiling, its average resource require-
ment is much lower than the peak usually [6]. To further
increase the resource utilization, another approach [4], [7],
[8] reallocates temporarily-unused resources to new jobs in
an opportunistic manner with no or weaker SLO guarantee.
These resources do not guarantee availability.

The method in [4] uses time series forecasting to predict
the amount of resources that will remain unused during multi-
month periods. However, such a prediction method assumes
that resource utilization pattern exists in training data of re-
source utilization of the jobs. Though this assumption may be
true for long-lived jobs, it usually does not hold true for short-
lived jobs, in spite of the fact that short-lived jobs occupy most
of the jobs in the cloud [9]. Short-lived jobs, such as short-
lived queries in the applications of Internet-of-Things and
online data processing, typically run for seconds or minutes
with a maximum timeout of 5 minutes [10]–[13]. Short-lived
jobs usually cannot tolerate long delays and must be processed
quickly. To efficiently process the short-lived jobs, continuous
provisioning of sufficient resources (e.g., computing resource)
is required. Therefore, it is important to ensure efficient
processing on short-live jobs with sufficient resource provi-
sion, while achieving high resource utilization and low SLO
violation rate. This task is challenging because short-lived jobs
usually do not exhibit certain resource utilization patterns [6]
and exhibit fluctuations in resource use [14]. Since existing
approaches cannot directly handle this challenge, we mainly
deal with this challenge in this paper. Also, the methods in [4],
[7] do not consider leveraging complementarity of jobs’ re-
quirements on different resource types (CPU-high and MEM-



low, CPU-low and MEM-high) for allocating multiple resource
types to jobs. Therefore, they may allocate much more re-
sources to different intensive jobs (e.g., CPU intensive and
MEM intensive) that have different resource demands on dif-
ferent resource types, which can easily result in resource frag-
mentation and hence low resource utilization (see Figure 1).

In this paper, we aim to design a resource provisioning
scheme for short-lived jobs in cloud with high resource
utilization while achieving low SLO violation rate. The key
challenges include: (1) how to accurately predict the amount of
temporarily-unused resources of short-lived jobs with resource
fluctuations? (2) how to more fully utilize the temporarily-
unused resources by considering diverse resource intensities
of jobs? and (3) how to allocate the resource to short-live jobs
to satisfy their time constraints. We propose a Cooperative Op-
portunistic Resource Provisioning method (CORP) for short-
lived jobs. This method can cooperate with other methods for
long-lived jobs for resource allocation in cloud systems. Since
the deep learning algorithm does not require the existence of
patterns in training data for accurate prediction [15] as its
multiple hidden layers are capable of modeling complex data
with great efficiency and it has an advantage over shallow
machine learning methods [16]–[18], we use it to predict the
amount of temporarily-unused resource. To handle the fluctua-
tions of the amount of unused resource to further increase the
prediction accuracy, we use Hidden Markov Model (HMM)
to adjust the prediction error. In resource allocation, CORP
tries to consolidates complementary jobs whose demands on
multiple resources are complementary to each other in order
to more fully utilize the unused resources (see Figure 1).

We summarize the contributions of this work below:

•CORP uses the deep learning method to predict the amount
of temporarily-unused resource of each short-lived job, and
offers an opportunistic approach to reallocate predicted unused
resources in order to increase the resource utilization.
•CORP also considers the fluctuations of the amount of the
unused resource caused by the peak and valley of jobs’
resource demands. It first predicts the fluctuations of the
amount of the unused resource using HMM, then adjusts the
predicted amount for the peak and valley of unused resource,
and dynamically allocates the corrected amount of resource to
jobs. CORP thus can adapt well to the requirement of time-
varying user demand on resources.
•CORP uses a job packing strategy by leveraging complemen-
tary jobs’ requirements on different resource types (e.g., CPU,
MEM) and allocates such jobs to the same VM to fully utilize
unused resource, which reduces the resource fragmentation
and further increases the resource utilization.

The remainder of this paper is organized as follows. Section
II describes the cooperative opportunistic resource provision-
ing problem. Section III presents the details of the system
design. Section IV presents the performance evaluation for
our method. Section V reviews the related work. Section VI
concludes this paper with remarks on our future work.

II. COOPERATIVE OPPORTUNISTIC RESOURCE
PROVISIONING PROBLEM

The physical machines (PMs) are deployed in a cloud
system, and their resources are allocated to virtual machines
(VMs). The VM capacity comprises of multiple types of
resource (e.g., CPU, MEM and storage) and their resources are
allocated to jobs based on job workloads. In this paper, we con-
sider the problem of allocating allocated but unused resources
in VMs to jobs for achieving high resource utilization and
low SLO violation rate. To increase the resource utilization,
the allocated but unused resource can be reallocated to jobs
with a certain probability. Also, for jobs with different resource
intensities (e.g., a job with high demand on CPU and a job
with a high demand on MEM), they can be allocated with
the unused resources in a VM together to reduce resource
fragmentation in order to further increase resource utilization.

