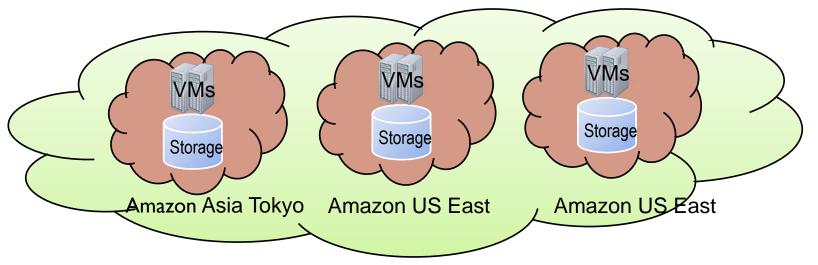


Minimum-cost Cloud Storage Service Across Multiple Cloud Providers

0

Guoxin Liu and Haiying Shen

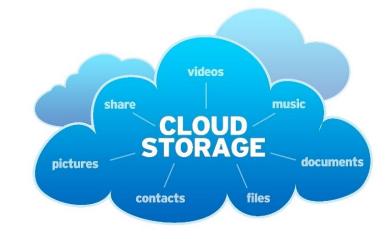
Department of Electrical and Computer Engineering, Clemson University, Clemson, USA


- Introduction
- Related Work
- Data Storage Service across Cloud Service Providers (CSPs)
- Evaluation
- Conclusion

Worldwide Cloud Storage

Cloud storage

- Vendors
 - Amazon Dynamo; Microsoft Azure; Google Cloud Storage
- Benefits
 - Save capital investment
 - World wide distributed datacenters
 - Save management and maintaining cost
 - Pay for usage
 - 1) Pay-as-you-go, 2)Reservation



Worldwide Cloud Storage

Cloud storage

- New solution for web application storage*
 - OSNs: Google+
 - Portals: BestBuy
 - File sharing: Dropbox
- Using a single CSP
 - Vendor lock-in
 - Service latency (SLO)
 - Payment cost

- Cloud storage across multiple CSPs
 - How to choose vendors
 - Amazon Dynamo
 - Microsoft Azure
 - Google Cloud Storage

- Introduction
- Related Work
- Data Storage Service across Cloud Service Providers (CSPs)
- Evaluation
- Conclusion

Related Work

Deploy on multiple clouds

- Transparently spread the storage workload over many cloud storage providers
 - Data availability: RACS ^[1], DepSky ^[2]
 - Data retrieval latency: COPS [3], Volley [4]
- Minimize Cloud storage cost
 - Adaptively assign data with different sizes to different storage services to minimize the cost for storage
 - Minimize resource utilization of a cluster ^[5]
 - Minimize cost across CSPs ^[6]

[1] A. Hussam, P. Lonnie, and W. Hakim. RACS: A Case for Cloud Storage Diversity. In Proc. of SoCC, 2010.
[2] A. N. Bessani, et al. DepSky: Dependable and Secure Storage in a Cloud-of-Clouds. TOS, 2013.
[3] W. Lloyd, et al. Dont Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. 2011.
[4] S. Agarwal, et al. Volley: Automated data placement for geo-distributed cloud services. NSDI, 2010.
[5] H. V. Madhyastha, et al. SCC: Cluster Storage Provisioning Informed by Application Characteristics and SLAs.
[6] Z. Wu, et al. SPANStore: Cost-Effective Geo-Replicated Storage Spanning Multiple Cloud Services. SOSP, 2013.

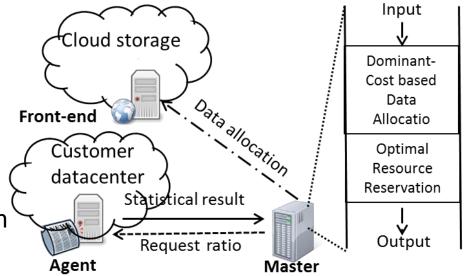
Related Work (cont.)

