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Abstract—Data analytics frameworks shift towards larger
degrees of parallelism. Efficient scheduling of data-parallel jobs
(tasks) is critical for improving job performance such as response
time, and resource utilization. It is an important challenge for
large scale data analytics frameworks in which jobs are more
complex and have diverse characteristics (e.g., diverse resource
requirements). Prior work on scheduling cannot achieve low re-
sponse time and high resource utilization simultaneously because
they cannot accurately estimate the durations of tasks in the
queue of a worker machine by using sampling-based approach
(including sampling with late binding) for task placement, and
thus they fail to place tasks at the best possible worker machine.
Also, they do not sufficiently consider the diverse resource re-
quirements of jobs (tasks) for placing tasks on worker machines.
To address this challenge, we propose a Dependency-aware and
Resource-efficient Scheduling (DRS) to achieve low response
time and high resource utilization. DRS takes into account task
dependency and assigns tasks that are independent of each other
to different worker machines. Also, DRS considers tasks’ resource
requirements and packs complementary tasks whose resource
demands on multiple resources are complementary to each other
to increase the resource utilization. In addition, DRS uses the
mutual reinforcement learning to estimate the task’s waiting time
(the duration of tasks in the queue of a worker), and assigns
tasks to workers with the consideration of tasks’ waiting time to
reduce the response time. Extensive experimental results based
on a real cluster and experiments using real-world Amazon EC2
cloud service show that DRS achieves low response time and high
resource utilization compared to previous strategies.

I. INTRODUCTION
Cloud frameworks tailored for managing and analyzing
big datasets are powering ever larger clusters of computers.
Parallel processing frameworks have become a key computing
platform. Providing low response time and high resource
utilization for parallel jobs that run on thousands of machines
poses a challenge for scheduling. Usually, parallel jobs consist
of hundreds or thousands of concurrent tasks, and the response
time is determined by the tail task. Therefore tasks should be
efficiently scheduled. The response time will be increased even
if a single task placed on a contended machine. Also, jobs
(tasks) become more complex and have diverse characteristics
(e.g., diverse resource requirements). Existing schedulers [1]-
[3] cannot well handle this challenge because they cannot
accurately estimate the durations of tasks in the queue of
a worker machine and the sampling-based approach used
for task placement, is not accurate and sometimes is even
opportunistic, which prevents the schedulers from placing

tasks at best possible worker machines.
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In parallel jobs, the dependency between sub-second con-
current tasks (e.g., 100ms tasks) is common. The existing
scheduling approaches [2], [4], [S] try to address some of
the difficulties of job scheduling but ignore task dependency
while scheduling tasks. The work [4] designs a new scheduling
algorithm, Longest Approximate Time to End (LATE), that is
both simple and highly robust to heterogeneity for Hadoop
MapReduce environment. However, it cannot handle sub-
second parallel jobs with task dependency constraints. The
work [5] proposes a new TAGS (Task Assignment based on
Guessing Size) algorithm, and it is counterintuitive in many
respects, including load unbalancing, non-work conserving,
and fairness, but it assumes tasks are independent, and it thus
cannot handle tasks with dependency constraints. The work [2]
presents a distributed, low latency scheduler Sparrow with
placement constraints for heterogeneous cloud environment.
However, Sparrow does not consider the dependency relations
among tasks when assigning tasks to workers, and it thus may
violate the dependency constraints exiting among tasks in par-
allel jobs. Although the work [6] considers task dependency, it
does not consider the deadline constraints of individual jobs.
In contrast to existing scheduling approaches, our proposed
DRS takes into account task dependency and assigns tasks that
are independent of each other to different workers (or different
cores of a worker) so that the tasks can run in parallel, and thus
further reduce the response time and increase the throughput.

In parallel processing framework, the workloads/jobs be-
come more and more diverse. The work [7] shows that more
than 50% of the jobs at Google have constraints about the
machines that they can run on. Different jobs may have
requirements on the hardware or software. For example, a
job might require a machine with special hardware (i.e.,
GPUs, amount of memory). These are simple constraints. In
addition to simple constraints, combinatorial constraints are
also possible [8], i.e., requiring two tasks to be placed on
two distinct machines. Efficient resource allocation with the
consideration of jobs’ resource constraints thus attracts many
interests, and becomes a hot topic [9]-[13]. Several existing
works [3], [9], [10], [14] on scheduling aim to achieve high
resource utilization. The work [3] proposes a hybrid cen-
tralized/distribued scheduler called Hawk for job scheduling.
Long jobs are scheduled using a centralized scheduler, and
short jobs are scheduled in a fully distributed way. Hawk uses
a randomized work-stealing algorithm to improve the resource
utilization. The work [9] leverages the information provided



