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Abstract—Many Cloud Service Providers (CSPs) provide
data storage services with datacenters distributed worldwide.
These datacenters provide different Get/Put latencies and unit
prices for resource utilization and reservation. Thus, when se-
lecting different CSPs’ datacenters, cloud customers of globally
distributed applications (e.g., online social networks) face two
challenges: i) how to allocate data to worldwide datacenters to
satisfy application SLO (service level objective) requirements
including both data retrieval latency and availability, and ii)
how to allocate data and reserve resources in datacenters
belonging to different CSPs to minimize the payment cost. To
handle these challenges, we first model the cost minimization
problem under SLO constraints using integer programming.
Due to its NP-hardness, we then introduce our heuristic solu-
tion, including a dominant-cost based data allocation algorithm
and an optimal resource reservation algorithm. We finally
introduce an infrastructure to enable the conduction of the
algorithms. Our trace-driven experiments on a supercomputing
cluster and on real clouds (i.e., Amazon S3, Windows Azure
Storage and Google Cloud Storage) show the effectiveness of
our algorithms for SLO guaranteed services and customer cost
minimization.

I. INTRODUCTION

Cloud storage (e.g., Amazon S3 [1], Microsoft Azure [2]
and Google Cloud Storage [3]) is emerging as a popular
commercial service. Each cloud service provider (CSP)
provides a worldwide data storage service (including Gets
and Puts) using its geographically distributed datacenters. In
order to save the capital expenditures to build and maintain
the hardware infrastructures and avoid the complexity of
managing the datacenters, more and more enterprisers shift
their data workloads to the cloud storage [4].

Web applications, such as online social networks and
web portals, provide services to clients all over the world.
The data access delay and availability are important to web
applications, which affect cloud customers’ incomes. For
example, experiments at the Amazon portal [5] demonstrated
that a small increase of 100ms in webpage presentation
time significantly reduces user satisfaction, and degrades
sales by one percent. For a request of data retrieval in
the web presentation process, the typical latency budget
inside a storage system is only 50-100ms [6]. In order to
reduce data access latency, the data requested by clients
needs to be allocated to datacenters near the clients, which
requires worldwide distribution of data replicas. Also, inter-
datacenter data replication enhances data availability since it

avoids a high risk of service failures due to datacenter fail-
ure, which may be caused by disasters or power shortages.

However, a single CSP may not have datacenters in all
locations needed by a worldwide web application. Besides,
using a single CSP may introduce a data storage vendor
lock-in problem [7], in which a customer may not be
free to switch to the optimal vendor due to prohibitively
high switching costs. This problem can be addressed by
allocating data to datacenters belonging to different CSPs.
Building such a geo-distributed cloud storage is faced with
a challenge: how to allocate data to worldwide datacenters
to satisfy application SLO (service level objective) require-
ments including both data retrieval latency and availability?
The data allocation in this paper means the allocation of
both data storage and Get requests to datacenters.

Different datacenters of a CSP or different CSPs offer
different prices for Storage, data Gets/Puts and Transfers.
For example, Amazon S3 provides cheaper data storage
price ($0.01/GB and $0.005/1,000 requests), and Windows
Azure in the US East region provides cheaper data
Get/Put price ($0.024/GB and $0.005/100,000 requests).
An application running on Amazon EC2 in the US East
region has data dj with a large storage size and few Gets
and data di which is read-intensive. Then, to reduce the
total payment cost, the application should store data dj into
Amazon S3, and stores data di into Windows Azure in the
US East region. Besides the different prices, the pricing
manner is even more complicated due to two charging
formats: pay-as-you-go and reservation. Then, the second
challenge is introduced: how to allocate data to datacenters
belonging to different CSPs and make resource reservation
to minimize the service payment cost?

Though many previous works [8–10] focus on finding
the minimum resource to support the workload to reduce
cloud storage cost in a single CSP, there are few works
that studied cloud storage cost optimization across multiple
CSPs with different prices. SPANStore [11] aims to
minimize the cloud storage cost while satisfying the latency
and failure requirement across multiple CSPs. However, it
neglects both the resource reservation pricing model and the
datacenter capacity limits for serving Get/Put requests. A
datacenter’s Get/Put capacity is represented by the Get/Put
rate (i.e., the number of Gets/Puts in a unit time period)
it can handle. Reserving resources in advance can save



significant payment cost for customers and capacity limit
is critical for guaranteeing SLOs since datacenter network
overload occurs frequently [12, 13]. The integer program
used to create a data allocation in [11] becomes NP-hard,
if it is modified with capacity-awareness, which however
cannot be easily resolved. As far as we know, our work is
the first that provides minimum-cost cloud storage service
across multiple CSPs with the consideration of resource
reservation and datacenter capacity limits.

To handle the above-stated two challenges, we propose a
geo-distributed cloud storage system for Data storage and
request Allocation and resource Reservation across multiple
CSPs (DAR). It transparently helps customers to minimize
their payment cost while guaranteeing their SLOs. We
summarize our contributions below:
•We have modeled the cost minimization problem under
multiple constraints using integer programming.
•We introduce a heuristic solution including:
(1) A dominant-cost based data allocation algorithm, which

finds the dominant cost (Storage, Get or Put) of each
data item and allocates it to the datacenter with the
minimum unit price of this dominant cost to reduce cost
in the pay-as-you-go manner.

(2) An optimal resource reservation algorithm, which max-
imizes the saved payment cost by reservation from the
pay-as-you-go payment while avoiding over reservation.

•We conduct extensive trace-driven experiments on a su-
percomputing cluster and real clouds (i.e., Amazon S3,
Windows Azure Storage and Google Cloud Storage) to
show the effectiveness and efficiency of our system in
cost minimization, SLO compliance and system overhead
in comparison with previous systems.

DAR is suitable for the scenarios in which most customer
data items have dominant cost. The rest of the paper is or-
ganized as follows. Section II depicts the cost minimization
problem. Sections III and IV present the design and infras-
tructure of DAR. Section V presents the trace-driven exper-
imental results. Section VI presents the related work. Sec-
tion VII gives conclusion with remarks on our future work.

