
A Survey of Mobile Crowdsensing Techniques: A
Critical Component for The Internet of Things

Jinwei Liu, Haiying Shen, Xiang Zhang
Department of Electrical and Computer Engineering

Clemson University, Clemson, South Carolina 29634, USA
{jinweil, shenh, xzhang7}@clemson.edu

Abstract—Mobile crowdsensing serves as a critical building
block for the emerging Internet of Things (IoT) applications.
However, the sensing devices continuously generate a large
amount of data, which consumes much resources (e.g., band-
width, energy and storage), and may sacrifice the quality-of-
service (QoS) of applications. Prior work has demonstrated that
there is significant redundancy in the content of the sensed data.
By judiciously reducing the redundant data, the data size and
the load can be significantly reduced, thereby reducing resource
cost, facilitating the timely delivery of unique, probably critical
information and enhancing QoS. This paper presents a survey
of existing works for the mobile crowdsensing strategies with
emphasis on reducing the resource cost and achieving high QoS.
We start by introducing the motivation for this survey, and
present the necessary background of crowdsensing and IoT.
We then present various mobile crowdsensing strategies and
discuss their strengths and limitations. Finally, we discuss the
future research directions for mobile crowdsensing. The survey
addresses a broad range of techniques, methods, models, systems
and applications related to mobile crowdsensing and IoT. Our
goal is not only to analyze and compare the strategies proposed in
the prior works but also to discuss their applicability towards the
IoT, and provide the guidance on the future research direction
of mobile crowdsensing.

Index Terms—Mobile crowdsensing; Redundancy elimination;
Cost-effectiveness; Quality of service; Internet of things

I. INTRODUCTION

In recent years, an increasing number of sensing devices
and wireless networks emerge in our living environments,
creating the Internet of Things (IoT) integrating the cyber
and physical objects [1]–[12]. As exposed in [13], IoT will
have a high impact on potential users’ behavior because it
integrates five layer middleware architecture (i.e., applications,
service composition, service management, object abstraction
and objects) and identification, sensing and communication
technologies. Figure 1 shows the architecture of IoT (right) and
the architecture of its five layer middleware (left). According
to the Top 10 predictions of 2014 from the Gartner, IoT will
be the fast-growing, largest market potential and the most
attractive emerging economy, thereby becoming the focus of
attention in the field of networking [14].

Mobile crowdsensing refers to the wide variety of sens-
ing models in which the individuals collectively share data
and extract information to measure and map phenomena of
common interest [15], [16]. Mobile crowdsensing is emerg-
ing as a distributed paradigm, and it lies at the intersec-
tion between the IoT and the volunteer/crowd-based scheme.
Mobile crowdsensing creates a new way of perceiving the
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Fig. 1: Architecture of the Internet of Things (IoT) (right) and the
architecture of its five layer middleware (left).

world to greatly extend the service of IoT and explore a
new generation of intelligent networks, interconnecting things-
things, things-people and people-people. Usually, the mobile
crowdsensing applications are deployed on contributing nodes,
such as mobile, personal devices that can be used to sense
the physical environment and provide sensor data to mobile
application server. Recently, various kinds of applications have
been developed to realize the potential of mobile crowdsensing
throughout daily life, such as environmental quality monitor-
ing [17], [18], noise pollution assessment [19], [20], and traffic
monitoring [21].

Mobile Crowdsensing requires a large number of partic-
ipants (individuals) to sense the surrounding environment
using the sensing devices (e.g., smartphone) with built-in
sensors. It is well-known that in such a large-scale system,
the sensing devices continuously generate a huge mounts of
data (raw sensor data), which consumes much resource [22]
(e.g., bandwidth, energy, etc.). However, the sensing devices
have limited resources. Due to the limited resource, the quality
of the data collected can be even sacrificed in the scenario of
bandwidth constrained networks because of the heavy traffic
load [23], [24]. Therefore, the resource limitation imposes a
key challenge [23]–[27]. For example, images collected in
the disaster area take an important role in disaster relief, the
images collected may not be able to be uploaded in time
due to the limited bandwidth, which can incur huge cost.
Another example is that most sensing applications require
location information, however GPS, as a widely used space-
based navigation system, has a high power consumption.
This can reduce the quality of data (location information)
collected. Thus, the resource limitation always hinders the
necessary participation and widescale adaption of the targeting
applications [25].



