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Motivation 

• Large-scale data analytics frameworks are shifting towards 
shorter task durations and larger degrees of parallelism 

• Diverse task dependency 

• A task cannot start running until its precedent tasks complete 
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Motivation (cont.) 

• High requirements on response time 
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Motivation (cont.) 

• Queue length: poor predictor of waiting time  
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Motivation (cont.) 

• Resource inefficiency  
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Scheduler 

Random reservation (power of two)  

[1] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Distributed, low latency scheduling. In Proc. of SOSP, 2013 
[2] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid datacenter scheduling. In Proc. of ATC, 2015. 
 
 



Proposed Solution  
• DRS: Dependency-aware and Resource-efficient 

Scheduling 

– Features of DRS 

• Dependency awareness  

• Resource efficiency 

• High throughput 
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DRS  
• System model 

– 𝑛: Total # of workers               J: A set of jobs 

– 𝑎: # of jobs in J                       𝐽𝑖: The 𝑖th job in J  

– 𝑡𝑖𝑗: The 𝑗th task of 𝐽𝑖                𝑆𝑖𝑗: Task 𝑡𝑖𝑗’s size 

– 𝑚: # of tasks per job              𝐶cos: Resource cost 

 

– Waiting time: The time from when a task is submitted to the worker 
machine until when the task starts executing 

– Service time: The time from when a task starts executing until when the 

task finishes executing on a worker machine 

– Job response time: The time from when a job is submitted to the scheduler 

until the tail task of the job finishes executing 

– Throughput: The total number of jobs completing their executions within 

the job deadlines per unit of time 
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DRS  
• Problem statement 

– Given a set of jobs consisting of tasks, constraints of tasks 
(i.e., dependency constraints, resource constraints, response 
time constraints of jobs) and a set of heterogeneous worker 
machines, how to schedule these jobs so that the resource cost 
and the response time can be reduced as much as possible? 

 

• Goal  

– Design an efficient scheduling method for heterogeneous jobs 
with task dependency constraints for reducing resource cost 
and response time.   
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DRS  
• Linear programming (ILP) model  
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– Constraint (4): ensures that the cumulative resource usage of Rr 
on a worker machine does not exceed the capacity of this 
resource type during the period of task execution  

– Constraint (5): ensures the execution order of tasks on a worker  

– Constraint (6):  ensures jobs can complete within their specified 
deadlines 

– Constraint (7): ensures the dependency relation between tasks 

– Constraint (11): ensures that a task can be assigned to only one 
worker machine 

 

• CPLEX linear program solver 

• ILP model  



Challenges  

• Challenges of DRS design 

  

– How to schedule tasks with constraints (e.g., dependency) to 
achieve low response time and high resource utilization  

 

– How to accurately estimate tasks’ waiting time in the queues of 
workers   

 

– How to reduce the communication overhead in scheduling 
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Design of DRS 

• Reduce cost   

– Utilize the ILP model to reduce resource cost 

 

• Reduce response time 

– Leverage task dependency information and schedule tasks that 
are independent of each other to different workers or different 
processors of a worker so that independent tasks can run in 
parallel 

– Use the reinforcement learning-based approach to estimate 
tasks’ waiting time for scheduling 

– Utilize scheduler domains and Gossip protocol to reduce the 
communication overhead  
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Reduce Communication Overhead  
• Schedulers are scattered in a distributed system 
• When users submit their jobs, the jobs are delivered to the 

schedulers near them 
• If the scheduler is heavily loaded, the job will be delivered to 

the lightly loaded neighbor of the heavily loaded scheduler to 
achieve load balance 

• Scheduler Manager Communication  
– Split the schedulers into different sets, each set is a scheduler 

domain 
– A scheduler manager exists in each scheduler domain  
– Scheduler manager communicate with each other instead of 

schedulers, reducing communication overhead  
 
 
 
 
 

•   
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Reduce Response Time 
• Running independent tasks in parallel 

 

 

 

 

 

 

 

 

 

• Job classification: CPU intensive, memory intensive, GPU 
intensive, etc. 
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Running tasks in parallel on multiple single 
processor workers  