by the developed reservation system about jobs’ deadlines
and estimated runtimes to plan ahead which jobs to defer
so that the right sources can be assigned to the right jobs.
The work [14] introduces opportunistic scheduling, which
classifies tasks into two types: regular tasks and opportunistic
tasks. The work [14] ensures low latency for regular tasks,
but uses the opportunistic tasks for high utilization to fill the
slack left by regular tasks. However, the above works cannot
fully utilize the resource because they do not consider tasks’
diverse resource requirements on different resource types and
leverage the complementarity of tasks’ resource requirements
to increase the resource utilization. Unlike previous works, our
proposed DRS assigns tasks to workers with the consideration
of satisfying tasks’ constraints on resources and minimizing
the resource consumption, and DRS thus can achieve high
resource utilization with low cost.

To address the challenge and handle the issues in previous
works, in this paper, we propose a Dependency-aware and
Resource-efficient Scheduling (DRS) to achieve low response
time and high resource utilization. DRS is more advantageous
than previous schedulers in that DRS can achieve low response
time of jobs and high resource utilization simultaneously by
utilizing the dependency information and the mutual reinforce-
ment learning to accurately estimate the duration of tasks in the
waiting queue of a worker and leveraging the complementarity
of tasks’ diverse resource requirements on different resource
types to increase the resource utilization. We summarize the

contribution of this work below.
e We build a linear programming model that aims to mini-

mize the resource cost and increase the resource utilization
and present a cost-efficient scheduling system for processing
heterogeneous jobs in clouds.
o DRS takes into account task dependency and assigns tasks
that are independent of each other to different workers so
that the response time of jobs can be reduced. Also, DRS
introduces the concept of scheduler domains and uses the
Gossip protocol for the communication between the scheduler
managers in different domains based on Geometric Random
Graph (GRG) to reduce the communication overhead.
e DRS leverages tasks’ diverse resource requirements on dif-
ferent resource types and packs workers’ complementary tasks
whose resource demands on multiple resource types are com-
plementary to each other to increase the resource utilization.
o DRS uses the mutual reinforcement learning to estimate the
tasks’ waiting time in the queue of workers, and assigns tasks
to workers with the consideration of tasks’ waiting time in the
queue of workers so that the response time can be reduced.
e We have conducted extensive experiments on both a real
cluster and Amazon EC2 to demonstrate the advantages of
DRS in reducing the resource cost and time overhead and
increasing the throughput.

The remainder of this paper is organized as follows. Section
IT describes the system model used in this paper. Section
IIT presents design for our cost-efficient scheduling system.
Section IV presents the performance evaluation for DRS.
Section V reviews the related work. Section VI concludes this

paper with remarks on our future work.

II. SYSTEM MODEL

In this section, we first introduce some concepts and as-
sumptions, then we introduce our proposed model for minimiz-
ing the resource cost with the consideration of tasks’ resource
constraints.

A. Concepts and Assumptions

In a distributed system, there are workers and schedulers.
Workers are used to execute tasks, and schedulers are used to
assign tasks to workers. A job is supposed to be split into m
tasks, and the tasks are allocated to workers based on the de-
pendency relations among tasks and their requirements on re-
sources. We assume jobs can be handled by any scheduler and
tasks are run by workers in a fixed number of slots. Each work-
er has a buffer queue! which is used for queueing tasks when a
worker is allocated to more tasks than it can run concurrently.

Definition 1: Waiting time: The time from when a task is
submitted to the worker machine until when the task starts
executing.

Definition 2: Service time: The time from when a task starts
executing until when the task finishes executing on a worker
machine.”

Definition 3: Job response time: The time from when a job is
submitted to the scheduler until the tail task of the job finishes
executing.

Definition 4: Throughput: The total number of jobs complet-
ing their executions within the job deadlines per unit of time.
Problem Statement: Given a set of jobs consisting of tasks,
constraints of tasks (i.e., per-task constraints, resource con-
straints, response time constraints of jobs) and a set of het-
erogeneous worker machines, what is the minimum resource
cost? Then, how to schedule these jobs so that the resource
cost is minimized while the overhead is reduced?

We consider a scheduling problem with the objective of
scheduling multiple jobs onto multiple heterogeneous workers
to minimize resource cost and increase resource utilization
while satisfying jobs’ constraints. We present an integer linear
programming (ILP) model to minimize resource cost and
increase resource utilization while satisfying jobs’ constraints.