Although mobile crowdsensing is a new emerging paradigm,
it has been applied in real applications [28], [29]. The applica-
tion of mobile crowdsensing attracts great attention from both
academic and business communities, which started investigat-
ing the commercial exploitation of mobile crowdsensing [30].
However, the adoption of mobile crowdsensing approach in
business context requires the guarantee of the quality-of-
service (QoS). Hence, QoS is one of the most important arising
issues. Therefore, QoS-driven policies are needed to deal with
the application non-functional issues to guarantee QoS.

In this paper, we review the mobile crowdsensing techniques
and challenges. Our focus is to discuss the resource limitation
and QoS (e.g., data quality) issues and solutions in mobile
crowdsensing. Apparently, a better understanding of resource
management and QoS estimation in mobile crowdsensing can
help us design a cost-effective crowdsensing system that can
reduce the cost by fully utilizing the resource and improve the
QoS for users, which manifests the significance of our survey.

Our objectives in reviewing the literature are threefold: 1) to
learn what are the problems existing in mobile crowdsensing
and how the proposed techniques have helped to develop
solutions in the past; 2) to learn the strengths and limitations
of different mobile crowdsensing techniques for smartly man-
aging the resource to achieve low cost and good QoS, and how
can we use those techniques to better solve similar problems
in the future in different paradigms such as the IoT; 3) to
provide guidance on the future research directions of mobile
crowdsensing for IoT.

The remainder of this paper is organized as follows. Section
II introduces the concepts of IoT and mobile crowdsensing.
Section III describes the strategies of mobile crowdsensing.
Section IV describes the challenges of mobile crowdsensing
and the future research directions. Section V concludes this
paper with remarks on our future work.

II. BACKGROUND

In this section, we introduce the main concepts of the IoT
and mobile crowdsensing.
A. Internet of Things

During the past 10 years, the IoT has drawn great attention
in both academia and business communities. The potential
capabilities of IoT [13] bring the interest of both academia
and business communities. IoT is expected to create a world
where all the objects around us are connected to the Internet,
and eventually, it aims at creating ‘a better world for human
beings’ [31].

The term ‘Internet of Things’ was firstly coined by
Kevin Ashton [32] in 1998. Later, the International
Telecommunication Union (ITU) formally introduced
the concept of IoT in 2005 [33]. Currently, there is no
standard definition for IoT. We use the following definition
given by the work [34] as the definition for IoT because it
characterizes the broader version of IoT.
• Definition by the work [34]: “The Internet of Things

allows people and things to be connected Anytime, Anyplace,

with Anything and Anyone, ideally using Any path/network
and Any service.”

IoT is a new emerging paradigm, and it is a very broad ver-
sion. The research into the IoT is still on the way. The poten-
tialities of the IoT enable the development of a large number
of applications in many domains. The application domains can
be primarily divided into four categories [13]: transportation
and logistics domain, healthcare domain, smart environment
(e.g., home, plant) domain, personal and social domain.
B. Mobile Crowdsensing

Mobile crowdsensing uses the sensing devices (e.g., smart-
phone), equipped with sensors, to collect data (raw sensor
data) from the surrounding environment. Mobile crowdsensing
usually requires a large quantity of participants to sense the
environment using the sensing devices. Based on the involve-
ment of participants in sensing actions, mobile crowdsensing
can be categorized as: participatory and opportunistic [35].
Mobile crowdsensing has many applications. Based on the
type of phenomenon being measured or mapped, the mobile
crowdsensing applications can be divided into three categories:
(a) Environmental application, (b) Infrastructure, and (c) So-
cial application [15].

The basic mobile crowdsensing procedure includes three
steps: data collection, data storage and data upload. Data
collection is the first phase of the mobile crowdsensing. The
strategies for data collection usually can be divided into three
categories [10]:

• All the data is collected by the user manually by controlling
the sensing devices, such as smartphone with specific appli-
cation. This approach is attention-consuming and inefficient.

