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Abstract—In the cloud, the network links are shared among
tenants, which makes them easy to get fully congested (over-
loaded). Overloaded links degrade the performance of tenants’
applications, and impose additional costs to the cloud provider.
In this paper, we propose a nonlinear bandwidth pricing pol-
icy for congestion control in the cloud network. In order to
maximize social welfare (i.e., maximize the total satisfaction of
the tenants while minimizing the congestion over the link), the
cloud provider uses the nonlinear pricing policy that increases
the unit price with increment of bandwidth usage. Each tenant
competes for bandwidth allocation to maximize its utility (i.e.,
both maximize its own individual satisfaction and minimize its
bandwidth payment cost). We design a game between tenants
and the cloud provider, and show that there exists a unique
optimal bandwidth schedule (Nash equilibrium) that jointly
maximizes the social welfare and the utility of each tenant at
the same time. In order to find the optimal schedule, we use
an asynchronous-based best response strategy, in which each
tenant updates its optimal bandwidth allocation based on the
updated bandwidth payment function from the cloud provider.
We prove that the updated bandwidth allocations converge to
the optimal bandwidth schedule. In our simulation study and
real implementation, we verify the performance of our proposed
pricing mechanism under different scenarios.

I. INTRODUCTION

Many of today’s web services (e.g., Dropbox and Netflix)
are deployed on the cloud. The cloud providers own and
maintain the large-scale computation, storage and network
resources, and the tenants rent the resources on demand instead
of purchasing the costly servers, software, datacenter space or
network equipments [1]. Many web services such as trans-
action processing web applications [2] and video-on-demand
(VoD) applications require predictable network performance to
ensure the performance of their end-users. Thus, it is important
for the cloud providers to guarantee the quality of service
(QoS) of the tenants in order to attract and maintain tenants,
and hence earn profit by keeping a steady long-term business.

Recently, many bandwidth allocation policies have been
proposed [3]–[8]. Optimal bandwidth allocation is addressed
extensively in the previous studies. Kelly [9] and Low [10]
propose decentralized optimization methods using linear pric-
ing to maximize the total satisfaction of users in a network
with limited capacity links. Niu et al. [3] proposed a linear
pricing model to jointly maximize the total satisfaction of
the tenants and minimize the reservation payment cost of

the cloud provider. The authors found the optimal bandwidth
reservation through two different distributed and step-size-
free optimization methods, Chaotic price update and cutting-
plane method. However, by charging tenants at a flat rate
for bandwidth usage, the above works do not aim to control
congestion and avoid overloading on the links, which is very
essential for guaranteeing the QoS of the tenants. Our work
allows the cloud provider to control congestion and avoid
overloading in the cloud network.

In this paper, we maximize the social welfare of the tenants
that also minimizes the network congestion in addition to
maximize the total satisfaction of the tenants in the network.
Our bandwidth payment method is also more transparent to
the tenants than the proposed methods in [9] and [10], where
the bandwidth payment for each tenant is updated based on the
payment rate at the previous update step and the total band-
width consumption of the tenants. In our proposed method,
the pricing mechanism at each iteration step is evaluated based
on a pre-determined congestion cost function, that is known
for all the tenants before the first step of bandwidth update
process, and it does not change during the update process.
The bandwidth cost function is also determined based on
the current total load in the network that is observable by
the tenants. Furthermore, our proposed method provides more
generalized nonlinear pricing functions for the cloud provider
to control congestion in the network rather than linear pricing
rates. We have also extended our proposed non-linear pricing
method to multiple switch cores in [11]. The nomenclature of
the notations used in this paper is summarized in table I.

The rest of this paper is organized as follows. We present
the preliminaries overview in Section II. In Section III, we
formulate the problem to maximize the social welfare and
in Section IV, we propose the pricing policy that effectively
avoids congestion and maximizes tenants’ utility. In Section V,
we define a game between the tenants, and we investigate the
Nash equilibrium properties. We find the optimal bandwidth
schedule using the best response strategy in Section VI, and
we discuss the total payments of the tenants in Section VII.
In Section VIII, we present our simulation and real imple-
mentation results to verify the performance of our proposed
pricing mechanism. We conclude our paper with remarks on
our future work in Section IX.