We introduce the details of the model as follows. For easy
TABLE I: Notations

n  Total # of workers | L A set of workers’ queue length
J A set of jobs f(k) Proc. rate func. of worker k

a #of jobsin J s& CPU size of worker k

Ji The ith job in J sk, Mem. size of worker k

tij  The jth task of J; M  Resource matrix

tibj £;j’s starting time R, Type r resource

tfj t;j’s ending time I # of resource types

Sij  Task t;;’s size ¢, Cost of R, per unit time

C.os Resource cost tfj t;;’s service time

m  # of tasks / job dijr tij’s demand on R,

! Although some cluster schedulers do not support buffer queues, we assume
a worker has a buffer queue [2], [3], [14], [15] for the purpose of utilizing task
dependency information to increase throughput in scheduling of cloud-scale
computing clusters [14].

’In the paper, we currently do not consider preemption due to the com-
plexity of modeling the optimization problem with multiple constraints, and
we leave it to our future work.



reference, Table I shows the main notations used in this paper.
Suppose a jobs (J = {J1,...,J,}) are submitted at time ¢. The
deadlines on job response time are represented by ti’,té’ , ...,tg .
Denote tibj(u) as the starting time of the uth task on the chain
C, belonging to job J; running on a worker machine, and tZ(u)
as the ending time (completion time) of the uth task running
on a worker machine. Define f(k) (k € {1,...,n}) as a function
of processing rate of the kth worker, which is the million
instructions per second (MIPS) speed, and f(k) is related to
the CPU size s* and memory size s¥, of the worker k [16]. The
larger the CPU size, the higher the processing rate; the larger
the memory size, the higher the processing rate. Specifically,
the function f(k) is expressed as follows

flk) = as¢+Bs), (1)
where k € {1,...,n}, and a and B are weights such that o+

B = 1. Let S;; be the size of task #;; belonging to job J; in terms
of Millions of Instructions (MI) [17], tisl. . be the service time

of task t;; assigned to worker k. Thus, we have tijk = % (ie
{1,...,a},je{1,....m}). Let y;; = {0,1} G € {1,...,a}, j€
{1,...,m},k € {1,...,n}) be a binary variable representing if
task #; is assigned to worker k, y;;r =1 if #;; is assigned to
worker k, otherwise y;; x = 0. Let x;; ,,,x = 1 if task #;; precedes
task #,, on worker machine k, otherwise x;; ,,x = 0.

B. Resource Cost Minimization
The workers in a distributed system have different resource

types (e.g., CPU, memory, GPU). For analytical tractability,
we use a matrix M to represent the resources of workers
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where each column represents one resource type, and each
row represents the resource types of a worker. Different tasks
may have different requirements on different resource types.
Some tasks are CPU intensive, and some tasks are memory
intensive. It is of importance to reduce the resource cost
while satisfying tasks’ requirements on resources for task
assignment [18]—[21]. Represent C,,s as the cost for all jobs’
(a jobs submitted at time t) resource consumption. Let ¢, be
the cost of using resource type R, per time unit (r € {1,...,1}).
Let d;; , be task #;;’s demand on resource type R, (the number
of units on resource type R, required by ¢?;) where
ie{l,..,a},je{l,...m},re{l,..,1}. We assume that the
resource allocated to the tasks cannot be reallocated to other
tasks until the tasks finish execution. Thus, we formalize our
problem as the following corllstrained optimization problem:
a m n
min Ceos = Z Z Z Z (dijr-cr 'tisj"k “Vijk) 3)

i=1 j=1r=1k=1

a m

a m n n
S.t. Z Z d,‘_,"r Z l‘;}_ky,'j.k — Z Z My Z l?:/?kyij.k <0 (r € {1,...,1}) “4)
k=1 k=1

i=1j=1 i=1j=1
(415 0) Yijk < (@04 (1= Xij i) - E) - Yuwe
(Vued{l,...,a},ve{l,...m})
n

A+ Y vk <t (4j€C) ©)
k=1

(&)

n
tzbj+ Yo viju < fil; (ge{L,....,m})
k=1

@)
Xijuv,k +xuv.ij,k =1 ()
Xijuvk € {O’ 1} 9
yijk €{0,1} (10)

n
(11

Z Yijk =1
S k=1 .
where tisj_’k = %, and E in Formula (5) is a very large

positive real number. The constraint (4) is to ensure that the
cumulative resource usage of R, on a worker machine my
does not exceed the capacity of this resource type during the
period of task execution. The constraint (5) is to ensure the
execution order of #; and f,,, on worker k. The constraint (6) is
to ensure jobs can complete within their specified deadlines.
The constraint (7) ensures the dependency relation between
t;; and t;,. The constraint (11) is to ensure that a task can be
assigned to only one worker machine. k (k|y, =1 € {1,...,n})
represents a set of workers derived from the model.