SLO guarantee in datacenters

- Achieve high throughput and guarantee SLO
 - Caching and scheduling ^{[7], [8]}
- We propose geo-distributed cloud storage system for Data storage and request Allocation and resource Reservation across multiple CSPs (DAR)
 - Minimize cost considering both pay-as-you-go and reservation pricing models
 - Guarantee SLO considering service latency, data availability and datacenter capacity

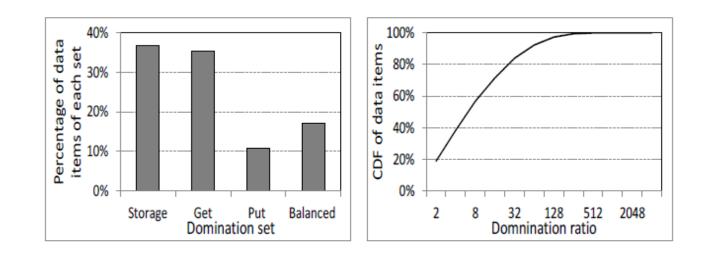
[7] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling. In Proc. of SIGCOMM, 2012.[8] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.

- Introduction
- Related Work
- Data Storage Service across Cloud Service Providers (CSPs)
- Evaluation
- Conclusion


Data Storage Service across CSPs

- Objective: Cost minimization
 - Include: Get, Put, Storage, and Transfer
- Constraints:
 - Service latency
 - Allow no more than % of Gets/Puts beyond required deadline
 - Data availability
 - Maintain a pre-defined number of replicas for each data item
 - Amazon S3 applies 3-replicas policy within a region
 - Datacenter capacity
 - Cumulative Get/Put rate of all data items ≤ Get/put capacity of a datacenter
- Integer Programming
 - NP-hard problem

Data Storage Service across CSPs


- DAR: Data storage and request Allocation and resource Reservation across multiple CSPs
 - System infrastructure
 - Master and multiple agents
 - A heuristic solution
 - A dominant-cost based data allocation algorithm
 - An optimal resource reservation algorithm

Data Allocation and Reservation

- Dominant cost
 - Cost >> sum of all other costs
 - Storage/Get/Put dominant set
- Trace data analysis
 - Existence & high domination ratio

Data Allocation and Reservation

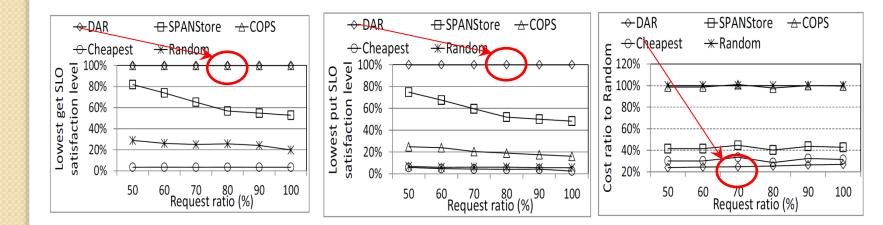
- Dominant-Cost based Data Allocation
 - Data Allocation for each data item
 - Filter datacenters according to SLO
 - Service latency
 - Data availability
 - Data center capacity
 - Find dominant cost
 - Allocate to datacenters with minimum pay-as-you-go price for dominant cost

Optimal Resource Reservation

- Maximize saving in pay-as-you-go cost
- Avoid over-reservation
- Proof of the existence of optimal reservation
 - Binary search to find the optimal reservation

- Introduction
- Related Work
- Data Storage Service across Cloud Service Providers (CSPs)
- Evaluation
- Conclusion

Evaluation of DAR


- Simulated CSPs: 25 regions
 - Amazon S3, Microsoft Azure, and Google cloud storage
- Simulated customers
 - 50 Cloud customers
- Real deployment
 - One customer: Amazon EC2 US East & West regions
- Comparison
 - COPS [3]: shortest latency
 - SPANStore [6]: latency guaranteed and unit cost minimization
 - Cheapest: unit cost minimization
 - Random: random CSP selection

[3] W. Lloyd, et al. Dont Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. 2011.[6] Z. Wu, et al. SPANStore: Cost-Effective Geo-Replicated Storage Spanning Multiple Cloud Services. SOSP, 2013.

Evaluation of DAR

- Due to capacity and latency awareness
 - DAR supplies get-SLA and put-SLA guaranteed service
- Due to the comprehensive cost policy awareness
 - DAR generates the least payment cost to CSPs

- Introduction
- Related Work
- Data Storage Service across Cloud Service Providers (CSPs)
- Evaluation
- Conclusion

Conclusion

- Data storage and request Allocation and resource Reservation across multiple CSPs (DAR)
 - Algorithms
 - Dominant-cost based data allocation
 - Optimal resource reservation
 - Effectiveness
 - Minimize the payment cost and achieve the SLO of each customer
- Future wok
 - Data request dynamically distribution for congestion control

Thank you! Questions & Comments?

If you have any questions, please contact: Haiying (Helen) Shen, Associate professor shenh@clemson.edu Clemson University