TABLE I: Nomenclature of the notations used in this paper

bk bandwidth of tenant k
Uk(·) Satisfaction function of tenant k
V(·) The congestion cost function
π(·) The unit bandwidth price at a specific bandwidth usage
l Link l
b The bandwidth schedule of the tenants
B The feasible set of all bandwidth schedules
Bl Total bandwidth of the tenants on link l
Bmax
l Total bandwidth capacity on link l

ηl Allowed link capacity percentage
Cl Overload cost function on link l
Z(·) Total overload and congestion cost function on link l
S(·) Social welfare of the tenants
ψk(·) Total payment of tenant k
Fk (·, ψk(·)) Utility function of tenant k
R(·) Revenue of the cloud provider

Fig. 1: The bandwidth usage of tenants in link l.

II. PRELIMINARIES AND OVERVIEW

Based on recent works on sharing data center networks
[12], [13], we abstract the connections of tenants into a hose
model [6], [14], where the network throughput of each tenant
is blocked by a shared access link (denoted by link l). We
consider a set of tenants, K = {1, ...,K}, that use link l to
send data to their destinations in the network. As shown in
Fig. 1, Bmax

l denotes the bandwidth capacity of link l, bk
denotes the amount of bandwidth that tenant k allocates for
sending data through link l, and Bl =

∑
k∈K bk denotes the

total bandwidth on the link. We denote Bl

Bmax
l

as the congestion
degree of link l.

Let bk denote the amount of bandwidth allocated to tenant
k on link l. Let us denote b = (b1, ..., bK) as the bandwidth
schedule for the tenants on link l, and denote b−k as the
bandwidth schedule for all the tenants excluding tenant k on
link l. A tenant may have a maximum required amount of
bandwidth if it is not willing to pay more than a specific
maximum bandwidth demand based on its application usage.
Thus, we assume that each tenant k allocates a maximum
amount of bandwidth denoted by bmax

k , i.e. bk ≤ bmax
k .

We have bmax
k = Bmax

l for a tenant without maximum
bandwidth allocation. Let us denote Bk = [0, bmax

k ], and
denote B = B1× ...×BK as the set of all feasible bandwidth
allocations of the tenants. The set B is a compact and convex
set. The cloud provider defines a safety margin ηl ≤ 1, and
tries to constrain the bandwidth consumption on the link to
no more than ηlB

max
l . A feasible bandwidth schedule must

satisfy the link’s capacity constraint:

Bl =
∑
k∈K

bk ≤ ηlBmax
l . (1)

(a) (b)

Fig. 2: (a) Congestion cost increments at different bandwidth
usages and (b) Congestion-based bandwidth pricing.

III. PROBLEM FORMULATION

In this section, we formulate the problem to find the optimal
bandwidth schedule that satisfies tenants’ demands as much as
possible and avoids congestion in link l. To achieve this ob-
jective, the cloud provider specifies a nonlinear pricing policy
that has a higher unit price when the current bandwidth usage
is higher. This disincentivizes the tenants to use bandwidth
when the bandwidth usage (Bl) is higher (i.e., the link is more
likely to be congested). It is possible for the cloud provider
to determine the bandwidth payment according to a strictly
convex function of the bandwidth usage. We refer this cost as
congestion cost, and denote it as V(·).

Let us denote π = V ′ as the derivative of the pricing
function V . Figure 2(a) shows the variations of the strictly
convex congestion cost function as the bandwidth usage varies.
It is seen that the congestion cost function is higher at the
higher bandwidth usage. Figure 2(b) shows the increments of
the bandwidth pricing function for user k (denoted as ψk)
using the derivative of the congestion cost function, π. The
cloud provider needs to transfer this congestion cost to tenants
by charging them on their individual bandwidth usages. When
the current bandwidth usage is at a higher level, tenants are
more disincentivized from allocating more bandwidths, thus
avoiding the link to be fully congested.