We use the CPLEX linear program solver [22] to solve

the large-scale linear optimization problem. Given a set of
jobs consisting of tasks, constraints of jobs and tasks, and the
resource information of a number of workers, by the resource
cost minimization model, we know the target workers for all
the tasks, namely, the schedulers can assign tasks to different
workers and minimize the resource cost while satisfying the
constraints of jobs and tasks.

III. SYSTEM DESIGN
In this paper, we aim to reduce the resource cost and

the time overhead while reducing the response time of jobs
and increasing the throughput. In Section II, we introduce
the system model for resource cost minimization. In this
section, we describe the design of our cost-efficient scheduling
system. Though Sparrow [2] and Hawk [3] can provide low
latency scheduling, they do not consider reducing the resource
cost. Also, Sparrow assigns tasks to workers based on batch
sampling with late binding, which can incur time overhead and
thus increase the response time of jobs because the sampling
based approach cannot accurately learn the duration of tasks in
workers’ queues. To handle this problem, we present DRS that
assigns tasks to workers with the consideration of reducing re-
source cost. Also, DRS takes into account the communication
overhead, and it utilizes the scheduler domains and uses the
Gossip protocol for the communication between the scheduler
managers in different domains based on the GRG to reduce
the communication overhead [23], [24]. By using scheduler
managers to manage the information of schedulers, DRS can
help balance the load of schedulers and thus avoid hot spots,
which is neglected in Sparrow [2] and Hawk [3]. In addition,
DRS uses the mutual reinforcement learning to estimate tasks’
waiting time in queues of workers for task placement so that
the response time can be reduced.

By the ILP model for resource cost minimization, the target
workers for all the tasks can be obtained. Algorithm 1 shows
the pseudocode of DRS scheduling. DRS first assigns jobs



to schedulers based on the geographic distance between the
jobs and schedulers and schedulers’ loads. Also, DRS reduces
the communication overhead between schedulers using Gos-
sip protocol for the communication between the scheduler
managers in different domains rather than the communication
between different schedulers. Second, the schedulers split jobs
into tasks and assign tasks to workers based on the ILP model
to reduce the resource cost. We present the details for the
design of DRS in the following.

A. Job Submission and Job Assignment

In DRS, schedulers are scattered in a distributed system.
When users submit their jobs, the jobs are delivered to the
schedulers near them. If the scheduler is heavily loaded, the
job will be delivered to the lightly loaded neighbor of the
heavily loaded scheduler to achieve load balance.

Algorithm 1: Pseudocode for Job_Processing()

1 A Job is submitted

2 sort(s[]) //Sort schedulers by distances between schedulers and the user
submitting the job

3 for i< 1 to Len(s) do

4 if s[i] is lightly loaded then

5 Assign the job to s]i]

6

7 \>

s[i] split the job into m tasks
Call Task_Scheduling() //Call Algorithm 2

8 if i =Len(s)+1 then
9 | i< imod Len(s)

10 return

Algorithm 2: Task_Scheduling()

1 for i< 1 tondo

2 if m; satisfy the resource constraints of the tasks then

3 if m; has multi-processors then

4 Fetch independent tasks from the queue and assign them
to different processors

5 return

Each scheduler has a unique key, and each scheduler has
the resource information of several workers associated with
the scheduler. The workers periodically report their resource
information to the scheduler, and the scheduler periodically
updates a table which contains the resource information of
each worker associated with the scheduler. To make the job
scheduling more efficient, we not only make the resource
information of workers available to the scheduler near those
workers, but also classify the schedulers into several categories
(i.e., CPU intensive, memory intensive, GPU intensive, etc.).
The CPU intensive schedulers have the resource information
of CPU intensive workers near those schedulers, similarly, the
memory intensive schedulers have the resource information of
memory intensive workers near those schedulers, etc. When a
job arrives, if the job is CPU intensive, the job will be assigned
to a CPU intensive scheduler; if it is memory intensive, the
job will be assigned to a memory intensive scheduler, etc.

Based on the resource cost minimization model, we can
obtain the target workers for all tasks. Next we describe
the communication between scheduler managers, and how to
assign tasks to different workers.