• Data collection is partially controlled by the user and by
sampling, which is performed periodically. Sometimes, the
data can be collected opportunistically, i.e., when the user
opens some applications.

• Context-aware data sensing is triggered by predefined con-
text, such as a particular location or time slot. This method
releases the user from focusing on the crowdsensing tasks and
makes it practical.
Deduplication. Deduplication is a method to eliminate re-
dundant data in the data collection phase to reduce resource
cost and improve application QoS. Data deduplication is an
essential part for reducing the cost of mobile crowdsensing
implementation. As in most of computation scenarios, data
deduplication in mobile crowdsensing performs filtering and
compressing functions on the raw data collected by the sensing
device, e.g., images from the smartphone. The deduplication
is conducted on the constraint that the significance of the data
being kept. Deduplication of crowdsensing data maximally
makes use of the limited sensor storage and reduces the
bandwidth on which the data is transferred to the data center or
consumer. For example, during the data deduplication process,
data is divided into chunks with fixed size. And the first unique
chunk is stored and used to be compared with the following
ones. The duplicated chunk will be labeled and recorded using
a label in the storage. Finally, only the unique data chunks



and related labels are stored and uploaded. Thus the size of
the uploaded data is reduced and the bandwidth consumption
will be reduced.

As the size of the data to be processed increases rapidly, the
methods of deduplication developed extremely fast to meet the
requirement of the industry and research all over the world.
From the pespective of the phase at which the deduplication
occurs, the data deduplication approaches can be categorized
as real-time deduplication and post-process deduplication.

Real-time deduplication refers to hashing and compressing
the data when acquiring the data. Duplicated data acquired
by the sensing device will be detected based on the stored
data chunk. If the new data is judged as duplicated, it will
not be stored in the sensing device, neither be uploaded to
the data center. The advantage of this strategy is to lower the
required storage of local sensing devices. However, it shifts
the computation burden from the data center to the terminals.
For some commodity sensing devices like smartphones, the
real-time computation capacity is limited, so this strategy
may not be practical. Hence, the post-process strategy can be
adopted to relieve the real-time computation burden of local
sensing devices. Specifically, the data acquired is stored first
and then be processed for deduplication. The trade-off of this
method is the relative high storage requirement and the storage
overwriting risk when the storage margin is small.

III. EXISTING MOBILE CROWDSENSING STRATEGIES

In this section, we describe different mobile crowdsensing
strategies aiming to reduce the resource consumption in order
to reduce the resource cost and improve QoS.

Previous works demonstrate that there is significant redun-
dancy in the content of the data [24], [36]. In many cases,
sensors are likely to collect very similar kinds of data from
related sensors [36]. Thus, it is important and necessary to
eliminate the redundant data, which on the one hand can
reduce the resource consumption and thus reduce the cost
(e.g., bandwidth cost, energy cost, etc.), and on the other
hand can improve the QoS of timely information delivery
by reducing the traffic load. One of the key challenges here
however, is detecting ‘what data is similar’. Another key
challenge is how to eliminate the similar data while ensuring
high QoS (e.g., without compromising the quality of the data,
timely delivery of valuable data). To handle the problem
caused by limited available resources, many methods have
been proposed. Below, we present a review of previously
proposed strategies.
A. Different Mobile Crowdsensing Strategies for Reducing
Resource Cost

Aggarwal et al. [36] discussed real-time algorithms for
reducing the volume of the data collected in sensor networks
by determining the functional dependencies between sensor
streams efficiently in real time, and actively collecting the
data only from a minimal set of sensors. Hua et al. [23]
presented a near-real-time and cost-effective solution under
cloud assisted disaster environment. SmartEye [23] leverages
two main methods, semantic hashing and space-efficient filters

to aggregate the flows with similar features and provide
communication services for the aggregated flow.