II. PROBLEM STATEMENT

A. Background
We call a datacenter that operates a customer’s application

a customer datacenter of this customer. According to the
operations of a customer’s clients, the customer datacenter
generates read/write requests to a storage datacenter storing
the requested data. A customer may have multiple customer
datacenters (denoted by Dc). We use dci∈ Dc to denote
the ith customer datacenter of the customer. We use Ds to
denote all datacenters provided by all cloud providers and
use dpj ∈ Ds to denote storage datacenter j. A client’s
Put/Get request is forwarded from a customer datacenter to
the storage datacenter of the requested data. The cloud stor-
age customers need data request (Puts/Gets) deadlines for

their applications, and need to avoid the data request failures.
One type of SLO specifies the Get/Put bounded latency and
the percentage of requests obeying the deadline [7]. Another
type of SLO guarantees the data availability in the form of
a service probability [14] by ensuring a certain number of
replicas in different locations [1]. DAR considers both types
to form its SLO and can adapt to either type easily. This SLO
specifies the deadlines for the Get/Put requests (Lg and Lp),
the maximum allowed percentage of data Get/Put operations
beyond the deadlines (εg and εp), and the minimum number
of replicas (denoted by β) among storage datacenters [1]. For
a customer datacenter’s Get request, any storage datacenter
holding the requested data (i.e., replica datacenter) can serve
this request. A cloud storage system usually specifies the
request serving ratio for each replica datacenter of a data
item during billing period tk (e.g., one month).

The CSPs charge the customers by the usage of three
different types of resources: the storage measured by the
data size stored in a specific region, the data transfer to other
datacenters operated by the same or other CSPs, and the
number of Get/Put operations on the data [15]. The storage
and data transfer are charged in the pay-as-you-go manner
based on the unit price. The Get/Put operations are charged
in the manners of both pay-as-you-go and reservation. In
the reservation manner, the customer specifies and prepays
the number of Puts/Gets per reservation period T (e.g.,
one year). The unit price for the reserved usage is much
cheaper than the unit price of the pay-as-you-go manner (by
a specific percentage) [15]. For simplicity, we assume all
datacenters have comparable price discounts for reservation.
That is, if a datacenter has a low unit price in the pay-
as-you-go manner, it also has a relatively low price in the
reservation manner. The amount of overhang of the reserved
usage is charged by the pay-as-you-go manner. Therefore,
the payment cost can be minimized by increasing the
amount of Gets/Puts charged by reservation and reducing
the amount of Gets/Puts for over reservation, which reserves
more Gets/Puts than actual usage. For easy reference, we
list the main notations used in the paper in Table I.

B. Problem Formulation
For a customer, DAR aims to find a schedule that allocates

each data item to a number of selected datacenters, allocates
request serving ratios to these datacenters and determines
reservation in order to guarantee the SLO and minimize
the payment cost of the customer. In the following, we
formulate this problem using integer programming. We first
set up the objective of payment minimization. We then
form the constrains including satisfying SLO guarantee, data
availability, and datacenter capacity. Finally, we formulate
the problem with the object and constraints.

Payment minimization objective. We aim to minimize
the total payment cost for a customer (denoted as Ct). It is
calculated as

Ct = Cs + Cc + Cg + Cp, (1)



Table I: Notations of inputs and outputs in data allocation.

Input Description Input Description
Dc customer datacenter set Ds storage datacenter set
dci ith customer datacenter dpj jth storage datacenter
ζgdpj

Get capacity of dpj ζpdpj
Put capacity of dpj

psdpj
dpj ’s unit storage price ptdpj

dpj ’s unit transfer price
pgdpj

unit Get price of dpj ppdpj
unit Put price of dpj

F g(x) CDF of Get latency F p(x) CDF of Put latency
αdpj reservation price ratio D entire data set
dl/sdl data l and dl’s size Lg/Lp Get/Put deadline
εg/εp allowed % of Gets v

dl,tk
dci

Get/Put rates towards

/Puts beyond deadline /u
dl,tk
dci

dl from dci in tk
Qg /Qp SLO satisfaction level β number of replicas
tk kth billing period in T T reservation time
Ct total cost for storing D X

dl,tk
dpj

existence of dl
and serving requests in dpj during tk

where Cs, Cc, Cg and Cp are the total Storage, Transfer, Get
and Put cost during entire reservation time T , respectively.
The storage cost is calculated by:

Cs =
∑
tk∈T

∑
dl∈D

∑
dpj∈Ds

X
dl,tk
dpj

∗ psdpj ∗ sdl , (2)

where sdl
denotes the size of data dl, psdpj

denotes the unit
storage price of datacenter dpj , and Xdl,tk

dpj
denotes a binary

variable: it equals to 1 if dl is stored in dpj during tk; and
0 otherwise.

The transfer cost for importing data to storage datacenters
is one-time cost. The imported data is not stored in the
datacenter during the previous period tk−1, but is stored
in the datacenter in the current period tk. Thus, the data
transfer cost is:
Cc =

∑
tk∈T

∑
dl∈D

∑
dpj∈Ds

X
dl,tk
dpj

(1−Xdl,tk−1

dpj
) ∗ pt(dpj) ∗ sdl , (3)

where pt(dpj) is the cheapest unit transfer price of replicat-
ing dl to dpj among all datacenters storing dl. The Get/Put
billings are based on the pay-as-you-go and reservation man-
ners. The reserved number of Gets/Puts (denoted by Rg

dpj

and Rp
dpj

) is decided at the beginning of each reservation
time period T . The reservation prices for Gets and Puts are
a specific percentage of their unit prices in the pay-as-you-go
manner [15]. Then, we use α to denote the reservation price
ratio, which means that the unit price for reserved Gets/Puts
is α ∗ pgdpj

and α ∗ ppdpj
, respectively. Thus, the Get/Put cost

is calculated by:
Cg =

∑
tk

∑
dpj

(Max{
∑
dci

r
tk
dci,dpj

∗tk−Rg
dpj

, 0}+αRg
dpj

)∗pgdpj , (4)