B. Scheduler Manager Communication

To reduce the communication overhead, we introduce the
scheduler managers and scheduler domains that split the
schedulers into different sets. Each set is a scheduler domain,
and there is a scheduler manager in each domain, maintaining
the information of schedulers in that domain.

To quickly spread different schedulers’ information and
reduce the communication overhead, we use the Gossip pro-
tocol for the communication between the scheduler managers
in different domains rather than the communication between
different schedulers. First, the schedulers in each domain
report their load information to the scheduler manager in
the same domain. Second, the scheduler manger uses Gossip
protocol to communicate with its neighbor based on GRG.
Specifically, the scheduler manager in each domain randomly
chooses one of its neighbors and sends its information to
the neighbor. According to [25], the average time that every
scheduler manager receives messages is O(r~'logN), where r
is the constant transmission radius [26], and N is the number
of scheduler managers in the distributed system. In our design,
we choose the constant transmission radius r such that each
scheduler manager has at least one neighbor. Compared to
the approach using Gossip protocol for the communication
between different schedulers, the average time that every
scheduler manager receives messages in DRS is much less,
because the number of scheduler managers is much less than
that of schedulers in the whole distributed system.

C. Resource Allocation

To achieve high resource utilization, we classify the workers
into several categories based on their resources, and make
the schedulers take into account resource utilization based
on the resource requirements when the schedulers assign
tasks to worker machines. On the other hand, DRS tries to
place different intensive tasks (i.e., tasks with complementary
resource demands) that are independent of each other in a
worker with multi-processors so that the tasks can run in
parallel achieving high resource utilization.

Figure 1(a) shows that the schedulers run tasks that are
independent of each other in parallel on single processor
workers. In Figure 1(a), the tasks of a job that do not depend
on each other are marked in different colors, and the schedulers
assign them to different workers. Figure 1(b) shows that the
schedulers run tasks that do not depend on each other in
parallel on multiprocessor workers, the independent tasks of a
job are marked in different colors, and the schedulers assign
them to different processors of a worker. The workers release
the resources that are allocated to the tasks after the tasks
complete. The workers periodically report their resource in-
formation to the corresponding schedulers, and the schedulers
update the workers’ resource information.

D. Task Scheduling

1) Fine-grained Waiting Time Prediction: Many previous
works using sample-based techniques to place tasks based
on the queue length at worker machines [2]. In previous
work [27], schedulers place tasks only based on the queue
length at worker machines. However, queue length is not



g
]
3
3y
0]
=

— orke

Tob NN NN} Geheaver) ===

Scheduler

—_—
TobN RN |—»(Seheauier ) =
~
~
~

| |
i

orker

-
[
gl
o
5

orker

3B
o
8

4

|
|
|
Jl
]
g
0|2
8

Scheduler

i

orker

(a) Running independent tasks in parallel on multiple single processor

workers

v
- Worker
TobNRRE]—(scheave)==___,
 —
R
JOb.I.l —. :::*IE -PI'OZ Worker
: ~— W]
-
Pro 4
T Ge=d) |

T @) ) worker

(b) Running independent tasks in parallel on multiprocessor workers

Fig. 1: Running independent tasks in parallel.

Waiting time Queue length
Fig. 2: Bipartite graph for waiting time and queue length.

enough for learning about the future waiting time of a task that
will be assigned to a worker because queue length provides
only a coarse-grained prediction of waiting time. For example,
the scheduler tries to place a task on one of two workers,
one of which has two 100ms tasks queued and the other
of which has one 400ms task queued. The scheduler will
place the task in the queue with only one task though that
queue will lead to a 200ms longer waiting time. To handle
this issue, we propose a fine-grained (reinforcement learning-
based) approach to predict the waiting time of tasks.

Reinforcement Learning-based Approach: In order to pre-
dict the waiting time of tasks, we use the mutual reinforcement
learning to accurately predict task duration [28].

We use a graph based model to learn the task duration. We
model the relation between the workers and their resources
by using a bipartite graph (see Figure 2). In the model, each
edge linking a waiting time and queue length (expected queue
length) represents the waiting time mapped to a worker with
the queue length, and each rectangle represents a queue length.
Let T be the set of tasks that are going to be put at the end
of queues of workers. Let L be the set of queue lengths of
different workers. The ith task of the set T is T, and the
length of the ith queue in the set L is L. Suppose the 7' is

going to be put at the end of the ith queue.
Given some known (labeled) examples of 7 and L. The

following equation can be used to estimate the waiting time
from their neighbors and queue length:

Tev1 = YTe+ (1= 7)Leta (12)
Correspondingly, the equation below can be used to estimate
the queue length from their neighbors and waiting time:

Ley1=06L.+(1—0)T.1 13)
Repeating 4 (the number of iterations) times, all tasks’ waiting
times can be estimated. The steps for iteratively finding
waiting time and queue length are shown in Algorithm 3. The
algorithm first checks if it is convergent (line 2). If it is not
convergent, then the algorithm propagates tasks’ waiting time

TABLE II: Parameter settings.