TABLE I: Notations.
J A set of jobs ru

i j,t Unused type j resc. allocated to Ji at t
Ji The ith job in J U j,t System’s utilization of type j resc. at t
l # of resc. types w j,t Type j resc. wastage ratio at t

Ua,t Utilization of all resc. at t wa,t Overall resc. wastage ratio at t
Np Total # of PMs ri j,t Amount of type j resc. allocated to Ji at t
Nv Total # of VMs di j,t Ji’s demand on type j resc. at t
η Confidence level Ŷi Predicted Ji’s unused resc. using DNN
Ci j CAP of vi’s type j resc. σ̂ Estimated SD for prediction errors
nt # of jobs submitted at t Pth Prob. threshold for prediction error

Suppose there are Nv VMs, and l types of resources (e.g.,
CPU, memory, storage) in the system. We use vi to denote
the i-th VM and use Ci j to denote the capacity for the type j
resource of VM vi. Assume the time is split into slots, denoted
by T = {t1, t2, ...}. Let nt be the number of jobs submitted
at time slot t. Denote ri j,t (i ∈ {1, ...,nt}, j ∈ {1, ..., l}) as the
amount of the type j resource allocated to job Ji at time slot t,
ru

i j,t in ri j,t , as the amount of unused type j resource allocated
to job Ji at time slot t, di j,t as job Ji’s demand on type j
resource at time slot t. Therefore, ri j,t = ru

i j,t +di j,t . For easy
reference, Table I lists the main notations used in this paper.

Hence, in the system, the resource utilization of type j
resource at time slot t is

U j,t =
∑

nt
i=1 di j,t

∑
nt
i=1 ri j,t

(1)

where nt is total number of jobs submitted to the system at
time slot t. The overall resource utilization for all resources
at time slot t is

Ua,t =
∑

l
j=1(ω j ∑

nt
i=1 di j,t)

∑
l
j=1(ω j ∑

nt
i=1 ri j,t)

(2)

where l is the total number of resource types, ω j is the weight
for type j resource, and ∑

l
j ω j = 1. The reason for setting

different weights for different resource types is that sometimes
some resources are more important than other resources. For
example, CPU and MEM are more important than storage
because storage is not the bottleneck resource [4]. The type
j resource wastage ratio at time slot t is

w j,t =
∑

nt
i=1(ri j,t −di j,t)

∑
nt
i=1 ri j,t

(3)

The overall resource wastage ratio for all resources at time
slot t is

wa,t =
∑

l
j=1(ω j ∑

nt
i=1(ri j,t −di j,t))

∑
l
j=1(ω j ∑

nt
i=1 ri j,t)

(4)



CORP tries to pack jobs to allocated VMs as much as
possible by minimizing the overall resource wastage ratio wa,t
in Equ. (4), and if CORP cannot pack all jobs to allocated
VMs, then CORP allocates the unallocated VMs to jobs.

Our objective is to minimize wa,t , which will be shown in
our formulated problem below.
A. Objective

Our problem of the VM resource allocation to jobs can be
stated as follows.

Problem Statement: Given a certain amount of resources
(e.g., CPU, MEM, etc.), resource demands of each job, re-
source capacity constraints of VMs, how to allocate the VM
resources to jobs to achieve high resource utilization while
avoiding SLO violations as much as possible?

The resource allocation problem in our work is an NP-
hard problem and has high computational complexity [19]–
[21]. Therefore, we propose a heuristic method called CORP,
which approximately achieves the same goal mentioned above.
Specifically, CORP first accurately predicts the amount of
temporally-unused allocated resource based on the historical
data with the consideration of the non-existence of pattern
and fluctuations of the amount of the unused resource. It then
leverages complementarity of jobs’ requirements on different
resource types, and utilizes the packing strategy to allocate the
unused resource to other jobs with a certain probability.

III. THE DESIGN OF CORP

In the following, Section III-A presents the prediction of
the amount of temporally-unused resource and Section III-B
presents the unused resource allocation algorithm.
A. Prediction Process and Resource Preemption

In this paper, we use the deep learning together with HMM
to accurately predict the temporally-unused resource with the
consideration of the fluctuations of the amount of the unused
resource, and then dynamically allocate the unused resource
to users’ jobs. We use L to denote the size of the window
(the prediction horizon). After each time period L, we use
the deep learning technique to make the predictions for the
amount of the temporally-unused resource in a time window
∆W = (t, t + L], where t is the time when the prediction
is made. After conducting the analysis of the Google trace
from our system, we chose to make the predictions for a 1
minute window because short-lived jobs typically run minutes.
We then use HMM to predict whether the amount of the
temporally-unused resource will be in the peak or valley at
t+L, based on which we adjust the predicted unused resource
(e.g., CPU) by deep learning as the final predicted amount.

As shown in Figure 2, deep neural network (DNN) uti-
lizes multiple hidden layer structure for hierarchical feature
learning. The multiple hidden layers enable the composition
of features from lower layers, giving the potential of modeling
complex data with fewer units. Compared with other machine
learning methods, deep learning has the following inherent
advantages. First, deep learning only needs the raw data for
training without requiring sufficient high quality and truly
representative past data [22], [23]. Also, deep learning has
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Fig. 2: Deep neural network.

better accuracy in many applications [24], [25], so it can more
accurately predict the real resource demands with the same
given past data. More importantly, deep learning does not
require that the historical data must have patterns, which is
required by the methods like fast Fourier transform [4], [26].

The prediction process of the amount of unused resource
consists of three parts: 1) predicting the amount of unused re-
source using deep learning with HMM; 2) Prediction with con-
fidence intervals; 3) Probabilistic-based resource preemption.