Cp =
∑
tk

∑
dpj

(Max{
∑
dci

w
tk
dci,dpj

∗tk−Rp
dpj

, 0}+αRp
dpj

)∗ppdpj , (5)

where rtkdci,dpj
and wtk

dci,dpj
denote the average Get and Put

rates from dci to dpj per unit time in tk, respectively.
SLO guarantee. Recall that DAR’s SLO specifies both

deadline constraint and data availability constraint. To for-
mulate the SLO objective, we first need to calculate the
actual percentage of Gets/Puts satisfying the latency re-
quirement within billing period tk. To this end, we need

to know the percentage of Gets and Puts from dci to dpj
within the deadlines Lg and Lp, denoted by F g

dci,dpj
(Lg)

and F p
dci,dpj

(Lp).
To calculate F g

dci,dpj
(Lg) and F p

dci,dpj
(Lp), DAR records

the Get/Put latency from dci to dpj , and periodically
calculates their cumulative distribution functions (CDFs)
represented by F g

dci,dpj
(x) and F p

dci,dpj
(x). To calculate the

average Get and Put rates from dci to dpj per unit time
in tk (i.e., rtkdci,dpj

and wtk
dci,dpj

), DAR needs to predict
the average Get and Put rates on each data (denoted by
dl) from dci per unit time in tk (denoted by vdl,tk

dci
and

udl,tk
dci

), respectively. For easy Get/Put rate prediction, as
in [16, 11], DAR conducts coarse-grained data division to
achieve relatively stable request rates since a fine-grained
data division makes the rates vary largely and hence difficult
to predict. It divides all the data to relatively large data items,
which of each is formed by a number of data blocks, such
as aggregating data of users in one location [17]. We use
Hdl,tk

dci,dpj
∈ [0, 1] to denote the ratio of requests for dl from

dci resolved by dpj during tk. Then,

r
tk
dci,dpj

=
∑
dl∈D

v
dl,tk
dci

∗Hdl,tk
dci,dpj

w
tk
dci,dpj

=
∑
dl∈D

u
dl,tk
dci

∗Xdl,tk
dpj

As a result, we can calculate the actual percentage of
Gets/Puts satisfying the latency requirement within tk for a
customer (denoted as qtkg and qtkp ):

q
tk
g =

∑
dci∈Dc

∑
dpj∈Ds

r
tk
dci,dpj

∗Fg
dci,dpj

(Lg)∑
dci∈Dc

∑
dpj∈Ds

r
tk
dci,dpj

,

q
tk
p =

∑
dci∈Dc

∑
dpj∈Ds

w
tk
dci,dpj

∗Fp
dci,dpj

(Lp)∑
dci∈Dc

∑
dpj∈Ds

w
tk
dci,dpj

.

(6)

To judge whether the deadline SLO of a customer is
satisfied during tk, we define the Get/Put SLO satisfaction
level of a customer, denoted by Qg and Qp.

Qg = Min{Min{qtkg }∀tk∈T , (1− ε
g)}/(1− εg)

Qp = Min{Min{qtkp }∀tk∈T , (1− ε
p)}/(1− εp).

(7)

We see that if
Qg ·Qp = 1 (8)

i.e., Qg = Qp = 1, the customer’s deadline SLO is satisfied.
Next, we formulate whether the data availability SLO is

satisfied. To satisfy the data availability SLO, there must
be at least β datacenters that stores the requested data and
satisfy the Get deadline SLO for each Get request of dci
during tk. The set of all datacenters satisfying the Get
deadline SLO for requests from dci (denoted by Sg

dci
) is

represented by:
Sg
dci

= {dpj |F g
dci,dpj

(Lg) ≥ (1− εg)}. (9)
The set of data items read by dci during tk is represented

by: Gtk
dci

= {dl|vdl,tk
dci

> 0 ∧ dl ∈ D}. Then, the data
availability constrain can be expressed as during any tk,
there exist at least β replicas of any dl ∈ Gtk

dci
stored in Sg

dci
:

∀dci∀tk∀dl ∈ G
tk
dci

∑
dpj∈S

g
dci

X
dl,tk
dpj

≥ β (10)



Each customer datacenter maintains a table that maps each
data item to its replica datacenters with assigned request
serving ratios.

Datacenter capacity constraint. Beside the SLO con-
straints, each datacenter has limited capacity to supply Get
and Put service, respectively [18]. Therefore, the cumulative
Get rate and Put data rate of all data in a datacenter dpj
should not exceed its Get capacity and Put capacity (denoted
by ζgdpj

and ζpdpj
), respectively. Since storage is relatively

cheap and easy to be increased, we do not consider the
storage capacity as a constraint. This constraint can be easily
added to our model, if necessary. Then, we can calculate the
available Get and Put capacities, denoted by φgdpj

and φpdpj
:

φgdpj
= Min{ζgdpj −

∑
dci∈Dc

r
tk
dci,dpj

}∀tk∈T
φpdpj

= Min{ζpdpj −
∑

dci∈Dc
w

tk
dci,dpj

}∀tk∈T

If both φgdpj
and φpdpj

are no less than 0, the datacenter
capacity constraint is satisfied. Then, we can express the
datacenter capacity constraint by:

∀dpj Min{φgdpj , φ
p
dpj
} ≥ 0 (11)

Problem statement. Finally, we formulate the problem
that minimizes the payment cost under the aforementioned
constraints using integer programming.

min Ct (calculated by Formulas (2), (3), (4) and (5)) (12)

s.t. Qg ∗Qp = 1 (8)

∀dci∀tk∀dl ∈ G
tk
dci

∑
dpj∈S

g
dci

X
dl,tk
dpj

≥ β (10)

∀dpj Min{φgdpj , φ
p
dpj
} ≥ 0 (11)

∀dci∀dpj∀tk∀dl H
dl,tk
dcl,dpj

≤ Xdl,tk
dpj

≤ 1 (13)

∀dci∀tk∀dl
∑
dpj

H
dl,tk
dci,dpj

= 1 (14)

Constraints (8), (10) and (11) satisfy the deadline re-
quirement and data availability requirement in the SLO and
the datacenter capacity constraint, as explained previously.
Constraints (13) and (14) together indicate that any request
should be served by a replica of the targeted data.

Operation. Table I indicates the input and output param-
eters in this integer program. The unit cost of Gets/Puts/Sto-
rage/Transfer usage is provided or negotiated with the CSPs.
During each billing period tk, DAR needs to measure the
latency CDF of Get/Put (F g

dci,dpj
(x) and F p

dci,dpj
(x)), the

size of new data items dl (sdl
), and the data Get/Put rate

from each dci (vdl,tk
dci

and udl,tk
dci

). The output is the data
storage allocation (Xdl,tk

dpj
), request servicing ratio allocation

(Hdl,tk
dci,dpj

) and the total cost Ct. The optimal Get/Put reser-
vation in each storage datacenter (Rg

dpj
/Rp

dpj
) is an output at

the beginning of reservation time period T and is an input at
each billing period tk in T . After each tk, T is updated as the
remaining time after tk represented by T\{tk}. DAR adjusts
the data storage and request distribution among datacenters
under the determined reservation using the same procedure.