ParameterMeaning Setting |ParameterMeaning Setting
n # of servers 10-50 o ‘Weight for CPU size 0.5
a # of jobs 50-1000 B Weight for Mem. size 0.5
m # of tasks / job| 10-20 0 'Weight for waiting time| 0.5
l # of resc. types| 2 V4 Weight for queue length| 0.5

by estimating tasks’ waiting time from their neighbors and
queue lengths (line 3). Then, the algorithm propagates queue
length by estimating queue length from their neighbors and
tasks’ waiting time (line 4). Next, the algorithm clamps the
labeled data of tasks’ waiting time and queue length (line 5).
The algorithm can estimate all tasks’ waiting time and work-
ers’ queue length after repeating a certain number of times.
Algorithm 3: Pseudocode for iteratively finding waiting time
and queue length

Input: waiting time feature vector T, queue length feature vector Ly,
weighting coefficients y, 6, some manual labels of 7y and/or Lo
Output: Waiting time 7 and queue length L.
Set c=0
while not convergence do
Propagate waiting time. 7.1 < YT + (1 — )L, // Formula (12)
Propagate queue length. L.y < 6L, + (1 —0)T,.; // Formula (13)
Clamp the labeled data of 7,.; and L.1
Setc=c+1

N7 T SR SR

7 return L, T

IV. PERFORMANCE EVALUATION

We first conducted testbed experiments in a large-scale
real cluster Palmetto [29], which is Clemson University’s
primary high-performance computing (HPC) resource. We
tested various evaluation metrics and compared our method
with four other methods. To further evaluate the performance
of our method, we conducted experiments on the real-world
Amazon EC2 [30]. In the experiment, the dependency relation-
ship among tasks are created based on the starting time and
ending time of tasks in the Google cluster trace [31]. In the
following, we introduce our real testbed experimental results
and experimental results on Amazon EC2, respectively.
A. Experimental Results on the Real Cluster

We deployed our testbed in a large-scale cluster located in
our university. We implemented our method and other four
methods in our testbed, and we evaluated their performance
with 50 servers. We compared the results of our method and
the other four methods CLR [32], Natjam [33], SRPT [34]
and SNB [35] in various scenarios. We used up to 1000
heterogeneous short jobs which have different resource re-
quirements [36]. Each scheduler divides the job into tasks and



800000
700000
+ 600000
8 500000
£ 400000
n% 300000
200000
100000

0

900000
800000
1700000
8600000
§500000
3400000
§300000
200000
100000

EmDRS
EANatjam

EmDRS ECLR

E&Natjam

muCLR

e
2

2
oo

RARK
SRR

2

i

258
v

5583

,,
X
St

e
£a08

ks

e
32

S

F——
SEERES

e
o
%

50 100 150 200 250 50 100 150 200 250
Number of jobs Number of jobs

(a) Resource cost vs. number of jobs (b) Resource cost vs. number of jobs
with 15 tasks/job with 20 tasks/job

Fig. 3: Performance of various methods on resource cost.

forwards tasks to workers for processing. Table II shows the
parameter settings in our analysis unless otherwise specified.
Initially, we submitted jobs at a fixed rate and collected the
results, then we varied the job submission rate by ten times of
initial rate and conducted the experiments again to conclude
the effects of changing job submission rate on schedulers.

Figure 3(a) shows the relationship between the resource cost
and the number of jobs with 15 tasks per job. In Figure 3(a),
we observe that the resource cost increases as the number
of jobs increases. This is because the more the jobs, the
more resources are needed for running the tasks of the jobs,
and therefore the resource cost increases. In addition, we
also see that the resource costs of Natjam, CLR and DRS
follow DRS<Natjam<CLR. The reason is that DRS considers
improving resource utilization by minimizing the resource
cost, however Natjam and CLR allocate resource to tasks
without the consideration of reducing resource cost. Figure
3(b) shows the relationship between the resource cost and the
number of jobs with 20 tasks per job. From Figure 3(b), we
see the similar results due to the same reasons. By examining
Figure 3(a) and Figure 3(b), we find that the resource cost
increases as the number of tasks per job increases. This is
because the more tasks per job, the more likely a job consumes
more resources, and thus the resource cost increases.