Let us denote Uk(bk) as the satisfaction function of tenant k
from using bk amount of bandwidth. The satisfaction function,
Uk(·), is considered to be non-decreasing as each tenant de-
sires high quality of service and a higher bandwidth provision
makes a tenant more satisfied [3], [15]. Also, the marginal
satisfaction of a user is non-increasing because a tenant’s level
of satisfaction gradually gets saturated when the provisioned
bandwidth increases [3], [15]. Therefore, we consider that
Uk(·) is a strictly increasing and strictly concave function, and
its second derivative is continuous in Bk. In order to attract
and maintain long-term business, the cloud provider needs to
provide bandwidth to meet each tenant’s satisfaction, and also
provide an un-congested network support for all the tenants at
the same time. Since these two factors affect the QoS to the
tenants’ applications, which represents their welfare, we define
social welfare of tenants as a joint consideration of these two



factors in the following:

P(b) =
K∑

k=1

Uk(bk)− V

(∑
k∈K

bk

)
s.t. Bl − ηlBmax

l ≤ 0,

b ∈ B. (2)

The above equation considers the bandwidth capacity con-
straint as in (1). It also considers the maximum demand con-
straint for each tenant by constraint b ∈ B, i.e., bk ∈ [0, bmax

k ].
Then, the cloud provider aims to find the bandwidth schedule
that maximizes the social welfare, which is the objective of
this paper.

To find the bandwidth schedule that maximizes the social
welfare, we transform (2) to another objective that integrates
the constraint in (2) [16]. When the total bandwidth demands
Bl > ηlB

max
l , link l is considered as overloaded. In this case,

some bandwidth demands cannot be fully satisfied, which may
lead to SLA penalty, reputation degradation and business loss
to the cloud provider.

We call these costs caused by the overloaded link overload
cost. We also let C(x) denote the overload cost function
associated with link l. We define C(x) as a strictly convex
function with C(x) = 0 for x < 0. Let us denote

Z(x) = V(x) + C(x− ηlBmax
l ) (3)

as the total cost function and overload penalty function of
consuming x unit of bandwidth. The social welfare of the
tenants in (2) is rewritten as in the following:

S(b) =
K∑

k=1

Uk(bk)−Z

(∑
k∈K

bk

)
,

b ∈ B. (4)

As Uk(·) is strictly concave for each tenant k, and V(·) and
C(·) are strictly convex function, S(·) is a strictly concave
function in B.

Definition 1. A feasible bandwidth schedule is a socially
optimal bandwidth schedule if it maximizes the social welfare
of the tenants as in (4).

Note that in the case that cloud provider knows satisfaction
functions and maximum bandwidth requirements of the ten-
ants, the optimization problem in (4) is solved using a single
step standard convex optimization method [16]. In this paper,
we consider that the tenants do not reveal their private infor-
mation such as satisfaction function and maximum bandwidth
requirements. In this case, the socially optimal bandwidth
schedule is only derived through an iterative decentralized
bandwidth allocation process that is described in the next
following sections.

Below, we show how the cloud provider transfers the
congestion cost to the tenants by charging each tenant based
on its contribution to the congestion cost and overload cost,
and in Section VI, we propose our decentralized optimization
framework to find the socially optimal bandwidth allocation
schedule.

IV. PROPOSED PRICING POLICY

We now introduce how the cloud provider makes pricing
policy to transfer the congestion cost and overload cost to
the tenants in order to incentivize the tenants to voluntarily
constrain the costs. Let ψk(xk) denote the bandwidth payment
function that tenant k pays for xk amount of bandwidth
reservation for the next time period Ti. The total payment
of tenant k for reserving bk amount of bandwidth, ψk(bk), is
calculated as in the following:

ψk(bk) = Z

 ∑
j∈K−{k}

bj + bk

−Z
 ∑

j∈K−{k}

bj

 . (5)

Note that the term −Z(·) in (5) is independent from bk.
These terms result in an unbiased cost function for the tenants,
i.e. ψk(0) = 0, ∀k.

Next, we introduce the utility of tenant k that it tries to
maximize when determining its bandwidth demand. The gain
and the cost of tenant k by using bk amount of bandwidth can
be measured by its satisfaction Uk (bk) and bandwidth payment
function, ψk(·), respectively. Thus, the utility function of
tenant k, Fk(bk, ψk(·)), for using bk amount of bandwidth
is calculated as in the following:

Fk(bk, ψk(·)) = Uk (bk)− ψk (bk) , bk ∈ Bk. (6)

Based on the proposed bandwidth payment function, ψk(·)
in (5), the utility function of tenant k, Fk(bk, ψk(·)), is also a
function of b−k. We refer Fk(bk, ψk(·)) as a function of b−k
and bk, and denote it as Fk(b−k, bk). Therefore, the tenant
utility function is calculated as in the following:

Fk(b−k, bk) = Uk (bk)

−

Z
 ∑

j∈K−{k}

bj + bk

−Z
 ∑

j∈K−{k}

bj

 , bk ∈ Bk.