This procedure ensures the maximum payment cost saving
in request rate variation.

This integer programming problem is NP-hard. A simple
reduction from the generalized assignment problem [19] can
be used to prove this. We skip detailed formal proof due to
limited space. The NP-hard feature makes the solution calcu-
lation very time consuming. We then propose a heuristic so-
lution to this cost minimization problem in the next section.

III. DATA ALLOCATION AND RESOURCE RESERVATION

DAR has two steps. First, its dominant-cost based data
allocation algorithm (Section III-A) conducts storage and
request allocation scheduling that leads to the lowest total
payment only in the pay-as-you-go manner. Second, its
optimal resource reservation algorithm (Section III-B) makes
a reservation in each used storage datacenter to maximally
reduce the total payment.
•Dominant-cost based data allocation algorithm. To reduce
the total payment in the pay-as-you-go manner as much as
possible, DAR tries to reduce the payment for each data item.
Specifically, it finds the dominant cost (Storage, Get or Put)
of each data item and allocates it to the datacenter with the
minimum unit price of this dominant cost.
•Optimal resource reservation algorithm. It is a challenge
to maximize the saved payment cost by reservation from
the pay-as-you-go payment while avoiding over reservation.
To handle this challenge, through theoretical analysis, we
find the optimal reservation amount, which avoids both over
reservation and under reservation as much as possible.

A. Dominant-Cost based Data Allocation
A valid data allocation schedule must satisfy Constraints

(8), (10), (11), (13) and (14). To this end, DAR first identifies
the datacenter candidates that satisfy Constraint (8), i.e.,
can supply a Get/Put SLO guaranteed service for a specific
customer datacenter dci. Then, DAR selects datacenters from
the candidates to store each data item requested by dci
to satisfy other constraints and achieve cost minimization
Objective (12). We introduce these two steps below.

Datacenter candidate identification. Constraint (8) guar-
antees that the deadline SLO is satisfied. That is, the
percentage of data Get and Put operations of a customer
beyond the specified deadlines is no more than εg and
εp, respectively. To satisfy this constraint, some Get/Put
response datacenters can have service latency beyond the
deadlines with probability larger than εg and εp, while others
have the probability less than εg and εp. Since finding a
combination of these two types of datacenters to satisfy
the SLO is complex, DAR simply finds the datacenters that
have the probability less than εg and εp. That is, if dpj
serves Get/Put from dci, dpj has F g

dci,dpj
(Lg) ≥ 1− εg and

F p
dci,dpj

(Lp) ≥ 1− εp. That is:
∀tk ∈ T ∀dci ∈ Dc, r

tk
dci,dpj

> 0→ F g
dci,dpj

(Lg) ≥ 1− εg (15)

∀tk ∈ T ∀dci ∈ Dc, w
tk
dci,dpj

> 0→ F p
dci,dpj

(Lp) ≥ 1− εp (16)



Then, by replacing F g
dci,dpj

(Lg) with 1−εg in Equation (6),
we can have qtkg ≥ 1 − εg which ensures the Get SLO.
The same applies to the Put SLO. Therefore, the new
Constraints (15) and (16) satisfy Constraint (8).

Accordingly, for each customer’s datacenter dci, we can
find Sg

dci
using Equation (9), a set of storage datacenters

that satisfy Get SLO for Gets from dci. For each data
dl, we can find another set of storage datacenters Sp

dl
=

{dpj |∀dci∀tk, (udl,tk
dci

> 0)→ (F g
dci,dpj

(Lp) ≥ 1− εp)} that
consists of datacenters satisfying Put SLO of dl. To allocate
dl requested by dci, in order to satisfy both Get and Put
delay SLOs, we can allocate dl to any dpj ∈ Sg

dci
∩ Sp

dl
.

Algorithm 1: Dominant-cost based data allocation.
1 for each dci in Dc do
2 Ls

dci
, Lg

dci
and Lg

dci
are Sg

dci
sorted in an increasing order of

unit Storage/Get/Put price, respectively.
3 for each dl with ∃ tk dl ∈ G

tk
dci

do
4 H = 100%;
5 switch dl with Hdl

dci
= H do

6 case dominant
7 L = Ls

dci
or Lg

dci
or Lp

dci
according to the

dominant cost is Storage or Get or Put
8 case balanced
9 Find dpj ∈ Sg

dci
∩ Sp

dl
with the smallest

C
dl
dci,dpj

and satisfies all constraints

10 for each dpj with dpj ∈ L ∩ Sp
dl

do
11 if (Xdl

dpj
= 1→ φpdpj

< 0) ∨ (φgdpj
= 0) then

12 Continue;

13 Find the largest Hdl
dci,dpj

satisfying

φgdpj
≥ 0 ∧H ≥ Hdl

dci,dpj
;

14 if Cdl
dci,dpj

≤ Cdl
dci,dpk (k=j+1,...,j+c)

when

Hdci,dpk = Hdci,dpj then
15 X

dl
dpj

= 1; H = H −Hdl
dci,dpj

;

16 else
17 H

dl
dci,dpj

= 0;

18 if
∑

dpj∈S
g
dci

X
dl
dpj
≥ β ∧H = 0 then

19 break;

Min-cost storage datacenter selection. After the data-
center candidates Sg

dci
∩ Sp

dl
are identified, DAR needs to

further select datacenters that lead to the minimum payment
cost. For this purpose, we can use a greedy method, in which
the cost of storing data item dl in each dpj ∈ Sg

dci
∩ Sp

dl

(denoted as Cdl

dci,dpj
) is calculated based on Equation (1)

and the dpj with the lowest cost is selected. However, such
a greedy method is time consuming. Our dominant-cost
based data allocation algorithm can speed up the datacenter
selection process. Its basic idea is to find the dominant cost
among the different costs in Equation (1) for each data item
dl requested by each dci and stores dl in the datacenter that
minimizes the dominant cost.