Figure 4(a) shows the relationship between throughput (# of
tasks/ms) and the number of tasks with job submission rate 5
jobs per second. From Figure 4(a), we see that the throughput
follows SNB<SRPT<CLR~Natjam<DRS. This is because
DRS considers the dependencies among tasks and schedules
tasks that are independent of each other to different worker
machines so that the tasks can run in parallel, which reduces
response time and increases the throughput. Also, DRS uses
the mutual reinforcement learning to accurately estimate tasks’
waiting time in the queues of workers, and assigns tasks
to workers that have less waiting time, which also reduces
response time and increases the throughput. Figure 4(b) shows
the relationship between throughput and the number of tasks
with job submission rate 50 jobs per second. In Figure 4(b),
we see the similar results due to the same reasons explained
in Figure 4(a). By examining Figure 4(a) and Figure 4(b), we
find that the throughput slightly increases as job submission
rate increases. Both Figure 4(a) and Figure 4(b) suggest that
DRS outperforms the other four methods.

B. Experimental Results on Amazon EC2

To fully test the performance of our method, we also

conducted experiments on the real-world Amazon EC2. We
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evaluated the performance of DRS and the other methods
with 30 servers. We used the similar heterogeneous short jobs
with four workers for each scheduler. Each worker consists
of 12GB memory and six 2.5 GHz processors. Then, DRS
first submitted the jobs to schedulers and then the schedulers
assigned jobs to worker machines. We used the average values
of each metric as the performance on the metric.

Figure 5(a) shows the relationship between resource cost
and number of jobs on Amazon EC2 with 20 workers. In
Figure 5(a), we also see that the resource cost increases the
number of jobs increases. Also, we find that the cost of DRS
is lower than Natjam, and the cost of Natjam is slightly
lower than that of CLR. This is because DRS assigns tasks
to workers with the consideration of reducing the resource
cost. Figure 5(b) shows the relationship between resource cost
and number of jobs on Amazon EC2 with 30 workers. From
Figure 5(b), we also observe the resource cost increases the
number of jobs increases and the resource cost of DRS is
lower than Natjam, and the resource cost of Natjam is slightly
lower than that of CLR.

Figure 6(a) shows the relationship between throughput and
the number of tasks with job submission rate 5 jobs per
second. In Figure 6(a), we observe that the throughput follows
SNB <SRPT<Natjam<CLR<DRS, which is consistent with
our real testbed results. Figure 6(b) shows the relationship
between throughput and the number of tasks with job submis-
sion rate 50 jobs per second. In Figure 6(b), we observe the
throughput follows SNB <SRPT<CLR <Natjam<DRS, which
is also consistent with our real testbed results. Comparing
Figure 6(a) with Figure 4(a), and Figure 6(b) with Figure
4(b), we find that the throughput in Amazon EC2 is relatively
lower than that in cluster. This is because the communication
overhead in Amazon EC2 is relatively higher than that in the
local cluster, and the number of servers is larger than that in
Amazon EC2, which increases the chance that more tasks can
find idle worker machines. From these figures, we find both
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our testbed results and experimental results on EC2 show that
our method DRS outperforms the other methods.

V. RELATED WORK

We first review existing works on improving throughput
in scheduling. Then, we describe previous works on resource
utilization related to job (task) scheduling. Finally, we
indicate the advantages of our proposed DRS compared to
the previous works.

A. Improving Throughput

Many works focus on maximizing throughput in
scheduling [2], [37]-[40]. Zaharia et al. [37] proposed a delay
scheduling: when job that should be scheduled next according
to fairness cannot launch a local disk, it waits for a small
amount of time, letting other jobs launch tasks instead. The
work [37] shows delay scheduling achieves nearly optimal data
locality in a variety of workloads and can increase throughput
by up to 2x while preserving fairness. Raicu er al. [38]
developed Falkon, a Fast and Light-weight task execution
framework which integrates multi-level scheduling to separate
resource acquisition from dispatch, and a streamlined
dispatcher, and they showed Falkon throughput (487
tasks/sec) and scalability (to 54,000 executors and 2,000,000
tasks processed in just 112 minutes) are one to two orders of
magnitude better than other systems used in production Grids.
Wang et al. [39] struck the right balance between data-locality
and load-balancing to maximize throughput. They presented a
new queueing architecture and proposed a map task scheduling
algorithm constituted by the Join the Shortest Queue policy
together with the Max Weight policy. Bar-Noy et al. [40]
proposed 2 and (2 + €)-ratio approximation algorithms to
maximize the throughput of real time scheduling. However,
all of the above works neglect dependency in scheduling to
increase throughput. Unlike previous works, we consider task
dependency and assign tasks that are of independent of each
to different workers so that the independent tasks can run in
parallel and thus increase throughput.