(7)

In order to find the socially optimal bandwidth schedule,
we define a strategic game between the tenants. In this game,
the cloud provider proposes the bandwidth payment function
ψk(·) to the tenants, and each tenant k responds its proposed
strategy, i.e., its allocated bandwidth bk, to the cloud provider.
In the next following sections, we derive the Nash equilibrium
properties of this game, where both the cloud provider and ten-
ants gain the maximum utility. We show that Nash equilibrium
is socially optimal and vice versa. We will also show that the
best response strategy of the tenants converge to the socially
optimal bandwidth schedule.

V. PROPERTIES OF NASH EQUILIBRIUM

The bandwidth reservation amount chosen by rational ten-
ants, who always try to maximize their individual profits
as defined in (7), can be represented as a strategic game
〈K,Bk,Fk〉. In this strategic game, the strategy of each tenant



k (k ∈ K) is its bandwidth allocation, bk ∈ Bk. Tenant
k chooses its strategy, bk, as a response to the bandwidth
payment function, ψk(bk), that is determined based on the
banwidth allocations of other tenants sharing link l. The best
reponse strategy of tenant k is the bandwidth allocation that
maximizes its individual utility function, Fk(·).

In this section, we investigate the Nash equilibirium of this
strategic game. We show that the Nash equilibrium exists, and
it is equal to the unique socially optimal bandwidth schedule.
That is, each tenant only has one choice of his bandwidth
reservation in order to maximize its utility.

A. Existence of Nash Equilibrium.

The following conditions hold for each tenant k ∈ K:
1. The set Bk is a non-empty, convex, and compact subset

of a finite-dimensional Euclidean space.
2. The tenant utility function, Fk(b−k, bk), is continuous in

b as Uk(·), V(·), and C(·) are continuous.
3. The tenant utility function, Fk(b−k, bk), is a strictly

concave function of bk as Uk(·) is strictly concave, and V(·)
and C(·) are strictly convex functions.

Then, based on the Debreu, Glicksberg, Fan theorem [17],
the game 〈K,Bk,Fk〉 has a pure strategy Nash equilibrium.

B. Social Optimality of Nash Equilibrium.

Theorem 1. The socially optimal bandwidth schedule is a
Nash equilibrium, and vice versa.

Proof: Recall b∗ denotes a socially optimal bandwidth
schedule that maximizes the social welfare of the tenants as
in (4). As S(·) is strictly concave over B, from the first order
inequality condition [16], we have:

∇S(b∗)T (b− b∗) =
∑
k∈K

∇kFk(b
∗
−k, b

∗
k)(bk − b∗k) ≤ 0,

∀b ∈ B. (8)

where ∇kFk = ∂Fk

∂bk
denotes the partial derivative of Fk with

respect to bk. Let us set b = (b∗−k, bk) in (8), where bk ∈ Bk.
Thus, for all k ∈ K, we have:

∇kFk(b
∗
−k, b

∗
k)(bk − b∗k) ≤ 0, ∀bk ∈ Bk. (9)

As Fk is strictly concave over Bk, from the above Proposi-
tion, the condition in (9) is also sufficient for b∗k to maximize
Fk(bk) over Bk, ∀k. Therefore, no tenant k deviates from
its bandwidth reservation choice b∗k, ∀k. Thus, the socially
optimal bandwidth schedule b∗ is a Nash equilibrium.

To prove the converse, let b̃ is a Nash equilibrium band-
width schedule that maximizes the utility functions of the
tenants, and tenants do not deviate from it. As Fk

(
b̃−k, bk

)
is

strictly concave in Bk, from the first order inequality condition,
we have:

∇kFk

(
b̃−k, bk

)(
bk − b̃k

)
≤ 0, ∀k, bk ∈ Bk. (10)

Fig. 3: The iterative bandwidth update process.

Writing the first order inequality condition for S in (4) at b̃,
and using (7) and the result in (10), for all b ∈ B, we have:

∇S(b̃)T
(
b− b̃

)
=
∑
k∈K

∇kFk

(
b̃−k, bk

)(
bk − b̃k

)
≤ 0.

(11)
As S(·) is strictly concave in b, from Proposition 2.1.2 (b) in
[16], b̃ maximizes S(b) over B. Therefore, the Nash equilib-
rium bandwidth schedule, b̃, is a socially optimal bandwidth
schedule.