If one cost based on its minimum unit price among
datacenters is larger than the sum of the other costs based
on their maximum unit prices among datacenters, we con-
sider this cost as the dominant cost. We do not consider
the transfer cost for importing data when determining the
dominant cost of a data item since it is one-time cost and
comparatively small compared to other three costs, and then
is less likely to be dominant in the total cost of a data item.

We classify each dl requested by dci into four different
sets: Put dominant, Get dominant, Storage dominant and
balanced. Data blocks in the balanced set do not have an
obvious dominant cost. A data item should be stored in the
datacenter in the candidates Sg

dci
∩ Sp

dl
that has the lowest

unit price in its dominant resource in order to reduce its cost
as much as possible. Finding such a datacenter for each data
item dl requested by a given dci is also time-consuming.
Note that Sg

dci
is common for all data items requested by dci.

Then, to reduce time complexity, we can calculate Sg
dci

only
one time. From Sg

dci
, we select the datacenter that belongs

to Sp
dl

to allocate each dl requested by a given dci.
The pseudocode of this algorithm is shown in Algo-

rithm 1, in which all symbols without tk denote all re-
maining billing periods in T . For each dci, we sort Sg

dci
by increasing order of unit Put cost, unit Get cost and
unit Storage cost, respectively, which results in three sorted
lists. We call them Put, Get and Storage sorted datacenter
lists, respectively. We use Maxg/Ming , Maxs /Mins and
Maxp/Minp to denote the maximum/minimum Get unit
prices, Storage unit prices and Put unit prices among the
datacenters belonging to Sg

dci
.

For each data dl requested by a given dci, we calculate
its maximum/minimum Storage cost, Get cost and Put cost,
respectively:
Maxdl

s =
∑

tk∈T Maxs ∗ sdl
∗ tk,

Maxdl
g =

∑
tk∈T Maxg ∗ vdl,tk

dci
∗ tk,

Maxdl
p =

∑
tk∈T Maxp ∗ udl,tk

dci
∗ tk,

Mindl
s , Mindl

g and Mindl
p are calculated similarly. If

Mindl
s >> Maxdl

g +Maxdl
p , we regard that the data belongs

to the Storage dominant set. Similarly, we can decide
whether dl belongs to the Get or Put dominant set. If dl
does not belong to any dominant set, it is classified into the
balanced set. The datacenter allocation for data items in each
dominant set is conducted in the same manner, so we use
the Get dominant set as an example to explain the process.

For each data dl in the Get dominant set, we try each
datacenter from the top in the Get sorted datacenter list.
We find a datacenter satisfying Get/Put capacity constraints
(Constraint (11)) (Line 11) and Get/Put latency SLO con-
straints (Constraint (8)) (Lines 9-10), and determine the
largest possible request serving ratio of this replica. The
subsequent datacenters in the list may have a similar unit
price for Gets but have different unit prices for Puts and
Storage, which may lead to lower total cost for this data
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Figure 1: Efficiency and the validity of the dominant-cost based data
allocation algorithm .

allocation. Therefore, we choose a number of subsequent
datacenters, calculate Cdl

dci,dpk
for dl, where k ∈ [j+1, j+c],

and choose dpj to create a replica and assign requests to
(Constraint (13)) (Lines 15-17) if Cdl

dci,dpj
is smaller than all

Cdl

dci,dpk
. If there are no less than β replicas (Constraint (10))

(Line 18), and the remaining request ratio to assign is equal
to 0 (Constraint (14)) (Lines 4 and 18), the data allocation
for dl is completed. For any data in the balanced set, we
choose the datacenter in Sg

dci
∩Sp

dl
that generates the lowest

total cost for dl. In the datacenter selection process, the
constraints in Section II-B are checked to ensure the selected
datacenter satisfying the conditions. After allocating all data
items, we get a valid data allocation schedule with sub-
optimal cost minimization.

Efficiency and validity of the algorithm. The efficiency
of the dominant-cost based data allocation algorithm de-
pends on the percentage of data items belonging to the three
dominant sets, since it allocates data in each dominant set
much more efficiently than data in the balanced set. We then
measure the percentage of data items in each data set from a
real trace in order to measure the efficiency of the algorithm.
We get the Put rates of each data from the publicly available
wall post trace from Facebook New Orleans networks [20],
which covers inter-posts between 188,892 distinct pairs of
46,674 users. We regard each user’s wall post as a data item.
The data size is typically smaller than 1 KB. The Get:Put
ratio is typically 100:1 in Facebook’s workload [21], from
which we set the Get rate of each data item accordingly. We
uses the unit prices for Storage, Get and Put in all regions in
Amazon S3, Microsoft Azure and Google cloud storage [1–
3]. For each data item dl, we calculated its dominant ratio
of Storage as Mindl

s /(Maxdl
g +Maxdl

p ), and if it is no less
than 2, we consider dl as storage dominant. Similarly, we
can get a dominant ratio of Get and Put. Figure 1(a) shows
the percentage of data items belonging to each dominant
set. We can see that most of the data items belong to
the Storage dominant set and Get dominant set, and only
17.2% of data items belong to the balanced set. That is
because in the trace, most data items are either rarely or
frequently requested with majority costs as either Storage
or Get cost. The figure indicates that the dominant-cost
based data allocation algorithm is efficient since most of
the data belongs to the three dominant sets rather than the

balanced set. Figure 1(b) shows the CDF of data items over
the dominant ratio in the Get dominant set as an example.
It shows that most of the data items in the Get dominant
set have a dominant ratio no less than 8, and the largest
dominant ratio reaches 3054. Thus, the cost of these data
items quickly decreases when the Get unit price decreases,
and then we can allocate them to the datacenter with the
minimum Get unit price. These results support the algorithm
design of finding appropriate datacenter dpj in the sorted
datacenter list of the dominant resource of a data item.