There is a large body of work on scheduling in distributed
systems. Many existing works focused on independent tasks,
while many tasks are not independent such as MapReduce
tasks. Harchol-Balter [5] analyzed several natural task as-
signment policies and proposed a new one TAGS (Task
Assignment based on Guessing Size). The TAGS algorithm is
counterintuitive in many respects, including load unbalancing,
non-work conserving, and fairness. However, the work [5] as-
sumes tasks are independent. Dean and Barroso [41] proposed

a scheduling approach using hedged requests where the client
sends each request to two worker machines (workers) and
cancels remaining outstanding requests when the first result
is received. They also described tied requests, where clients
send each request to two servers, but the servers communicate
directly about the status of the request: when one server begins
executing the request, it cancels the counterpart. However,
each task must be scheduled independently to target an en-
vironment, thus tasks in a job cannot share the information.
Scheduling highly parallel jobs that complete in hundreds of
milliseconds poses a big challenge for task schedulers. To
address this challenge, Ousterhout et al. [2] demonstrated
that a decentralized, randomized sampling approach provides
near-optimal performance while avoiding the throughput and
availability limitations of a centralized design. However, it
neglects the dependency between tasks and thus cannot reduce
the latency for response time to the minimum by running tasks
that are independent of each other in parallel. In contrast to
the above works, our proposed DRS considers task dependency
and assigns tasks that do not depend on each other to different
workers (or different cores of a worker) so that the tasks can
run in parallel, and thus further reduces the response time and
increases the throughput.

B. Resource Utilization

There is a large body of work on resource allocation. How-
ever, many existing works ignore the resource constraints, and
thus these works are not realistic. The work [7] demonstrates
that over 50% of the jobs at Google have constraints about
the machines that they can run on. Fair schedulers such as
Quincy [42] and the Hadoop Fair Scheduler [37] take into
account data locality, but these schedulers treat locality as a
preference rather than a resource constraint (i.e., hard con-
straint), and can assign tasks non-locally if a suitable machine
is not available. Thus these schedulers neglect jobs’ resource
constraints existing in practical scenarios. Max-min fairness
has been widely studied in various areas such as networks,
operating systems, and queuing systems [43]-[46]. However,
previous works have a common unrealistic assumption, that
is, the resources required by tasks are identical. Although
Dominant Resource Fairness (DRF) [47] extends max-min
fairness to multiple resource types (i.e., CPU, memory), it
also assumes that the resource of a given type such as CPU
are identical. Unlike previous works, our proposed DRS takes
into account different resource constraints of tasks and assigns
tasks to workers with the consideration of satisfying tasks’
constraints on resources and optimizing resource allocation.
Thus DRS can achieve high resource utilization while not
violating tasks’ constraints on resources.

In our proposed method, DRS splits jobs into tasks by taking
into account the constraints of tasks, and assigns the tasks that
do not depend on each other to machines (or different cores
of a machine) so that these tasks can run in parallel and the
response time can thus be further reduced. DRS also takes into
account the constraints of jobs (tasks) on resources and sched-
ules jobs (tasks) with the consideration of resource utilization.



VI. CONCLUSION

This paper presents DRS, a scheduler that provides low
resource cost and high throughput with less overhead for
parallel short jobs. DRS takes into account the dependency
constraints and reduces the response time of jobs by running
tasks that are independent of each other in parallel. Also, DRS
uses the mutual reinforcement learning to estimate the tasks’
waiting time in the queue of workers, and assigns tasks to
workers with the consideration of tasks’ waiting time in the
queue of workers so that the response time can be reduced.
Moreover, DRS assigns tasks to workers with the consideration
of resource utilization, which helps DRS achieve high resource
utilization. We compare our method with the existing methods
in various scenarios using a large real cluster and Amazon
EC2 cloud service, and demonstrate that DRS outperforms the
exiting methods under both the real cluster and Amazon EC2
cloud service. In the future, we will consider the preemption
in our scheduler so that DRS can satisfy jobs (tasks) with
different priorities. Also, we will consider the tolerance of
failures [48] so that our scheduler can be more robust.
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