In bandwidth constrained network, Dao et al. [24] intro-
duced a method focusing on recognizing the similar contents in
images and videos, by leveraging the metadata uploaded first
to distinguish the similarity of the data. According to their
experimental results on a testbed and the simulation results
using NS3, the rate of successful similarity detection is up to
70%. A number of researchers also dealt with the data redun-
dancy reduction by detecting the similarity among the data,
such as images or videos. For example, Weinsberg et al. [37]
proposed a framework called CARE, which eliminates the
redundancy of the image for transferring data with constrained
bandwidth while maintaining the quality of the service. In
comparison with the former method in [24], CARE assumes
that the infrastructure is unavailable, which is reasonable when
the disaster happens, and makes use of peer-to-peer strategy
to eliminate redundant data. In mobile platform real-time
crowdsensing, Wanita et al. [38] designed a system for col-
lecting data via instantaneously data analysis and process. To
reduce bandwidth consumption and save the energy for mobile
devices, their CAROMM is able to acquire various stream data
by mobile devices and process them based on context attached,
e.g., the location and time mark on photos, finally contributing
to the relevant data retrieval from the dataset.

Riteau et al. [39] adopted a data deduplication strategy
to reduce the storage and bandwidth consumption for the
applications which require a great deal of data to be kept and
conveyed. Based on WANs, a distributed data deduplication
method and a message-delivery model were provided. How-
ever, the semantics of the content was not considered to further
improve the performance of the approach.

To address the high energy consumption problems involved
in smartphone based crowdsensing applications, Nicholas et
al. [10] proposed an energy effective crowdsensing strategy
by taking advantage of opportunistic application run by the
users. The solution is called Piggyback CrowdSensing (PCS),
and it depends on a predictive model to find the optimal time
slot to perform the sensing task. Prediction is an effective way
to avoid meaningless cost and lower the overhead, e.g., taking
into account location information. The data (i.e., images)
from exactly the same location tend to contain the same
information. Besides, their analysis on the application specifics
can also contribute to the overall cost-reduction. Gorlatova
et al. [26] presented solutions on estimating harvested en-
ergy from acceleration records. In order to characterize the
energy availability related to particular human behaviors, the
work [26] analyzes a motion dataset with over 40 participants,
and an energy allocation algorithm with accessible IoT node
solution designing has been developed and evaluated based on
the collected measurements.
B. Different Crowdsensing Strategies for Achieving Good QoS

Below, we introduce a list of methods for achieving good
QoS in mobile crowdsensing.

Xu et al. [40] proposed Compressive CrowdSensing (CC-
S) which is a framework for applying compressive sensing



techniques to mobile crowdsourcing scenarios. CCS enables
compressive sensing techniques to be applied to mobile
crowdsensing by providing significantly reduced amounts of
manually collected data and maintaining acceptable levels of
overall accuracy at the same time.

Yan et al. [41] proposed CrowdSearch for searching images
using mobile phones. CrowdSearch integrates the strategy
of automated image search into the real-time validation of
human. They combined local processing on mobile phones
and backend processing on remote servers to implement the
process of image search. By balancing accuracy and mon-
etary cost, CrowdSearch finds a trade-off between accuracy
and monetary cost and ensures user-specified deadlines for
responses to search queries simultaneously. To improve the
quality of images, CrowdSearch presents a new prediction
algorithm to determine the results needed to be validated, and
determine when and how to validate these results.

Due to the limited resource, it is a challenge to transfer a
huge amount of crowdsensed data. To address this challenge,
Wang et al. [42] proposed a framework called SmartPhoto,
to quantify the quality (utility) of crowdsensed photos based
on the accessible geographical and geometrical information
(referred to as metadata), which contains the information of the
smartphone’s orientation, location and all related parameters
of the built-in camera. With the metadata, it can be inferred
where and how the photo is taken. Also, SmartPhoto only
transmits the most useful photos. They also studied three
optimization problems on the trade-offs between photo utility
and resource constraints. Moreover, they designed efficient
algorithms with theoretical proofs of the performance of the
algorithms. Finally, by using Android based smartphones,
they implemented SmartPhoto in a testbed with techniques
designed to improve the accuracy of the collected metadata
by reducing sensor reading errors.