The following Lemma follows immediately from the strictly
concavity of S(·) in B.

Lemma 1. The socially optimal bandwidth schedule is unique.

C. Uniqueness of the Nash Equilibrium

Theorem 2. The Nash equilibrium bandwidth schedule is
unique.

Proof: The proof follows immediately from Theorem 1
and Lemma 1.

VI. ASYNCHRONOUS-BASED BEST RESPONSE STRATEGY

In this section, we find the socially optimal bandwidth
schedule through a distributed method. As we mentioned,
the tenants usually do not release their private information,
such as satisfaction function, Uk(·), and maximum bandwidth
requirement, bmax

k (·), to the cloud provider. Without knowing
this information, the cloud provider is not able to find the
socially optimal bandwidth schedule to maximize the social
welfare as in (4) in a centralized manner. Then, to find
the optimal bandwidth schedule, we propose a decentralized
bandwidth allocation framework, in which the cloud provider
uses an asynchronous-based best response strategy process
[18] to allocate the bandwidth for the tenants.

A. Decentralized Bandwidth Allocation

Figure 3 shows this asynchronous-based best response
strategy process. In each iteration step of this process, a
random tenant updates its bandwidth allocation to maximize its
utility (Fk(bk, ψk(·)) in (6)) based on the bandwidth payment
function (ψk(·) in (5)) from the cloud provider. Let bm denote
the updated bandwidth allocations of the tenants at iteration
step m. As mentioned, we assume that the initial bandwidth
demands of the tenants, b0, is predictable from historical data
[19].



At the beginning of each step m + 1, the cloud provider
updates the bandwidth payment, ψm+1

k (·), for each tenant
according to (5) based on the bandwidth allocations in the mth

step, bm, cost function V(·), and the overload cost function
C(·) as in (12).

ψm+1
k (bk) = Z

 ∑
j∈K−{k}

bmj + bk

−Z
 ∑

j∈K−{k}

bmj

 .

(12)

Next, the cloud provider announces the new bandwidth pay-
ment functions, ψm+1

k (·), to the tenants. Each tenant updates
its bandwidth allocation, bm+1

k , to maximize its individual
utility as in (13) and sends the updated bandwidth allocation
to the cloud provider.

bm+1
k = arg max

bk∈Bk

Fk(b
m
−k, bk)

= arg max
bk∈Bk

Uk (bk)− ψm+1
k (bk) (13)

We define cycle as the set of N successive updates that each
tenant updates at least once in N +K number of successive
updates and call N cycle length. After N updates, if a tenant
fails to update its bandwidth allocation, the cloud provider asks
for its bandwidth update. If the tenant does not respond to the
cloud provider’s allocation, the cloud provider will drop it out
of the update process and only allocates the link bandwidth
among other tenants. This ensures that each tenant updates
its bandwidth at least once in N + K number of successive
updates.

This iterative process repeats until a specific large number
of updates has reached and each tenant has updated its
demand in order to achieve a small convergence error to
the Nash equilibrium bandwidth schedule. We show that the
best response strategy of the tenants converges to the socially
optimal bandwidth schedule, b∗ = (b∗1, ..., b

∗
K), under this

decentralized asynchronous updates.
The following Lemma follows from the strictly concavity

of Fk(b−k, bk) in Bk.

Lemma 2. At each update step, the optimal bandwidth allo-
cation of the updating tenant is unique.

B. Best Reponse Bandwidth Update of Tenants

In the proposed asynchronous-based best response update
process, tenant k solves (13) to find its own optimal bandwidth
allocation at step m+1. This optimal bandwidth allocation is
derived as in the following Lemma.

Lemma 3. The optimal bandwidth allocation of tenant k at
(m+ 1)th update iteration is derived as in the following:

bm+1
k =


0, ∇kFk

(
bm
−k, 0

)
< 0,

bmax
k , ∇kFk

(
bm
−k, b

max
k

)
> 0,

argbk∈Bk

{
∇kFk

(
bm
−k, bk

)
= 0
}
,O.W.