B. Optimal Resource Reservation

After the dominant-cost based allocation, we need to
determine reserved Get/Put rates for each datacenter in order
to further reduce the cost as much as possible given a set of
allocated data items and their Get/Put rate over T . Since the
method to determine the reserved Get and Put rates is the
same, we use Get as an example to present this method.
Before we introduce how to find reservation amount to
achieve the maximum reservation benefit, we first introduce
the benefit function of the reservation, denoted as Fdpj

(x),
where x is the reserved number of Gets/Puts in any billing
period tk. The benefit is the difference between the saved
cost by using reservation instead of pay-as-you-go manner
and the cost for over-reservation. The over reservation cost
includes the cost for over reservation and the over calculated
saving. Thus, we can calculate the benefit by
Fdpj (x) = (

∑
tk∈T

x ∗ (1− α) ∗ pgdpj )−Odpj (x) ∗ p
g
dpj
, (17)

where Odpj (x) is the over reserved number of Gets. It is
calculated by
Odpj (x) =

∑
tk∈T

Max{0, x−
∑
dl∈D

∑
dci∈Dc

r
tk
dci,dpj

∗ tk}. (18)

Recall that Rg
dpj

is the optimal number of reserved Gets for
each billing period during T in a schedule. That is, when
x = Rg

dpj
, Fdpj (x) reaches the maximum value, represented

by Bdpj
= Fdpj

(Rg
dpj

) =Max{Fdpj
(x)}x∈N+ .

In the following, we first prove Corollary III.1, which sup-
ports the rationale that allocating as much data as possible
to the minimum-cost datacenter in the dominant-cost based
data allocation algorithm is useful in getting a sub-optimal
result of reservation benefit. Then, we present Corollary III.2
that helps find reservation x to achieve the maximum reser-
vation benefit. Finally, we present Theorem III.1 that shows
how to find this reservation x.

Corollary III.1. Given a datacenter dpj that already stores
a set of data items, allocating a new data item dl and its
requests to this datacenter, its maximum reservation benefit
Bdpj

is non-decreasing.

Proof: After allocating dl to dpj , we use F ′dpj
(x) to

denote the new reservation benefit function since rtkdci,dpj
in

Equation (18) is changed. Then, we can get F ′dpj
(Rg

dpj
) ≥

Fdpj (R
g
dpj

) since rtkdci,dpj
is not decreasing. Since the new



reserved benefit B′dpj
=Max{F ′dpj

(x)}x∈N+ , thus B′dpj
≥

F ′dpj
(Rg

dpj
) ≥ Fdpj (R

g
dpj

) = Bdpj after dl is allocated.
We define the number of Gets in tk as m =Max{

∑
dl∈D∑

dci∈Dc
rtkdci,dpj

∗ tk}tk∈T . Then, according to Equa-
tion (17), we can get the optimal reservation Gets Rg

dpj
∈

[0,m]. Thus, by looping all integers within [0,m], we can
get the optimal reservation that results in maximum Fdpj

.
This greedy method, however, is time consuming. In order to
reduce the time complexity, we first prove Corollary III.2,
based on which we introduce a binary search tree based
optimal reservation method.
Corollary III.2. For a datacenter dpj , its benefit function
Fdpj (x) is increasing when x ∈ [0, Rg

dpj
) and decreasing

when x ∈ (Rg
dpj
,m].

Proof: According to Equation (17), we define FI(x) =
Fdpj

(x)−Fdpj
(x−1) = (n∗(1−α)−OI(x))∗pgdpj

, where n
is the number of billing periods in T . The extra over reserved
number of Gets of Odpj

(x) compared to Odpj
(x − 1),

represented by OI(x) = Odpj (x)−Odpj (x− 1), equals the
number of billing periods during T that have the number
of Gets smaller than x, i.e.,

∑
dci∈Dc

rtkdci,dpj
∗ tk < x.

Therefore, OI(x) is increasing. At first OI(0) = 0, and when
OI(x) < n∗ (1−α), then FI(x) > 0, which means Fdpj

(x)
is increasing; when OI(x) > n ∗ (1 − α), then FI(x) < 0,
which means Fdpj (x) is decreasing. Therefore, Fdpj (x) is
increasing and then decreasing. Since Fdpj (R

g
dpj

) reaches
the largest Fdpj

(x), we can derive that Fdpj
(x) is increasing

when x ∈ [0, Rg
dpj

), and decreasing when x ∈ (Rg
dpj
,m].

Algorithm 2: Binary search tree based resource reservation.

1 Build a balanced binary search tree of A with Atk
dpj

;
2 N1 = bn ∗ (1− α)c+ 1; N2 = dn ∗ (1− α)e+ 1;
3 x1 = the N1

th smallest value of A;
4 x2 = the N2

th smallest value of A;
5 if Fdpj (x1) ≥ Fdpj (x2) then
6 Rg

dpj
= x1;

7 else
8 Rg

dpj
= x2;

We use Atk
dpj

=
∑

dci∈Dc
rtkdci,dpj

∗ tk to denote the total
number of Gets served by dpj during tk, and define A =
{At1

dpj
, At2

dpj
, ..., Atn

dpj
}.

Theorem III.1. To achieve the maximum reservation benefit,
the reservation amount x is the N th smallest value in A =
{At1

dpj
, At2

dpj
, ..., Atn

dpj
}, where N equals dn ∗ (1 − α)e + 1

or bn ∗ (1− α)c+ 1.
Proof: The proof of Corollary III.2 indicates that

when OI(x) = dn ∗ (1 − α)e or bn ∗ (1 − α)c,
Fdpj

(x) can reach Bdpj
. As indicated above, OI(x)

represents the number of billing periods during T with
Atk

dpj
=

∑
dci∈Dc

rtkdci,dpj
∗ tk < x. Therefore, when x is the

N th smallest value in A, where N equals dn ∗ (1−α)e+1
or bn ∗ (1− α)c+ 1, Fdpj

(x) reaches Bdpj
.

We then use the binary search tree algorithm to find the
optimal reservation number of Gets. Its pseudocode is shown
in Algorithm 2. The time complexity of this algorithm is
O(n∗log n). It builds a binary search tree using O(n∗log n),
and then finds the N th and (N +1)th smallest values in the
tree using O(log n), and all other operations takes O(1).

IV. SYSTEM INFRASTRUCTURE

In this section, we introduce the infrastructure to conduct
the previously introduced DAR algorithms. It collects the
information of scheduling inputs, calculates the data allo-
cation schedule and conducts data allocation. As shown in
Figure 2, DAR’s infrastructure has one master server and
multiple agent servers, each of which is associated with a
customer datacenter. Agent servers periodically measure the
parameters needed in the schedule calculation and conducted
by the master.