1) Predicting Unused Resource:
a) Predicting Unused Resource Using Deep Learning:

We use CPU as an example to illustrate the prediction of
the amount of unused resource using deep learning. Each
input data contains CPU utilization of a job at each slot in
last 4 slots. To build the DNN, for each input, there are
three steps: feed-forward evaluation, back-propagation, weight
update. Below, we introduce the details of each step.
Feed-forward evaluation: The output of each neuron i in layer
d (called activation, denoted by gi(d)) is computed as a func-
tion of its c inputs from neurons in the lower layer d−1. Let
wi j(d− 1,d) be the weight associated with a connection be-
tween neuron j in layer d−1 and neuron i in layer d, we have

gi(d) = F((Σc
j=1wi j(d−1,d) ·g j(d−1))+ ei) (5)

where ei is a bias term for the neuron. Equ. (5) is a sigmoid
function, which is a nonlinear function associated with all
neurons in the network, and is more accurate [27].
Back-propagation: For each neuron i in the output layer, the
error terms E are computed using the following equation:

Ei(dh) = (ti(dh)−gi(dh)) ·F ′(gi(dh)) (6)

where t(x) is the true value of the output and F ′(x) represents
the derivative of F(x). Next, these error terms are back-
propagated for each neuron i in layer d connected to m neurons
in layer d +1 summed as follows:

Ei(d) = (
m

∑
j=1

E j(d +1) ·w ji(d,d +1)) ·F ′(gi(d)) (7)

Weight updates: The error terms are used to update the weights
by using the following equation:

∆wi j(d−1,d) = µ ·Ei(d) ·g j(d−1), ∀ j = 1, ...,c (8)

where µ represents the learning rate parameter, and c is the
number of inputs from neurons in layer d−1.

The process of these three steps is repeated for each input
until the entire training dataset has been processed, which
constitutes a training epoch. At the end of a training epoch, the
model prediction error is computed as a held-out validation set.
Basically, the training continues for multiple training epochs,
processing the training data set each time, until the validation
set error converges to a low value. Finally, the DNN is built.



The deep learning algorithm for predicting the amount
of unused resource is comprised of two parts: training and
testing. For training, it first computes the hidden activation.
Next, it computes the reconstructed output from the hidden
activation. Then the algorithm computes the error gradient, and
it back-propagates error gradient to update weight. For testing,
the algorithm autoencodes the input and generates the output.

After the training, the DNN is built. To predict the unused
resource of a job at time t +L, we input CPU utilization of a
job at each slot in last4 slots to the DNN, and the output is the
amount of unused CPU resource of the job. The deep learning
algorithm predicts the amount of unused resources of each
job Ji in a time period, denoted by Ŷi = (r̂i1, ..., r̂il), where r̂i j
denotes the predicted amount of unused type j resource of job
Ji. The resource usage of short-lived jobs sometimes fluctuates;
it reaches a peak and a valley sometimes [26], which makes the
actual amount of unused resource under fluctuations cannot be
accurately predicted. To handle this problem, CORP then uses
the HMM model to predict the peak and valley occurrences of
the unused resource for prediction error correction. We present
the details of the HMM model below.

b) Predicting Fluctuations of Unused Resource Using
HMM: We use CPU as an example to illustrate the pro-
cess, and the method can be directly applied to other re-
source types. Given a set of historical data, let maxcpu, mcpu
and mincpu be the maximum amount, average amount and
minimum amount of unused CPU resource in the histori-
cal data, respectively. We split the interval [mincpu,maxcpu]
into 3 subintervals: [mincpu,mincpu + 1

2 (mcpu − mincpu)],
(mincpu+

1
2 (mcpu−mincpu),mcpu+

1
2 (maxcpu−mcpu)), [mcpu+

1
2 (maxcpu−mcpu),maxcpu]. We call these three parts as peak,
center, valley, respectively, which are used to categorize the
observation symbols of the HMM model. The correspond-
ing (hidden) states that determine the observation symbols
are over-provisioning (OP), normal-provisioning (NP), under-
provisioning (UP), respectively (see Figure 3) [28].

Denote S = {S1, ...,SH} (H = 3) as the set of states, qt
as the state at t, and Q = q1q2...qT as a state sequence. Let
V = {1, ...,M} (M = 3) be the set of possible observation
symbols per state, and O= {O1, ...,OT} (Oi ∈V, ∀i = 1, ...,T )
be the observation sequence, where M is the number of
observation symbols1 (1,2,3 represent “peak”, “center”
and “valley” regions, respectively) and T is the length of
observation sequence. To determine the observation symbols,
we consider the time interval between two consecutive
observation time slots j and j + 1 ( j = 1, ...,T − 1) as a
window, and we divide the window into L−1 subwindows. Let
∆ j be the difference between the maximum amount of unused
resource and the minimum amount of unused resource in the
window. If ∆ j falls in [mincpu,mincpu+

1
2 (mcpu−mincpu)], then

we consider the observation symbol at j+ 1 is valley; if ∆ j
falls in (mincpu+

1
2 (mcpu−mincpu),mcpu+

1
2 (maxcpu−mcpu)),

then we consider the observation symbol at j + 1 is center;

1The number of states H does not necessary equal the possible observation
symbols per state M, and the HMM model in our work is a special case.
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otherwise, we consider the observation symbol at j + 1 is
peak. Then, the state transition probability matrix is

A = {ai j} (ai j = P{qt+1 = S j|qt = Si}, 1≤ i, j ≤ H) (9)

where the state transition coefficients satisfy: ai j ≥ 0 and
∑

H
j=1 ai j = 1. The observation probability matrix B is

B = {b j(k)} (b j(k) = P{Ot = k|qt = S j},1≤ j ≤ H,1≤ k ≤M) (10)

where b j(k) is the probability that the observation symbol is k
given the sate at t is S j. Thus, the initial state distribution is

π = {πi} (πi = P{q1 = Si}, 1≤ i≤ H) (11)

Given the model λ = (A,B,π) and an observation sequence
O, our goal is to find the most likely state sequence. Specifical-
ly, we aim to maximize the expected number of correct states
for the HMM. We define γt(i) as the probability of being in
state Si at time t, given the observation sequence O and the
model λ :

γt(i) = P{qt = Si|O,λ} (12)
Equ. (12) can be simplified with the forward-backward vari-
ables as follows:

γt(i) = αt(i)βt(i)/P(O|λ ) (13)

where αt(i) is the forward variable defined as
αt(i) = P(O1O2 · · ·Ot ,qt = Si|λ ) (14)

where βt(i) is the backward variable defined as
βt(i) = P(Ot+1Ot+2 · · ·OT |qt = Si,λ ) (15)

Based on [29], αt(i) and βt(i) can be solved inductively.
By using γt(i), we can solve for the individually most likely

state qt at time t, as
qt = argmax0≤i≤M−1[γt(i)], 1≤ t ≤ T (16)

Equ. (16) chooses the most likely state for each t to maximize
the expected number of correct states. In implementation, we
use Viterbi algorithm to find the single best state sequence
(path), denoted by Q∗=q∗1...q

∗
L, i.e., maximizing P(Q,O|λ )

which is equivalent to maximizing P(Q|O,λ ) [29], and we
use the method in [30] to re-estimate the parameters A,B,π .

Based on the work [31], the probability distribution of the
next fluctuation observation of the amount of unused resource
can be estimated as

EPT+1(k) =
H

∑
j=1

P(qT+1 = S j|qT = q∗L) ·b j(k) (k ∈ {1, ...,M}) (17)

We consider the observation symbol which has the highest
value of EPT+1(k) as the observation symbol of the next time
T +1, that is, k|EPT+1(k)

=maxM
u=1(EPT+1(u)

).

Given the resource utilization of jobs, CORP uses HMM
to predict the fluctuations of the amount of unused resource
(i.e., peak, center, valley symbols) for the next time period.
Recall that we use deep learning to perform predictions
for the amount of temporally-unused resource at the end
of each window L, denoted by Ŷj. Then, we use HMM to



predict the fluctuations of the amount of unused resource and
adjusts the predicted amount accordingly. We use ût+L to
represent the predicted unused resource with prediction error
correction at time t for a future time t + L. Specifically, if
the predicted observation symbol of unused CPU resource
falls in the valley, CORP reduces the predicted amount by
ût+L = r̂ j1 −min(hcpu −mcpu,mcpu − lcpu) (suppose the first
resource type in Ŷj is CPU), where mcpu is the average value
of unused CPU resource in the historical data, hcpu is the
highest amount of unused resource within a period, and lcpu is
the lowest amount of unused resource within a period. If the
predicted unused CPU resource falls in the peak, CORP makes
the adjustment by ût+L = r̂ j1 +min(hcpu−mcpu,mcpu− lcpu).
The reasons for using min(hcpu−mcpu,mcpu− lcpu) to correct
overestimation (or underestimation) errors are as follows. First,
hcpu−mcpu and mcpu− lcpu indicate the deviation between the
amount of unused resource in peak and the average of the
unused resource, and the amount of unused resource in valley
and the average of unused resource. The predicted amount
may be close to mcpu. Therefore, such adjustment can make
the predicted unused resource closer to the actual amount of
unused resource if it is in the peak or valley. Second, we use
min because it is more conservative for ensuring sufficient
resource being able to allocated to jobs.

2) Prediction with Confidence Intervals: To ensure the
accuracy of the prediction, we use a confidence interval for the
probability that the resource will be available. The confidence
interval is an estimate of the range of values within which
the true value should lie with a certain confidence level
(in the form of probability denoted by η). The higher the
confidence level, the wider the confidence interval, and the
more conservative the predictions. The confidence interval
calculation depends on the variance of the prediction errors
and the confidence level η . Let θ = 1−η be the significance
level. The confidence interval is

[ût+L− σ̂ · z θ

2
, ût+L + σ̂ · z θ

2
] (18)

where ût+L is the forecast for unused resource at time t for a
future time t +L, σ̂ is the estimated standard deviation (SD)
for the prediction errors, and z θ

2
is the value for the 100 · θ

2
percentile in the standard normal distribution.

Based on a given confidence interval, the predicted amount
of unused resource for time t +L is adjusted as follows

ût+L = ût+L− σ̂ · z θ

2
(19)

We use the lower bound of the confidence interval in Equ. (19)
because the underestimation of the unused resource makes it
conservative in reallocating allocated resources, thus avoiding
SLO violations.

Based on the historical data with prediction error samples,
we calculate the prediction error in a time window as follows

δt+τ = ut+τ − ût+L,∀τ ∈ [1,L] (20)
That is, we calculate the prediction error for each time slot
in the window τ ∈ [1,L] by subtracting the predicted unused
resource at time t from the actual amount of unused resource
at each time slot.

3) Probabilistic-based Resource Preemption: Let ε denote
pre-specified prediction error tolerance and Pth denote a pre-
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Fig. 4: Allocate the resource of VMs to the jobs W/o and W/ packing strategy.

defined probability threshold. For a predicted temporarily-
unused resource with prediction error δt+L, if δt+L satis-
fies [32] Pr(0≤ δt+L < ε)≥ Pth (21)
then it can be allocated to a new arriving job, and we call it
as unlocked predicted unused resource.
B. Recourse Allocation Algorithm

CORP periodically predicts the allocated and unused re-
sources in each VM. For newly arriving jobs, CORP conducts
packing to pack complementary jobs, and then allocates unal-
located resources to the packed jobs based on their resource
demands. The job packing is used to avoid resource fragmen-
tation and achieve high resource utilization. In the following,
we first present an example to show the complementary job
packing, and then explain its algorithm. Then, we present
the resource allocation algorithm that reallocates unlocked
predicted unused resources to newly arriving jobs. Finally, we
present an example to show this algorithm.