Xu et al. [25] studied compressive sensing under the scenar-
ios in which different samples have different costs. This work
tries to balance the minimization of the total sample cost and
the recovery accuracy, and designs Cost-aware Compressive
Sensing (CACS) for incorporating the samples’ diversity on
cost into the compressive sensing framework. The CACS has
been applied to networked sensing systems.

To maximize the aggregate data utility, Li et al. [43] studied
how to the aggregate data utility under the constraint on
budget in mobile crowdsensing. They presented a combina-
torial auction mechanism that utilizes a redundancy-aware
reverse auction framework. The auction mechanism is mainly
composed of two parts: an approximation algorithm used for
winning bids determination and a critical payment scheme.

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, we first discuss further challenges related to
crowdsensing for IoT, and then we provide guidance on the
future research trends of crowdsensing for IoT.
A. Challenges in Mobile Crowdsensing

1) Automated configuration of sensors: In traditional per-
vasive/ubiquitous computing, only a limited number of sensing

devices (e.g., sensors) are connected to the applications (e.g.,
smart farm, smart river). However, in IoT, a large number of
sensing devices are expected to be connected together over
the Internet. Therefore, the connection and configuration of
sensing devices to applications become a key challenge. It
is infeasible to connect all sensing devices manually to an
application or to a middleware [44]. An automated or at least
semi-automated process should be available to connect sensing
devices to applications. To accomplish the tasks of connecting
sensing devices to applications, applications should be capa-
ble of understanding the sensing devices (e.g., capabilities).
Several recent developments such as Transducer Electronic
Data Sheet (TEDS) [45], Open Geospatial Consortium (OGC)
Sensor Web Enablement related standards like Sensor Markup
Languages (SensorML) show the future trends of carrying out
research work for addressing the challenge of connection and
configuration of sensors to applications.

2) Resource limitations: Sensing devices (e.g., sensors
and mobile phones) usually have limited resources, and the
resource limitations arise as a challenge for crowdsensing.
Although more resources (e.g., computing, bandwidth)
are provided for mobile phones compared to mote-class
sensors, mobile phones still face the problem of resource
limitations [46], [47].

Different types of sensed data may be independent with
each other because of the multi-modality sensing capabilities
of sensing devices. In practical scenarios, different types of
sensed data may be used for the same purpose. However,
the diversities on the quality and resource consumption of
the sensed data pose an obstacle for improving the quality
of data with low resource consumption. Therefore, it is still
a challenge to improve the quality of data and minimize the
resource consumption.

3) Privacy, security, and data integrity: The sensing de-
vices potentially collect sensitive data of individuals [11], [38],
[48]–[54], thus privacy arises as a key problem. For example,
the GPS sensor readings usually record the private information
of individuals (e.g., the routes they take during their daily
commutes, and locations [55]). By sharing the GPS sensor
measurements, individuals’ privacy can be revealed. Hence, it
is important and necessary to preserve the security and privacy
of an individual. Also, the GPS records the information which
is from daily commutes shared within a larger community and
can be used to learn the information of traffic congestion in a
city [56]. Thus, it is also necessary to enable the crowdsensing
applications so that individuals can better understand their
surroundings and can ultimately benefit from the information
sharing. To well preserve the enormous amounts of private
information of individuals, not only methodology efforts but
also systematic studies are needed. The AnonySense architec-
ture, proposed in [57], can support the development of privacy-
aware applications based on crowdsensing. Also, it is impor-
tant to guarantee that an individual’s data is not revealed to
untrustworthy third parties. For example, malicious individuals
usually contribute erroneous sensor data. Meanwhile, for their
own benefit, malicious individuals may intentionally pollute



the sensing data. The lack of control mechanisms to guarantee
source validity and data accuracy can result in information
credibility issues. Therefore, it is necessary to develop trust
preservation and abnormal detection technologies to ensure
the quality of the obtained data.