Customer 
datacenter 

Cloud storage 

Agent Master 

Front-end 

Request ratio 

Statistical result 

Dominant-
Cost based 

Data 
Allocatio 

Optimal 
Resource 

Reservation 

Input 

Output 

Figure 2: Overview of DAR’s infrastructure

In cloud, the reservation is made at the beginning of
reservation time period T and remains the same during
T . Due to the time-varying feature of the inter-datacenter
latency and Get/Put rates, the master needs to periodically
calculate the allocation schedule after each billing period tk
and reallocate the data accordingly if the new schedule has
a smaller cost or the current schedule cannot guarantee the
SLOs. Therefore, the master executes the optimal resource
reservation algorithm and makes a reservation only before
t1, and then updates T to T\{tk} and executes the dominant-
cost based data allocation algorithm after each tk.

During each tk, for the schedule recalculation, the mas-
ter needs the latency’s CDF of Get/Put (F g

dci,dpj
(x) and

F p
dci,dpj

(x)), the size of each dl (sdl
), and the data’s Get/Put

rate from dci (vdl,tk
dci

and udl,tk
dci

). Each agent in each customer
datacenter periodically measures and reports these measure-
ments to the master server. The DAR master calculates the
data allocation schedule and sends the updates of the new
data allocation schedule to each customer datacenter. Specif-
ically, it measures the differences of the data item allocation
between the new and the old schedules and notifies storage
datacenters to store or delete data items accordingly. In
reality, billing time period tk (e.g., one month) may be too
long to accurately reflect the variation of inter-datacenter
latency and Get/Put rates dynamically in some applications.
In this case, DAR can set tk to a relatively small value with
the consideration of the tradeoff between the cost saving,
SLO guarantee and the DAR system overhead.
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Figure 3: Get SLO guarantee performance.
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Figure 4: Put SLO guarantee performance.

V. PERFORMANCE EVALUATION

We conducted trace-driven experiments on Palmetto
Cluster [22] with 771 8-core nodes and on real clouds. We
first introduce the experiment settings on the cluster.

Simulated clouds. We simulated geographically dis-
tributed datacenters in all 25 cloud storage regions in Ama-
zon S3, Microsoft Azure and Google cloud storage [1, 3, 2];
each region has two datacenters simulated by two nodes
in Palmetto. The distribution of the inter-datacenter Get/Put
latency between any pair of cloud storage datacenters fol-
lows the real latency distribution as in [11]. The unit prices
for Storage, Get, Put and Transfer in each region follows
the prices listed online. We assumed that the reservation
price ratio (α) follows a bounded Pareto distribution among
datacenters with a shape as 2 and a lower bound and an
upper bound as 53% and 76%, respectively [15].

Customers. We simulated ten times of the number of
all customers listed in [1, 3, 2] for each cloud service
provider. The number of customer datacenters for each
customer follows a bounded Pareto distribution, with an
upper bound, a lower bound and a shape as 10, 8 and 2,
respectively. As in [11], in the SLOs for all customers, the
Get deadline is restricted to 100ms [11], the percentage
of latency guaranteed Gets and Puts is 90%, and the Put
deadline for a customer’s datacenters in the same continent
is 250ms and is 400ms for an over-continent customer. The
minimum number of replicas of each data item was set to
β = 3 [15]. The size of the aggregated data of a customer
was randomly chosen from [0.1TB, 1TB, 10TB] as in [11].
The number of aggregated data items of a customer follows
a bounded Pareto distribution with a lower bound, an upper
bound and a shape as 1, 30000 and 2 [23].

Get/put operations. The percentage of data items re-
quested by each customer datacenter follows a bounded
Pareto distribution with an upper bound, lower bound and
shape as 20%, 80% and 2, respectively. Each aggregated data
item is formed by data objects and the size of each requested
data object was set to 100KB [11]. The Put rate follows
the publicly available wall post trace from Facebook New
Orleans networks [20], which covers inter-posts between
188,892 distinct pairs of 46,674 users. We regard each user’s
wall post as a data item. The data size is typically smaller
than 1 KB. The Get:Put ratio is typically 100:1 in Facebook’s
workload [21], from which we set the Get rate of each data

item accordingly. Facebook is able to handle 1 billion/10
million Gets/Puts per second [21], and has ten datacenters
over the U.S. Accordingly, we set the Get and Put capacities
of each datacenter in an area to 1E8 and 1E6 Gets/Puts per
second, respectively. Whenever a datacenter is overloaded,
the Get/Put operation was repeated once again. We set the
billing period (tk) to 1 month and set the reservation time to
3 years [15]. We computed the cost and evaluated the SLO
performance in 3 years in experiments. For each experiment,
we repeated 10 times and reported the average performance.

Real clouds. We also conducted small-scale trace-driven
experiments on real-world CSPs including Amazon S3,
Windows Azure Storage and Google Cloud Storage. We
simulated one customer that has customer datacenters in
Amazon EC2’s US West (Oregon) Region and US East
Region [24]. Unless otherwise indicated, the settings are
the same as before. Due to the small scale, the number of
data items was set to 1000, the size of each data item was
set to 100MB, and β was set to 2. The datacenter in each
region requests all the data objects. We set the Put deadline
to 200ms. One customer’s Gets and Puts operations cannot
generate enough workload to reach the real Get/Put rate
capacity of each datacenter. We set the capacity of a
datacenter in each region of all CSPs to 40% of total
expected Get/Put rates. Since it is impractical to conduct
experiments lasting a real contract year, we set the billing
period to 4 hours, and set the reservation period to 2 days.

We compared DAR with the following methods:
• SPANStore [11], which is a storage over multiple CSPs’
datacenters to minimize cost supporting SLOs without con-
sidering capacity limitations and reservations.
•COPS [25], which allocates requested data in a datacenter
with the shortest latency to the customer datacenter.
•Cheapest, in which the customer selects the datacenters
with the cheapest cost to store each data item without
considering SLOs and reservations.
• Random, in which the customer randomly selects datacen-
ters to allocate each data item.

A. Comparison Performance Evaluation
To evaluate the SLO guarantee performance, we measured

the lowest SLO satisfaction levels of all customers. The
Get/Put SLO satisfaction level of a customer, Qg/Qp, is cal-
culated according to Equation (7) with qgtk/q

p
tk

as the actual
percentage of Gets/Puts within deadline during tk. We varied



each data item’s Get/Put rate from 50% to 100% (called
request ratio) of its original rate with a step size of 10%.

