
Dependency-aware and Resource-

efficient Scheduling for Heterogeneous

Jobs in Clouds

Jinwei Liu* and Haiying Shen†

*Dept. of Electrical and Computer Engineering, Clemson University, SC, USA
†Dept. of Computer Science, University of Virginia, Charlottesville, VA, USA

Outline

2

 • Introduction

• Problem addressed by Dependency-
aware and Resource-efficient
Scheduling (DRS)

• Design of DRS

• Performance Evaluation

• Conclusions

Introduction

3

Scheduling

T

T

T

T

T

T

T

T

Job

Job
Scheduler

Scheduler

Motivation

• Large-scale data analytics frameworks are shifting towards
shorter task durations and larger degrees of parallelism

• Diverse task dependency

• A task cannot start running until its precedent tasks complete

4

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

Motivation (cont.)

• High requirements on response time

5

2004 MapReduce
batch job

2009 Hive
query

2010 Dremel
query

2012 In-memory
Spark

10 min

1 min

10 sec
2 sec

Motivation (cont.)

• Queue length: poor predictor of waiting time

6

Choose random
Worker 1

Worker 2

100 ms 100 ms

400 ms

200 ms

400 ms

Motivation (cont.)

• Resource inefficiency

7

Choose random

Scheduler

Random reservation (power of two)

[1] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Distributed, low latency scheduling. In Proc. of SOSP, 2013
[2] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid datacenter scheduling. In Proc. of ATC, 2015.

Proposed Solution
• DRS: Dependency-aware and Resource-efficient

Scheduling

– Features of DRS

• Dependency awareness

• Resource efficiency

• High throughput

8

Dependency-

aware

scheduling

Resource-

efficient

scheduling

High throughput

Dependency-aware and resource-

efficient scheduling (DRS)

Framework of DRS

• Introduction

• Problem addressed Dependency-aware
and Resource-efficient Scheduling
(DRS)

• Design of DRS

• Performance Evaluation

• Conclusions

Outline

9

DRS
• System model

– 𝑛: Total # of workers J: A set of jobs

– 𝑎: # of jobs in J 𝐽𝑖: The 𝑖th job in J

– 𝑡𝑖𝑗: The 𝑗th task of 𝐽𝑖 𝑆𝑖𝑗: Task 𝑡𝑖𝑗’s size

– 𝑚: # of tasks per job 𝐶cos: Resource cost

– Waiting time: The time from when a task is submitted to the worker
machine until when the task starts executing

– Service time: The time from when a task starts executing until when the

task finishes executing on a worker machine

– Job response time: The time from when a job is submitted to the scheduler

until the tail task of the job finishes executing

– Throughput: The total number of jobs completing their executions within

the job deadlines per unit of time

10

DRS
• Problem statement

– Given a set of jobs consisting of tasks, constraints of tasks
(i.e., dependency constraints, resource constraints, response
time constraints of jobs) and a set of heterogeneous worker
machines, how to schedule these jobs so that the resource cost
and the response time can be reduced as much as possible?

• Goal

– Design an efficient scheduling method for heterogeneous jobs
with task dependency constraints for reducing resource cost
and response time.

11

DRS
• Linear programming (ILP) model

12

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

– Constraint (4): ensures that the cumulative resource usage of Rr
on a worker machine does not exceed the capacity of this
resource type during the period of task execution

– Constraint (5): ensures the execution order of tasks on a worker

– Constraint (6): ensures jobs can complete within their specified
deadlines

– Constraint (7): ensures the dependency relation between tasks

– Constraint (11): ensures that a task can be assigned to only one
worker machine

• CPLEX linear program solver

• ILP model

Challenges

• Challenges of DRS design

– How to schedule tasks with constraints (e.g., dependency) to
achieve low response time and high resource utilization

– How to accurately estimate tasks’ waiting time in the queues of
workers

– How to reduce the communication overhead in scheduling

14

• Introduction

• Problem addressed by Dependency-
aware and Resource-efficient
Scheduling (DRS)

• Design of DRS

• Performance Evaluation

• Conclusions

Outline

15

Design of DRS

• Reduce cost

– Utilize the ILP model to reduce resource cost

• Reduce response time

– Leverage task dependency information and schedule tasks that
are independent of each other to different workers or different
processors of a worker so that independent tasks can run in
parallel

– Use the reinforcement learning-based approach to estimate
tasks’ waiting time for scheduling

– Utilize scheduler domains and Gossip protocol to reduce the
communication overhead

16

Reduce Communication Overhead
• Schedulers are scattered in a distributed system
• When users submit their jobs, the jobs are delivered to the

schedulers near them
• If the scheduler is heavily loaded, the job will be delivered to

the lightly loaded neighbor of the heavily loaded scheduler to
achieve load balance

• Scheduler Manager Communication
– Split the schedulers into different sets, each set is a scheduler

domain
– A scheduler manager exists in each scheduler domain
– Scheduler manager communicate with each other instead of

schedulers, reducing communication overhead

•

17

Reduce Response Time
• Running independent tasks in parallel

• Job classification: CPU intensive, memory intensive, GPU
intensive, etc.