Figure 4 shows an example illustrating how packing strategy
decreases the resource fragmentation and increases resource
utilization. In Figure 4(a), job 1 (CPU intensive) and job 2 (s-
torage intensive) are assigned to VM1 and VM2, respectively,
which increases VMs’ resource fragmentation. However, in
Figure 4(b), job 1 and job 2 are packed first and then assigned
to VM2, which releases VM1, and thus decreases the resource
fragmentation of VMs and increases the resource utilization.

Each job has a dominant resource, defined as the one that re-
quires the most amount of resource. CORP first packs the jobs
with complementary dominant resources such that the summa-
tion of the deviation of the two jobs’ resource demands on each
resource type is the largest. Given a list of jobs, CORP fetches
each job Ji, and tries to find its complementary job from the
list to pack with Ji. Note that it is possible that job Ji’s comple-
mentary job cannot be found from the list. In this case, the job
Ji solely constitutes an entity to be allocated with resources in
a VM. To find Ji’s complementary job, CORP calculates its
deviation with every other job J j if J j has different dominant
resource from Ji. The deviation is calculated by DV ( j, i) =
∑

l
k=1((d jk−

d jk+dik
2 )2 +(dik−

d jk+dik
2 )2). Finally, the job with

the highest deviation value is the complementary job of Ji.
After the job packing, CORP needs to assign each job entity

(packed jobs or a job) to a VM with unlocked predicted unused
resources. Among the VMs with unlocked predicted unused
resources that can satisfy the resource demand of the job
entity, we will choose the VM that has the least remaining
resources (called most matched VM) in order to more fully
utilize resources. If predicted unused resources cannot satisfy
the resource demand of the job entity, unallocated resources
in a VM will be used for the job entity using the same
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Fig. 5: Allocate unused resource to (packed) jobs with low resource wastage.

method. To find the most matched VM, we introduce a concept
called unused resource volume. Suppose the vector of the
maximum capacity of each resource type among all VMs is
C′ =<C′1,C

′
2, . . . ,C

′
l >. Assume that the amount of predicted

unused resource of VM j is R̂ j =(r̂ j1, ..., r̂ jl). Then, the unused
resource volume of VM j is calculated by

volume j =
l

∑
k=1

r̂ jk/C′k (22)

The VM satisfying the resource demand and has the smallest
unallocated volume is the most matched VM.

Figure 5 shows an example illustrating the process of
job packing and how CORP allocates the predicted unused
resource to a job entity. For VMs, the numerical values
indicate the capacities of different resource types. For jobs,
the numerical values indicate the resource demands of jobs.
Job 3, job 4, job 5 and job 6 are new arriving jobs. The
dominant resource of jobs 3 and 6 is CPU, and the dominant
resource of jobs 4 and 5 is storage. CORP first conducts job
packing. The resource demand deviation of job 3 and job 4 is
25, and that of job 3 and job 5 is 16. Since 25 > 16, job 3
and job 4 are packed together. Similarly, job 5 and job 6 are
packed together. We denote the job entities as (job 3, job 4)
and (job 5 and job 6). The maximum CPU, MEM and storage
of all VMs among both servers are C′ =< 25,2,30 >. If the
amount of unlocked predicted unused resource of VMs 1-4
are as follows: < 5,0,20 >, < 10,1,10 >, < 20,2,30 > and
< 10,1,8.5 >, respectively, based on Equ. (22), their unused
resource volumes are 0.867, 1.233, 2.8, 1.183, respectively. To
allocate resources to entity (job 3, job 4), CORP first checks if
the VMs’ predicted unused resources can satisfy the demands
on each type of resource of the entity. Then, CORP chooses
the VM that has the smallest unused resource volume to be
allocated to the job entity. In this example, VM1 and VM4
cannot satisfy its resource requirements of the packed job
(jobs 3, 4). By comparing the unused resource volumes of
VM2 and VM3, because 1.233 < 2.8, then CORP chooses
VM2 rather than VM3 and allocates its temporarily-unused
resource to the packed job (job 3 and job 4). Similarly, the
predicted unused resource of VM1 cannot satisfy the resource
requirements of the packed job (job 5, job 6). By comparing
the unused resource volumes of VM2, VM3 and VM4, because
1.183 < 1.233 < 2.8, then CORP chooses VM4 and allocates
its temporarily-unused resource to the packed job (job 5 and
job 6). The above process of allocating unused resource to
jobs also applies to the single job case.

IV. PERFORMANCE EVALUATION

In this section, we present our trace-driven
experimental results on a large-scale real cluster,

TABLE II: Parameter settings.
Parameter Meaning Setting Parameter Meaning Setting
Np # of servers 30-50 h # of layers in DNN 4 [33]
Nv # of VMs 100-400 Nn # of units per layer 50
|J| # of jobs 50-300 H # of states in HMM 3
l # of resc. types 3 θ Significance level 5%-30%
Pth Prob. threshold 0.95 η Confidence level 50%-90%

Clemson University’s high-performance computing (HPC)
resource [34], and Amazon EC2 [35], respectively.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300

CP
U

 p
re

d
ic

ti
o

n
 e

rr
o

r 
ra

te
 

Number of jobs 

DRA RCCR CloudScale CORP

Fig. 6: Prediction error rate of different
methods on a real cluster.

To show the performance
of CORP, we compared
CORP with RCCR [4],
CloudScale [26], DRA [36]
in various scenarios since all
these methods share the same
objective of maximizing the
resource utilization while
avoiding SLO violation.

RCCR uses time series
forecasting to predict the fraction of unused resources that
will almost certainly not be required in the future based on
historical resource usage patterns and allocates the unused
resource to long-term service jobs in an opportunistic manner.
CloudScale employs online resource demand prediction and
prediction error handling to adaptively allocate the resources
on PMs to VMs to achieve high resource utilization. DRA
provides the cloud customer with the abstraction of buying
bulk capacity (rather than pre-defined VM configurations
based on the peak demands of the applications). DRA first
purchases capacity for the customers, and then re-distributes
the purchased capacity among customer’s VMs based on their
demand. Specifically, DRA considers the share value and the
demand value of VMs and allocates the aggregate amount of
capacity purchased by the customers among the VMs in an
equitable manner taking into account shares and not giving
the VMs more than what they demand.