(14)

Proof: The proof follows using the first order inequality
condition:

∇kFk

(
bm
−k, b

m+1
k

) (
bk − bm+1

k

)
≤ 0, ∀bk ∈ Bk. (15)

for three possible cases: (i) ∇kFk

(
bm
−k, 0

)
< 0, (ii)

∇kFk

(
bm
−k, b

max
k

)
> 0 and (iii) ∇kFk

(
bm
−k, 0

)
≥ 0 and

∇kFk

(
bm
−k, b

max
k

)
≤ 0. For these three possible cases, the

unique solution to (13) that maximizes the utility of tenant k
at (m+ 1)th update step is derived as in (14).

Given the bandwidth payment function, ψk(·), that is deter-
mined based on the congestion cost function V(·), overload
cost function, C(·), and the bandwidth allocations of the
tenants, b, the tenants find the unique Nash equilibrium
bandwidth schedule through the best response strategy. As
derived in Section V, the achieved Nash equilibrium is the
socially optimal bandwidth schedule that uniquely maximizes
the social welfare of the tenants as in (4).

The following theorem follows from the strictly concavity
of S(·) and U(·) by modifying the Gauss-Siedel algorithm in
[20].

Theorem 3. The asynchronous update process converges to
the socially optimal bandwidth schedule.

VII. TOTAL BANDWIDTH PAYMENTS OF THE TENANTS

In this section, we evaluate the total bandwidth payments
of the tenants based on the proposed pricing mechanism.
We show that the total bandwidth payments of the tenants
is maximized at the fully congested link, i.e. Bl = Bmax

l .
We consider the link capacity constraint as in (1) with the
safety margin factor set at ηl = 1. With satisfaction of the
maximum link capacity constraint as in (1), each tenant k
pays Rk(b−k, bk) for using bk amount of bandwidth:

Rk (b−k, bk) = V

∑
j∈K

bj

− V
 ∑

j∈K/{k}

bj

 . (16)

The total bandwidth payments of the tenants, R(b), is
calculated as in the following:

R(b) =
∑
k∈K

V

∑
j∈K

bj

− V
 ∑

j∈K/{k}

bj


= KV (Bl)−

∑
k∈K

V (Bl − bk) . (17)

From strictly convexity of V , the total bandwidth payments
of the tenants, R(b−k,bk), is strictly convex and increasing
in bk, ∀k. Thus, it gets maximized at Bl = Bmax

l .

VIII. PERFORMANCE EVALUATION

In this section, we conduct simulations and real imple-
mentation experiments on Amazon EC2 [21] to evaluate the
nonlinear pricing model compared with the linear pricing
model.
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Fig. 4: The simulation results of homogeneous tenants.

0.2 0.4 0.6 0.8 1
0

50

100

150

S
o
c
ia

l 
w

e
lf
a
re

Desired congestion degree

 

 

Linear, K = 8
Nonlinear, K = 8
Linear, K = 16
Nonlinear, K = 16
Linear, K = 32
Nonlinear, K = 32

(a) Social welfare

0.2 0.4 0.6 0.8 1
0

10

20

30

40

T
o
ta

l 
b
a
n
d
w

id
th

 p
a
y
m

e
n
t

Desired congestion degree

 

 

Linear, K = 8
Nonlinear, K = 8
Linear, K = 16
Nonlinear, K = 16
Linear, K = 32
Nonlinear, K = 32

(b) Total bandwidth payments

0.2 0.4 0.6 0.8 1
0

50

100

150

T
o
ta

l 
s
a
ti
s
fa

c
ti
o
n

Desired congestion degree

 

 

Linear, K = 8
Nonlinear, K = 8
Linear, K = 16
Nonlinear, K = 16
Linear, K = 32
Nonlinear, K = 32

(c) Total satisfaction

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of updates

C
o
n
g
e
s
ti
o
n
 d

e
g
re

e

 

 

Linear, K = 8
Nonlinear, K = 8
Linear, K = 16
Nonlinear, K = 16
Linear, K = 32
Nonlinear, K = 32

(d) Congestion degree
Fig. 5: The simulation results of heterogeneous tenants.