18

Running tasks in parallel on multiple single
processor workers

Running tasks in parallel on multiprocessor
workers

Reduce tasks’ waiting time

• Predict tasks waiting time

19

Worker 1

Worker 2

Predicting Tasks’ duration

• Reinforcement learning-based approach

– DRS uses the mutual reinforcement learning-based approach to
accurately estimate tasks’ duration in worker’s queues, and
utilizes it for task scheduling

20

• Introduction

• Dependency-aware and Resource-
efficient Scheduling (DRS)

• Design of DRS

• Performance Evaluation

• Conclusions

Outline

21

Performance Evaluation
• Methods for comparison

– CLR [1]: implements opportunistic allocation of spare resources to jobs, and it chooses the tasks
consuming the most resources to be preempted.

 [1] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica. True elasticity
 in multi-tenant data-intensive compute clusters. In Proc. SoCC, 2012.

– Natjam [2]: assigns higher priority to production jobs and lower priority to research jobs in scheduling.
It uses production jobs to preempt research jobs. Natjam first preempts the tasks of the job with the
maximum deadline (which have the lowest priority). For tasks with the same job priority, Natjam uses
two task preemption policies: Shortest Remaining Time (SRT) and Longest Remaining Time (LRT).

 [2] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and P. Lin. Natjam: Design and evaluation of eviction policies
 for supporting priorities and deadlines in mapreduce clusters. In Proc. SoCC, 2013.

– SNB [3]: gives preference to requests for small size files or requests with short remaining file size.
Specifically, it uses the linear combination of waiting time and the remaining time for a job (i.e.,
estimated time for completing the remaining part of the job) to determine the priority of a job.

 [3] A. Balasubramanian, A. Sussman, and N. Sadeh. Decentralized preemptive scheduling across
 heterogeneous multi-core grid resources. In Proc. of JSSPP, 2015.

– SRPT [4]: gives preference to those requests which are short, or have small remaining processing
requirements, in accordance with the SRPT (Shortest Remaining Processing Time) scheduling policy.

 [4] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to
 improve web performance. ACM Trans. on Computer Systems, 21(2):207--233, 2003.

22

Experiment Setup

• Parameter settings

• Palmetto cluster in Clemson and Amazon EC2

23

Parameter Meaning Setting

𝑁 # of servers 50/30

𝑎 # of jobs 50-1000

𝑚 # of tasks / job 10-20

𝑙 # of resource types 2

𝛼 Weight for CPU size 0.5

𝛽 Weight for memory size 0.5

𝛾 Weight for waiting time 0.5

𝜃 Weight for queue length 0.5

Evaluation (cont.)

24

• Resource cost on the cluster

(a) 15 tasks / job

Result: Resource cost increases as the number of jobs increases;
resource cost follows DRS < Natjam < CLR

(b) 20 tasks / job

Evaluation (cont.)

25

• Throughput on the cluster

(a) 5 jobs / second

Result: Throughput follows SNB < SRPT < CLR ≈ Natjam < DRS

(b) 50 jobs / second

Evaluation (cont.)

26

• Resource cost on Amazon EC2

(a) 15 tasks / job (b) 20 tasks / job

Result: Resource cost increases as the number of jobs increases;
resource cost follows DRS < Natjam < CLR

Evaluation (cont.)

27

• Throughput on Amazon EC2

(a) 5 jobs / second

Result: Throughput follows SNB < SRPT < Natjam < CLR < DRS

(b) 50 jobs / second

• Introduction

• Problem addressed Dependency-aware
and Resource-efficient Scheduling
(DRS)

• Design of DRS

• Performance Evaluation

• Conclusions

Outline

28

Conclusions
• Our contributions

– Build a linear programming model to minimize the resource cost and
increase the resource utilization

– Consider task dependency for task assignment, utilize scheduler
domains and Gossip protocol to reduce the communication overhead

– Present a reinforcement learning-based approach to estimate tasks'
waiting time in the queue of workers, and then assign tasks to workers
to reduce the response time

– Conduct extensive trace-driven experiments and show the performance
of DRS

• Future work
– Consider preemption

– Consider the tolerance of failures

29

30

Thank you!
Questions & Comments?

Dr. Haiying Shen

hs6ms@Virginia.edu

Associate Professor

Pervasive Communication Laboratory

University of Virginia