Running tasks in parallel on multiprocessor 
workers  



Reduce tasks’ waiting time  

• Predict tasks waiting time  
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Predicting Tasks’ duration 

• Reinforcement learning-based approach 

– DRS uses the mutual reinforcement learning-based approach to 
accurately estimate tasks’ duration in worker’s queues, and 
utilizes it for task scheduling  

 

  

 

20 



• Introduction 

• Dependency-aware and Resource-
efficient Scheduling (DRS) 

• Design of DRS 

• Performance Evaluation 

• Conclusions 

Outline 

21 



Performance Evaluation 
• Methods for comparison 

– CLR [1]: implements opportunistic allocation of spare resources to jobs, and it chooses the tasks 
consuming the most resources to be preempted.  

              [1] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica. True elasticity    
                  in multi-tenant data-intensive compute clusters. In Proc. SoCC, 2012. 

 

– Natjam [2]: assigns higher priority to production jobs and lower priority to research jobs in scheduling. 
It uses production jobs to preempt research jobs. Natjam first preempts the tasks of the job with the 
maximum deadline (which have the lowest priority). For tasks with the same job priority, Natjam uses 
two task preemption policies: Shortest Remaining Time (SRT) and Longest Remaining Time (LRT).  

           [2] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and P. Lin. Natjam: Design and  evaluation of eviction policies 
 for supporting priorities and deadlines in mapreduce clusters.   In Proc. SoCC, 2013. 

 

– SNB [3]: gives preference to requests for small size files or requests with short remaining file size. 
Specifically, it uses the linear combination of waiting time and the remaining time for a job (i.e., 
estimated time for completing the remaining part of the job) to determine the priority of a job.  

  [3] A. Balasubramanian, A. Sussman, and N. Sadeh. Decentralized preemptive scheduling across    
         heterogeneous multi-core grid resources. In Proc. of JSSPP, 2015. 

 

– SRPT [4]: gives preference to those requests which are short, or have small remaining processing 
requirements, in accordance with the SRPT (Shortest Remaining Processing Time) scheduling policy. 

  [4] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to   
        improve web performance. ACM Trans. on Computer Systems, 21(2):207--233, 2003. 
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Experiment Setup  

• Parameter settings 

 

 

 

 

 

 

 

 

 

• Palmetto cluster in Clemson and Amazon EC2 
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Parameter Meaning Setting 

𝑁 # of servers 50/30 

𝑎 # of jobs 50-1000 

𝑚 # of tasks / job 10-20 

𝑙 # of resource types 2 

𝛼 Weight for CPU size 0.5 

𝛽 Weight for memory size 0.5 

𝛾 Weight for waiting time 0.5 

𝜃 Weight for queue length 0.5 
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• Resource cost on the cluster 

(a) 15 tasks / job 

Result: Resource cost increases as the number of jobs increases;  
resource cost follows DRS < Natjam < CLR 

(b) 20 tasks / job 
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• Throughput on the cluster 

(a) 5 jobs / second 

Result: Throughput follows SNB < SRPT < CLR ≈ Natjam < DRS 

(b) 50 jobs / second 



Evaluation (cont.) 
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• Resource cost on Amazon EC2 

(a) 15 tasks / job (b) 20 tasks / job 

Result: Resource cost increases as the number of jobs increases;  
resource cost follows DRS < Natjam < CLR 
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• Throughput on Amazon EC2 

 

(a) 5 jobs / second 

Result: Throughput follows SNB < SRPT < Natjam < CLR < DRS 

(b) 50 jobs / second 
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Conclusions 
• Our contributions 

– Build a linear programming model to minimize the resource cost and 
increase the resource utilization    

– Consider task dependency for task assignment, utilize scheduler 
domains and Gossip protocol to reduce the communication overhead   

– Present a reinforcement learning-based approach to estimate tasks' 
waiting time in the queue of workers, and then assign tasks to workers 
to reduce the response time 

– Conduct extensive trace-driven experiments and show the performance 
of DRS 

 
 

• Future work 
– Consider preemption 

– Consider the tolerance of failures  
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Dr. Haiying Shen 

hs6ms@Virginia.edu 

Associate Professor 

Pervasive Communication Laboratory 

University of Virginia 