A. Environment of Simulation and Implementation

In both simulation and real implementation, we consider
the following scenario. Assume there are K tenants and each
tenant has 2 VMs connected with each other on the same
link l. Each tenant has an application that sends data from
one VM to another VMs through link l. Therefore, the K
tenants compete the bandwidth resource in link l. We consider
the strictly convex function V1(x) = α( x

Bmax
l

) as the linear
congestion cost function, and V2(x) = β( x

Bmax
l

)2 as the
nonlinear congestion cost function in our simulation studies.
The cloud provider determines the cost factors, β and α, to
achieve a specified congestion degree on link l. The overload
cost function was set to C(x) = γx2 for x > 0, and C(x) = 0
for x ≤ 0. We set γ = 100β and γ = 100α to make
the overload cost large enough compared to the congestion
cost function, V(x), for nonlinear and linear pricing policies,
respectively. The capacity of link l is Bmax

l = 40 Gbps. In
order to use the maximum link capacity, we set the safety
margin factor ηl = 1. Unless otherwise specified, we set the
number of updates in the best response strategy update process
to 10000, which is large enough to converge to the optimal
bandwidth schedule.

In our simulation, we tested the performance when the
number of tenants set to K = 8, 16 and 32. We set the
cycle length as N = 8K. We use Cd = Bl

Bmax
l

to denote
the desired congestion degree that the cloud provider aims to
achieve. We consider two different scenarios: i) homogeneous
tenants with the same satisfaction function and maximum
bandwidth demand, and (ii) heterogeneous tenants with differ-

ent satisfaction functions competing to allocate their individual
share of the bandwidth in link l. For homogeneous tenants,
we consider strictly concave satisfaction functions of tenant
k, Uk = ln(1 + bk), where bk is measured in Gbps. For
heterogeneous tenants, the satisfaction function of tenant k
is considered as Uk = ln(1 + (1 + ( k

K ))bk). In general, the
cloud provider does not have the information of Uk of the
tenants. In this case, it uses binary search algorithm and the
best response strategy to find the cost factors β and α that
achieve the desired congestion degree Cd.

In our experiments on Amazon EC2 [21], there are K = 8
heterogeneous tenants and 16 t2.micro VM instances (1 CPU
core and 1GB memory). We used Python socket programming
to create a TCP communication between each of the 8 VM
pairs of each tenant on a link l with Bmax

l = 40 Mbps. We
consider a scenario in which each tenant tries to send data
from one VM to the other VM. We set the number of updates
in the asynchronous-based iterative bandwidth update process
to 1000, which is large enough to converge to the optimal
bandwidth schedule. In order to emulate the cloud provider,
we used another VM on Amazon EC2. Unless otherwise
indicated, the settings in the real experiments are the same
as those in the simulation.

B. Experimental Results

In the simulation and real implementation, we measured
the social welfare, average bandwidth payment, and total
satisfaction of the tenants. We varied the desired congestion
degree Cd from 0.1 to 1 with step increase of 0.1. Then,
we determined α and β as explained previously to achieve
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Fig. 6: The experimental results of heterogeneous tenants in real implementation.

this specified congestion degree. After the optimal bandwidth
schedule is determined, we calculated the social welfare, the
total bandwidth payment and total satisfaction of the tenants
based on (4), (17).

Figures 4(a) and 5(a) show the social welfare of homoge-
neous and heterogeneous tenants versus the desired congestion
degrees in the simulation, respectively. Figure 6(a) shows the
social welfare of heterogeneous tenants versus the desired
congestion degree in the real implementation. We see that
the social welfare is higher with nonlinear pricing model
than with linear pricing model. It demonstrates that nonlinear
pricing policy provides better social welfare, i.e., higher QoS,
to the tenants. Through nonlinear pricing model, the tenants
are more likely to be satisfied with the cloud provider, and
hence the cloud provider can further attract more tenants to
use its services. Furthermore, we see that using the nonlinear
pricing policy, the social welfare increases as the number
of tenants increases for both homogenous and heterogenous
cases. However, using the linear pricing policy, the social
welfare does not necessarily increase as the number of tenants
increases for homogeneous tenants. It indicates that with the
nonlinear pricing policy, more tenants lead to higher social
welfare.

Figures 4(b) and 5(b) show the total bandwidth payment
of homogeneous and heterogeneous tenants versus the desired
congestion degree. Figure 6(b) shows the total bandwidth pay-
ment of heterogeneous tenants versus the congestion degree in
the real implementation. We see that the average bandwidth
payment with the linear congestion cost function is slightly
higher than that with the nonlinear congestion cost function.
It shows that using the nonlinear pricing policy, the cloud
provider assigns less bandwidth cost for the tenants to achieve
a desired congestion degree in link l. Paying less amount
of the bandwidth payment by the tenants makes them more
satisfied with the service of the cloud provider. Consequently,
it encourages the tenants to choose the cloud provider for their
services.