The problem of data integrity that ensures the integrity of
individuals’ sensor data, also needs to be well addressed. In the
existing literature [58], [59], although some methods have been
proposed, they typically rely on co-located infrastructure that
may not be installed as a witness and have limited scalability,
which makes such kind of methods prohibitive and unavailable
at times. The reason behind this is that the approach relies
on the inputs which is from the installation of expensive
infrastructure. Another approach for handling data integrity
problem is to sign the sensor data (e.g., typically, trusted
hardware installed on mobile phones are used for this purpose),
i.e., a trusted platform module signs a SHA-1 digest of the
sensor data. This approach is potentially problematic due to
the reason that the verification process has to be done even in
the software.

B. Future Research Directions

Below we present some future research directions of crowd-
sensing for IoT.

1) Optimization of multiple factors like localization, pre-
diction, energy budget: The trade-off between higher location
accuracy and lower energy consumption for the mobile crowd-
sensing devices is critical to successfully implement various
algorithms [7], [8], [60]–[62]. For example, in the solution
proposed by Lane et al. [10], to lower the energy overhead
based on the context information, such as position, its real-
world performance suffers from the inaccurate localization
model. Besides, for mobile crowdsensing, especially smart-
phone based platform, more than one sensor can be used to
collect the data and sense the context, such as dynamic status,
localization, and noise magnitude. Thus, the reliability and
the amount of information of context may be increased as in
the work [38] in which the proposed CAROMM is able to
acquire various stream data from mobile devices and process
them based on context attached, e.g., the location and time
mark on photos. This further contributes to the performance
of crowdsensing.

2) Privacy protection: Privacy protection is a principal
issue that has not yet been well addressed, especially in the
crowdsensing area. There is a large body of work focusing on
privacy protection [10], [38], [48]. The CAROMM framework,
making use of the context of the data from user’s smartphone,
bears high risks to leak the privacy information of users since
the information like location and time, which are required to
be protected. Obviously, the privacy risk must be reduced to an
acceptable level before any crowdsensing activity is conducted.
Otherwise, the user’s privacy may be exposed to the public.
Lane et al. [10] conducted research on the automatic data
anonymization by masking particular information from the raw
data sensed by the local smartphone.

3) Social Internet of Things: Real humans are believed to
understand and answer better than a machine, and they are
the most “intelligent machines” [63], [64]. A large number of
individuals tied in a social network can provide better answers
to complicated problems than a single individual (or even
a knowledgeable individual) [65]. The collective intelligence
emerging in social networks can help users find information
(e.g., answers to their problems), which attracts many interests.
Social networks have the advantage of efficiently discovering
and distributing services, and social networks are utilized by
many systems, such as Yahoo! Answers, Facebook, for sharing
the information (e.g., knowledge). There is a great potential
and prospect for integrating social networking into Internet of
Things, which will be an important research direction.

V. CONCLUSIONS

The IoT has attracted much attention over the past few
years. Numerous sensing devices emerge in our living en-
vironments, which creates the IoT integrating the cyber and
physical objects. Mobile crowdsensing plays an important role
in the IoT paradigm. Sensors continuously generate enormous
amounts of data, which consumes much resource, such as
storage resource for storing data and bandwidth resource for
data transfer. Previous works demonstrate that there is signif-
icant amount of redundancy in sensor data. Thus, redundancy
elimination of sensor data is important and worthwhile, which
can significantly reduce the cost (e.g., bandwidth cost for
data transfer) and facilitate the timely delivery of critical
information by reducing the traffic load, and thereby help
achieving good QoS. In this paper, we review the mobile
crowdsensing techniques and challenges. We focus on the
discussion of the resource limitation and QoS (e.g., data
quality) issues and solutions in mobile crowdsensing. A better
understanding of resource management and QoS estimation
in mobile crowdsensing can help us design a cost-effective
crowdsensing system that can reduce the cost by fully utilizing
the resource and improve the QoS for users. In the end
of the paper, we discuss some of the trends in the mobile
crowdsensing. In the future, we will give an in-depth study of
challenges and techniques, solutions for addressing challenges
in mobile crowdsensing for IoT, and we will also analyze the
production systems and provide case studies.
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