Figures 3(a) and 3(b) show the (lowest) Get SLO sat-
isfaction level of each system versus the request ratio
on the testbed and real CSPs, respectively. We see that
the lowest satisfaction level follows 100%=DAR=COPS>
SPANStore>Random>Cheapest. DAR considers both the
Get SLO and capacity constraints, thus it can supply a
Get SLO guaranteed service. COPS always chooses the
storage datacenter with the smallest latency. SPAN- Store
always chooses the storage datacenter with the Get SLO
consideration. However, since it does not consider datacenter
capacity, a datacenter may become overloaded and hence
may not meet the latency requirement. Thus, it cannot supply
a Get SLO guaranteed service. Random uses all storage dat-
acenters to allocate data, and the probability of a datacenter
to become overloaded is low. However, since it does not
consider the Get SLO, it may allocate data to datacenters
far away from the customer datacenters, which leads to long
request latency. Thus, Random generates a smaller (lowest)
Get SLO satisfaction level than SPANStore. Cheapest does
not consider SLOs, and stores data in a few datacenters with
the cheapest price, leading to heavy datacenter overload.
Thus, it generates the worst SLO satisfaction level. The
figures also show that for both SPANStore and Random, the
Get SLO satisfaction level decreases as the request ratio in-
creases. This is because a higher request ratio leads to higher
request load on an overloaded datacenter, which causes a
worse SLO guaranteed performance due to the repeated
requests. The figures indicate that DAR can supply a Get
SLO guaranteed service with SLO and capacity awareness.

Figures 4(a) and 4(b) show the lowest Put SLO sat-
isfaction level of each system versus the request ratio
on the testbed and real CSPs, respectively. We see that
the lowest SLO satisfaction level follows 100%=DAR
>SPANStore>COPS>Random>Cheapest. DAR considers
both Put SLOs and datacenter Put capacity, so it supplies
SLO guaranteed service for Puts. Due to the same reason
as Figure 3(a), SPANStore generates a smaller Put SLO sat-
isfaction level. COPS allocates data into datacenters nearby
without considering the Put latency minimization, and the
Put to other datacenters except the datacenter nearby may
introduce a long delay. Thus, COPS cannot supply a Put
SLO guaranteed service, and generates a lower Put SLO
satisfaction level than SPANStore. Random and Cheapest
generate smaller Put SLO satisfaction levels than the others
and the level of SPANStore decreases as the request ratio
increases due to the same reasons as in Figure 3(a). The
figures indicate that DAR can supply a Put SLO guaranteed
service while others cannot.

Figure 5(a) shows the payment costs of all systems
compared to Random by calculating the ratio of the each
system’s cost to the cost of Random on the testbed.
The figure shows that the cost follows COPS≈Random>
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Figure 5: Cost minimization performance.

SPANStore>Cheapest>DAR. Since both COPS and Ran-
dom do not consider cost, they produce the largest cost.
SPANStore selects the cheapest datacenter within the dead-
line constraints, thus it generates a smaller cost than systems
without cost considerations. However, it produces a larger
cost than Cheapest, which always chooses the cheapest
datacenter in all datacenters. DAR generates the smallest
cost because it chooses the cheap datacenter under SLO
constraints and makes a reservation to further maximally
save cost. The figure also shows that the cost of DAR in-
creases as the request ratio increases, but it always generates
the smallest cost. This is because when the datacenters with
the cheapest price under constraints are used up, the second
optimal candidates will be chosen to allocate the remaining
data. While all others do not consider the capacities of
datacenter, and hence violate the Get/Put SLO by making
some datacenters overloaded. Figure 5(b) shows the payment
costs of all systems compared to Random on the real CSPs. It
shows the same order and trends of all systems as Figure 5(a)
due to the same reason, except that COPS<Random. That
is because the storage datacenters nearest to the customer
datacenters happen to have a low price. The figures indicate
that DAR generates the smallest payment cost in all systems.

VI. RELATED WORK

Deploying on multiple clouds. RACS [7] and Dep-
Sky [26] are storage systems that transparently spread
the storage load over many cloud storage providers with
replication in order to better tolerate provider outages or
failures. In [27], an application execution platform across
multiple CSPs was proposed. Wang et al. [28] studied
content propagation in social media traces and found that the
propagation is quite localized and predictable. Based on this
pattern, they proposed a social application deployment using
local processing for all contents and global distribution only
for popular contents among cloud datacenters. COPS [25]
and Volley [16] automatically allocate user data among dat-
acenters in order to minimize user latency. Blizzard [29] is
a high performance block storage for clouds, which enables
cloud-unaware applications to fast access any remote disk
in clouds. Unlike these systems, DAR additionally considers
both SLO guarantee and cost minimization for customers
across multiple cloud storage systems.

Minimizing cloud storage cost. In [8–10], cluster
storage automate configuration methods are proposed



to use the minimum resources needed to support the
desired workload. None of the above papers study the cost
optimization problem for geo-distributed cloud storage over
multiple providers under SLO constraints. SPANStore [11]
is a key-value storage over multiple CSPs’ datacenters to
minimize cost and guarantee SLOs. However, it does not
consider the capacity limitation of datacenters, which makes
its integer program a NP-hard problem that cannot be solved
by its solution. Also, SPANStore does not consider resource
reservation to minimize the cost. DAR is advantageous in
that it considered these two neglected factors and effectively
solves the NP-hard problem for cost minimization.

Improving network for SLO guarantee. Several
works [30–33] have been proposed to schedule network
flows or packages to meet deadlines or achieve high network
throughput in datacenters. All these papers focus on SLO
ensuring without considering the payment cost optimization.

VII. CONCLUSION

This work aims to minimize the payment cost of
customers while guarantee their SLOs by using the
worldwide distributed datacenters belonging to different
CSPs with different resource unit prices. We first modeled
this cost minimization problem using integer programming.
Due to its NP-hardness, we then introduced the DAR system
as a heuristic solution to this problem, which includes
a dominant-cost based data allocation algorithm among
storage datacenters and an optimal resource reservation
algorithm to reduce the cost of each storage datacenter. DAR
also incorporates an infrastructure to conduct the algorithms.
Our trace-driven experiments on a testbed and real CSPs
show the superior performance of DAR for SLO guaranteed
services and payment cost minimization in comparison
with other systems. In our future work, we will explore
methods to handle the situations, in which the data request
rate varies largely and datacenters may become overloaded.
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