Figures 4(c) and 5(c) show the total satisfaction of the
homogeneous tenants and heterogeneous tenants in the simu-
lation, respectively. Figure 6(c) shows the total satisfaction of

the heterogeneous tenants in the real implementation. We see
that for both homogeneous and heterogeneous tenants, the total
satisfaction is equal for both linear and nonlinear congestion
cost functions, since at a fixed congestion degree, the term
V(
∑

k bk) in (4) is fixed at the same value for both linear and
nonlinear pricing policies. Thus, the optimization problem in
(4) is equivalent with maximizing the first term in (4) that is
the total satisfaction of the tenants. In addition, we see that at a
fixed desired congestion degree, the total satisfaction increases
as the number of tenants increases due to the concavity of
the satisfaction function. This shows that the cloud provider
prefers to have more tenants using its service.

We then measured the convergence speed for the nonlinear
and linear pricing policies when the desired congestion degree
was set to 90%. We define congestion error as |C

m
d −Cd

Cd
|, where

Cm
d is the congestion degree for the bandwidth allocations at

mth update, and Cd is the desired congestion degree. Figures
4(d) and 5(d) plot the congestion degree for the bandwidth
allocations at mth update versus the number of updates (i.e.,
m) to achieve the convergence error of 1%. Figures 4(d) and
5(d) show the congestion degree of link l as the number of
updates increases in the simulation. These figures are obtained
by taking average of 1000 times of experiment runs. Figure
6(d) shows the congestion degree as the number of updates
increases for heterogeneous tenants in the real implementation.
As it is seen, the congestion degree converges faster using
the nonlinear pricing policy, and it needs fewer updates to
converge than the linear pricing policy for all different number
of tenants. As we discussed in Section III, using nonlinear
pricing policy, the bandwidth payment cost increases as the
congestion degree increases. Thus, for the less congested link,
the tenants pay less for a specific amount of bandwidth.
Therefore, the tenants allocate more bandwidth when the link
is less congested. In contrast, the bandwidth payment does
not change with the congestion degree when we use the linear
pricing policy. As a result, the congestion degree converges
to the desired congestion degree faster than using the linear
pricing policy as shown in figures 4(d), 5(d) and 6(d). In order
to show the real time duration for the iterative update process,
we measured the total time it took to complete the update



process. In this test, we set the desired congestion degree
to 0.9 and varied the number of updates from 20 to 10000.
Figure 7 shows the update process duration as the number
of updates increases. We see that it takes around one second
to complete 1000 updates (a sufficient number of updates as
shown in Figure 6(d)), which is a short time to converge to
the optimal solution. The result means that for each short-
time period (e.g., 5 minutes), nonlinear pricing policy spends
around one second to determine the bandwidth schedule for
this period. As it is seen, the update process duration increases
logarithmically as the number of updates increases. Further
numerical experiments also show that the number of updates
increases linearly as the number of tenants increases.
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Fig. 7: Update process duration of a tenant in real implemen-
tation.

IX. CONCLUSION AND FUTURE WORK

In this paper we proposed nonlinear bandwidth pricing
for congestion control in a communication link in the cloud
networks. We defined the social welfare of the tenants as the
total satisfaction functions of the tenants minus the congestion
cost over the link. We formulated the utility optimization of the
tenants as a strategic game, and we showed different properties
of the Nash equilibrium of the designated game. We showed
that the Nash equilibrium exists, and it is uniquely equal to the
social optimum bandwidth schedule that maximizes the social
welfare of the tenants.

As the tenants are not obliged to truthfully reveal their
private information such as maximum required bandwidth
and satisfaction function, we implemented a decentralized
asynchronous-based best response strategy to find the Nash
equilibrium bandwidth schedule. We showed that the best
response strategies of the tenants converge to the Nash equilib-
rium bandwidth schedule under reasonable mild assumptions
such as individually selfish utility maximizing tenants. We
also derived the total bandwidth payments of the tenants, and
discussed that the total bandwidth payments is maximized at
the fully congested link. We verified our results with numerical
simulations for different number of the tenants.

In this paper, we considered different tenants sharing one
bandwidth limited link in the cloud network. We used the
overload cost function to satisfy the bandwidth maximum
capacity constraint. In our future work, we will consider the
scenario that the tenants share multiple links in the network.
We will also use adaptive control methods to satisfy the
bandwidth capacity constraint.
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