In the implementation on the real cluster, we applied for 50
nodes, and we simulated a node as a PM, and we simulated a
logic disk as a VM; in the implementation on Amazon EC2,
we applied for 30 nodes, each node is simulated as a VM
(It does not compromise the result much, though the setting
is a little different from that in the cluster). For CORP, we
first used the deep learning algorithm to predict the amount
of unused resource of jobs running on the VMs based on the
historical resource usage data from the Google trace. Next, we
used the HMM model to predict fluctuations of the amount
of unused resource of jobs, and we adjusted the predicted
amount for the peak and valley of the unused resource. Then,
we packed two jobs with complementary dominant resources
such that the summation of the deviation of the two jobs’
resource demands on each resource type is the largest (see
Section III-B). Finally, we chose the VM that has the least
remaining resources that can satisfy the resource demands of
job(s) and allocated it to the job(s) (see Section III-B) (We
know the capacity for each type of resource of a VM, and we
can know the amount of unused resources of each VM after
we get the amount of unused resource of jobs and the amount
of resource allocated to jobs). For RCCR, we first used a
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(c) Storage
Fig. 7: Utilizations of different resource types vs. number of jobs of different methods on a real cluster.

time series forecasting technique, i.e., Exponential Smoothing
(ETS), to predict the amount of unused resource of VMs.
Then we calculated confidence intervals and chose the lower
bound of the confidence interval as the predicted value for a
time window ∆W . Finally, we randomly chose a VM that can
satisfy the resource demands of a job and allocated resource
to the job without considering job packing. For CloudScale,
we first used the prediction model developed in [37] and a
discrete-time Markov chain to predict the amount of unused
resource of VMs based on historical resource usage data. Then
we extracted the burst pattern to get the padding value and
calculated the prediction errors by subtracting the predicted
amount of unused resource from the actual amount of unused
resource. Next, we used the adaptive padding that is based on
the recent burstiness of resource usage and recent prediction
errors to correct the prediction errors. Finally, we also
randomly chose a VM that can satisfy the resource demands
of the job and allocated the unallocated resource to the job
without considering job packing. For DRA, we simulated
the purchased capacity as the total amount of resource of all
VMs that are used to be allocated to jobs. For each VM, we
defined two properties: share and demand. We statically set
the share value at the time of VM creation so that the VMs
had a mix of high, medium and low shares that correspond to
a ratio of 4:2:1, respectively. We used the run-time software
to periodically estimate the amount of unused resource of
VMs based on the historical resource usage data. Then, we
redistributed the purchased capacity among different VMs
based on their shares and demands. Finally, we randomly
chose a VM that can satisfy the resource demands of the job
and allocated the unallocated resource to the job.

We first deployed our testbed on the real cluster using 50
servers and then conducted experiments on the real-world
Amazon EC2 using 30 servers. The servers in the real cluster
are from HP SL230 servers (E5-2665 CPU, 64GB memo-
ry) [34]. The servers in Amazon EC2 are from commercial
product HP ProLiant ML110 G5 servers (2660 MIPS CPU,
4GB memory) [38]. In both experiments, each server is set to
have 1GB/s bandwidth and 720GB disk storage capacity. In
both experiments, we used the trace from Google [39] which
records the resource requirements and usage of tasks every 5
minutes. Most of the jobs in the Google trace are short jobs [6].
The resource usage of long-lived jobs has some patterns, and
by using the original Google trace, the approaches without
considering the fluctuations of the amount of unused resource
may also handle the prediction of jobs’ amount of unused
resource. Therefore, we removed the long-lived jobs from
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Fig. 8: Resource utilization vs. SLO vi-
olation rate on a real cluster.
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Fig. 9: SLO violation rate vs. confi-
dence levels on a real cluster.

the Google trace because it can fully verify if CORP can
really overcome the limitations of the other approaches for
handling the prediction of the amount of unused resource of
short-lived jobs, and it thus makes the evaluation of CORP’s
performance more convincible (CORP can also achieve good
results using the original Google trace because it can handle
both long-lived and short-lived jobs with deep learning and
HMM model). We transformed the remaining of the 5-minute
trace into 10-second trace, and we set the CPU, memory
and storage consumption for each job based on the Google
trace [39]. In the trace, we considered the tasks of jobs in the
trace as short-lived jobs, the bandwidth consumption for each
short-lived job is set as 0.02 MB/s [40]. SLO is specified
by using a threshold on the response time of a job, and the
threshold is set based on the execution time of a task in the
trace. To fully verify the performances of our method and
the other three methods, we varied the number of jobs from
50 to 300 with step size of 50. Table II shows the parameter
settings in our experiment unless otherwise specified.

A. Experimental Results on the Real Cluster
We first calculated the prediction error of CPU by sub-

tracting the predicted amount of unused resource from the
actual amount of unused resource for each job. Then we
calculated the ratio of the correctly predicted jobs (the jobs
whose prediction errors are within [0,ε)) to the number of
jobs as the prediction error rate which ranges from 0 to
1. Figure 6 shows the relationship between the prediction
error rate and the number of jobs. We see that the pre-
diction error rate follows CORP<RCCR<CloudScale<DRA.
The prediction error rate in RCCR is higher than that in CORP
because CORP takes advantage of deep learning which can
detect complex interactions among features and can learn low-
level features from minimally processed raw data. Also, the
prediction accuracy of the deep learning algorithm does not
rely on the assumption that the historical data for prediction
has patterns, which can decrease the prediction error rate
generated by the data pattern assumption, and it is suitable
for short-lived jobs. Moreover, CORP adequately considers



the fluctuations of the unused resource caused by the bursts
of jobs’ resource demands and utilizes HMM model to correct
the prediction errors, which reduces the prediction error rate.
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Fig. 10: Overhead of different methods
on a real cluster.

However, RCCR uses a time
series forecasting method of
which the accuracy relies on
the existence of patterns in
resource usage [41], [42], to
predict the unused resource
for long-running service jobs,
which can increase the error
rate when the resource usage
does not have patterns. Also, RCCR does not adequately
consider the fluctuations of the unused resource of short-lived
jobs caused by their bursts of resource demands, which can
increase the error rate, and thus is not suitable for short-lived
jobs. CloudScale generates higher prediction error rate than
CORP and RCCR because CloudScale’s prediction accuracy
relies on the assumption of the existence of data patterns in the
historical data, which can increase the error rate caused by the
data pattern assumption. Although CloudScale uses a multi-
step Markov prediction to dealing with the prediction when
pattern is not found, it has limited prediction accuracy since
the correlation between the resource prediction model and the
actual resource demand becomes weaker. Also, CloudScale
does not utilize confidence levels to make appropriately-
conservative predictions and thus reduce the error rate. The
prediction error rate in DRA is higher than all the other
methods because DRA does not consider the fluctuations of
unused resource, which can increase the prediction error rate.
Also, DRA uses the run-time software to estimate the resource
periodically, the accuracy of which also relies on the existence
of patterns in the training data. In addition, DRA does not
utilize confidence levels to make appropriately-conservative
predictions and reduce the error rate.

We used Equ. (1) to calculate the resource utiliza-
tion of type j resource. Figure 7 shows the relation-
ship between the resource utilization and the number of
jobs. We observe that the resource utilization follows
CORP>RCCR>CloudScale>DRA. The resource utilization
in CORP is higher than that in RCCR because CORP lever-
ages complementarity of jobs’ demands on different resource
types and uses a job packing strategy to reduce the resource
fragmentation. Also, CORP uses deep learning to predict the
unused resource, and adequately considers the fluctuations
of short-lived jobs’ unused resource, and uses the HMM
model to correct the prediction error, and then dynamically
allocates the resource to jobs to well meet the requirement of
time-varying resource demands and decreases the probability
of resource over-provisioning, which is suitable for short-
lived jobs. However, RCCR uses a time series forecasting
to predict the unused resource for long-term service jobs
which is not suitable for short-lived jobs, and the prediction
accuracy relies on the existence of patterns in the training
data, which can increase the prediction error rate and thus
increase the chance of over-provisioning, decreasing the re-

source utilization. Also, RCCR does not adequately consider
the fluctuations of the unused resource in short-lived jobs,
which can increase the error rate and thereby increase the
probability of over-provisioning. The resource utilizations in
CORP and RCCR are higher than that in CloudScale and
DRA. This is because CORP and RCCR allocate the resource
to jobs in an opportunistic approach in which the allocated
unused resource can be reallocated to other new arriving jobs
with a certain probability, which can increase the resource
utilization. DRA has the lowest resource utilization among
all the methods because DRA neglects the fluctuations of
the resource which can result in inaccurate prediction of the
resource and thus may lead to over-provisioning. Also it is
a demand-based resource allocation and does not utilize the
allocated but unused resource and reallocate it to other jobs
to increase the resource utilization.

We used Equ. (2) to calculate the overall resource utilization
(the weighted average of the utilizations of CPU, MEM and
storage). Compared to CPU and MEM, storage is not the
bottleneck resource, hence we set the weights for CPU,
MEM and storage as 0.4, 0.4 and 0.2, respectively. We varied
the SLO violation rate by varying the probability threshold
Pth and thereby varying the percentage of jobs that have
SLO violation. Specifically, we considered the SLO violation
occurs when a job’s response time exceeds the threshold on
its response time (We assume jobs’ response time is affected
by the unavailability of resource for job processing [43].). We
recorded the overall resource utilization when the SLO vio-
lation rate (approximately) equals 5%, 10%, 15%, 20%, 25%
and 30%. Figure 8 shows the relationship between the overall
resource utilization and the SLO violation rate. We find the
overall resource utilization increases as the SLO violation rate
increases. This is because the larger the SLO violation rate,
the lower the probability that the resource over-provisioning
occurs and thus the higher the overall resource utilization.
Also, we see that given an SLO violation rate, the overall re-
source utilization follows CORP>RCCR>CloudScale>DRA
due to the same reasons in Figure 7.

Figure 9 shows the relationship between the SLO violation
rate and the confidence level on a real cluster. From Figure 9,
we find the SLO violation rate decreases as the confidence
level increases. This is because the higher the confidence
level, the more conservative the prediction, and the less the
amount of resource that will be allocated to jobs in the risk
of SLO violations. Also, we find that the SLO violation
rate follows CORP<RCCA<CloudScale<DRA due to the
same reasons in Figure 7. RCCA uses a time-series based
forecasting to predict the unused resource with confidence
interval prediction and error correction, which can decrease
SLO violation probability. CloudScale uses a prediction error
handling to correct prediction errors and perform online
adaptive padding to avoid overestimation errors. However,
DRA does not have a strategy to handle prediction errors.

We evaluated the overhead of different methods by
measuring the latency for allocating resource to 300 jobs in
each method. Figure 10 shows the latency of different methods
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(c) Storage
Fig. 11: Utilizations of different resource types vs. number of jobs of different methods on Amazon EC2.
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Fig. 12: Resource utilization vs. SLO
violation rate on Amazon EC2.
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Fig. 13: SLO violation rate vs. confi-
dence levels on Amazon EC2.

on a real cluster. In Figure 10, we see that the latency of CORP
is slightly higher than the other methods. This is because
CORP uses the DNN to predict the amount of unused resource
of jobs. The DNN has complex structure with multiple layers,
which obtains accuracy at the expense of computation
overhead and thus increases the latency a little [44]. However,
the other methods do not have such complex structure for
prediction, thus they have relatively lower latency.

B. Experimental Results on Amazon EC2
To further verify the performance of CORP, we also

compared CORP with other methods on Amazon EC2. The
servers are from commercial product HP ProLiant ML110
G5 servers (2660 MIPS CPU, 4GB memory) [38]. Each
server is set to have 1GB/s bandwidth and 720GB disk
storage capacity. Figure 11 shows the relationship between
the resource utilization and the number of jobs on Amazon
EC2. We also see the resource utilization increases as the
number of jobs increases, and the resource utilization follows
CORP>RCCR>CloudScale>DRA due to the same reasons
explained in Figure 7. By examining Figures 11(a)-11(c), we
see that the utilizations of CPU and MEM are higher than
storage. This is because the storage is not the bottleneck
resource and has more wastage in allocation compared to CPU
and MEM, thereby has lower resource utilization.
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Fig. 14: Overhead of different methods
on Amazon EC2.

Figure 12 shows the rela-
tionship between the overal-
l resource utilization and the
SLO violation rate on Ama-
zon EC2. Figure 12 mirrors
Figure 8 due to the same rea-
sons. Figure 13 shows the re-
lationship between the SLO
violation rate and the confi-
dence level on Amazon EC2. We also find that given a
confidence level, the SLO violation rate decreases as the
confidence level increases and the SLO violation rate follows
CORP<RCCA<CloudScale<DRA due to the same reasons
explained in Figure 9.

Figure 14 shows the overhead of different methods mea-
sured by the latency for allocating resource to 300 jobs on
Amazon EC2. Figure 14 mirrors Figure 10 due to the same
reasons. Comparing Figure 14 and Figure 10, we see that the
latency in Figure 14 is relatively higher than that in Figure 10.
This is because the communication overhead in Amazon EC2
is relatively higher than that in the cluster.

Our experimental results based on the real cluster and
Amazon EC2 show that CORP has the best overall perfor-
mance. This is because CORP explores the potential tradeoff
between the efficiency and computation overhead by using
deep learning and HMM to get high prediction accuracy of
unused resource and utilizing job packing together to obtain
high resource utilization.

V. RELATED WORK

To increase resource utilization in a cloud system, some
works [4], [7] and product [8] provide methods of reallocat-
ing allocated unused resources to new jobs opportunistically.
Marshall et al. [7] presented reusing unused cloud resources by
offering leases in an opportunistic and preemptible way with
no SLO guarantees. Amazon EC2 Spot Instances [8] offers
opportunistic resources with no SLO guarantees. Users can
use spot instances only if their bids exceed the spot price,
which is updated every five minutes. Recently, Carvalha et
al. [4] presented a method to provide a portion of the unused
resources with long-term availability SLOs. The method in
uses time series forecasting with the assumption that the
resource usage patterns exist in training data to predict the
unused used resource for long-term service jobs. However,
this method is not suitable for processing short-lived jobs
because such jobs usually do not exhibit certain resource
utilization patterns. Also, it fails to consider fluctuations of
unused resource caused by time-varying resource demands
of short-lived jobs. In addition, these methods may result in
resource fragmentation and lead to low resource utilization
because they neglect jobs’ resource intensity in multi-resource
allocation and may allocate much more resources to the jobs.

Many other works on resource provisioning also have been
proposed to improve the resource utilization. The works [26],
[36], [45], [46] try to improve the resource utilization by
predicting the resource demands and allocating the resources
based on the predicted demands. However, the above works
do not focus on reallocating the allocated unused resources to
increase the resource utilization.

Unlike previous works, CORP first predicts the amount
of allocated but unused resource using the deep learning
technique, in which the accuracy does not rely on the existence



of resource utilization patterns of short-lived jobs. CORP
additionally considers the fluctuations of unused resource and
uses HMM model to correct prediction errors. Also, CORP
packs jobs with complementary resource requirements to VMs
to reduce the resource fragmentation and further increase the
resource utilization. Thus our proposed method CORP can
fully utilize the resource while reducing SLO violation rate.

VI. CONCLUSIONS
In this paper, in order to increase the resource utilization

and reduce SLO violation rate, we proposed CORP for short-
lived jobs, which offers the temporarily-unused resource in an
opportunistic manner. CORP is different from previous works
in three aspects. First, using the deep learning technique, it can
more accurately predict the amount of allocated and unused
resources of short-lived jobs, which do not have resource usage
patterns. Second, it additionally considers the fluctuations of
unused resource caused by time-varying resource demands of
jobs to correct the prediction. Third, it leverages complemen-
tarity of jobs’ requirements on different resource types and
packs jobs with complementary requirements on resources
to the same VM to further increase the resource utilization.
Our extensive experimental results based on a real cluster
and Amazon EC2 show our method achieves high resource
utilization and provides high SLO guarantee. In the future,
we will further consider designing a distributed deep learning
training system to reduce the computation overhead caused
by DNN, and we will consider both short-lived and long-lived
jobs and design an efficient resource allocation strategy which
can more increase the resource utilization while reducing the
SLO violation rate. Also, we will consider the fluctuation of
the workloads, and we will use different real workloads to
fully verify the performance of our method.
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