
Towards Resource-Efficient Cloud Systems: Avoiding Over-Provisioning in
Demand-Prediction Based Resource Provisioning

Liuhua Chen
Department of Electrical and Computer Engineering

Clemson University, Clemson, 29634
Email: liuhuac@clemson.edu

Haiying Shen
Department of Computer Science

University of Virginia, Charlottesville, 22904
Email: hs6ms@virginia.edu

Abstract—Demand-prediction based resource provisioning
schemes help assure service level objectives (SLO) in cloud
systems. We notice that if a provisioning scheme does not
exclude bursts from historical resource demands in normal
demand prediction or always uses a large padding to correct
under-prediction, it will lead to resource over-provisioning and
low resource utilization. To improve the previous schemes, in
this paper, we present a Resource-efficient Predictive Resource
Provisioning system in clouds (RPRP) that excludes bursts in
demand prediction and has algorithms to specifically handle
bursts to avoid resource over-provisioning. Rather than setting
padding to a possibly high value, RPRP has a load-dependent
padding algorithm that adaptively determines padding based
on predicted demands. To handle bursts, RPRP embodies a
responsive padding algorithm that adaptively adjusts padding
to recover from both under-provisioning and over-provisioning.
We implemented RPRP on top of Xen and conducted both
trace-driven simulation and real-world testbed experiments.
The experimental results show that RPRP achieves higher
resource utilization, more accurate demand predictions, and
fewer SLO violations than previous schemes.

I. INTRODUCTION

In cloud systems, all hardware resources are pooled into
a common infrastructure to be shared by applications. Com-
mercial cloud providers such as Amazon’s EC2 [1] abstract
processor, memory, storage, and other resources in physical
machines (PMs) into virtual machines (VMs) and sell them
to tenants. After the service level agreements including
service level objectives (SLOs) are enacted, tenants then de-
ploy applications by accessing their own VMs and pay only
for the resources they have acquired. In such a consolidated
environment, the resources in physical machines are often
under-utilized or over-utilized since application resource
demands vary over time [2]. To ensure resource provisioning
for guaranteeing SLOs, clouds can use demand-prediction
based resource provisioning schemes [3–14] that allocate
physical resources to VMs according to the dynamically
estimated VM demands. Inaccurate demand estimation could
lead to over-provisioning (hence resource under-utilization)
or under-provisioning (hence SLO violations). Providing
more resources achieves low SLO violations while leading to
low resource utilization, and vice versa. Achieving the trade-
off between the penalties associated with SLO violations

time0

demand

predicted demand

burst

CloudScale

RPRP

time0

demand
burst

allocated resource

allocated resource

A

B
padding

predicted demand
C

padding

Figure 1: Prediction and padding.

and high resource utilization (hence revenue maximization)
requires an accurate demand prediction methodology.

To improve the prediction accuracy of the previous
demand-prediction based resource provisioning schemes,
previous work [10] deal with demand mispredictions by
adding a padding to a predicted demand. CloudScale [10]
uses the average value of the demands at each time point
in multiple periodical patterns from the historical record as
the predicted demand at this time point in the next time
period, and uses the maximum (or the 80th percentile value)
of the high-frequency spectrum at each time point as the
padding. This method does not exclude bursts either in
demand prediction or in padding determination, and may use
a padding larger than the actual needed amount. A burst is a
sudden large increment of demand which occurs in a random
short time and is difficult to predict. Note a large demand
that occurs periodically is predictable and is not a burst. We
notice that regarding bursts as normal demands in demand
prediction may lead to over-predictions for normal demands
but under-predictions for bursts. For example, as shown in
Figure 1, suppose we predict the demand at a time period
based on a historical record that covers two time periods.
CloudScale uses the average values at points A and B to
produce the predicted demand at point C, which is larger
than the normal demand and smaller than the burst. Also,
the padding can be very large by using the high-frequency
spectrum or using the average of the latest ten prediction
errors which could be for bursts. To handle underestimation,
CloudScale also raises the resource allocation cap by ratio
α>1 until an underestimation error is corrected but it does
not decrease the cap until the next prediction is performed
even when it is higher than the real demand. Although it can

lower the cap in the next prediction, the over-predictions
problem can be significant especially when this happens
frequently.

In this paper, we study three real traces and verify that i)
bursts are common and occur irregularly in cloud systems,
and ii) using the 80th percentile value of the high-frequency
spectrum as the padding can lead to high over-provisioning.
Our trace measurement shows that the padding of a PM
hosting 20 VMs can reach the capacity of the PM. To further
improve the previous padding-based methods, we propose
a Resource-efficient Predictive Resource Provisioning
system in clouds (RPRP) that excludes bursts in demand
prediction and specifically handles bursts to avoid resource
over-provisioning. As a result, RPRP further reduces over-
provisioning, hence improving resource utilization (Figure
1). Specifically, RPRP consists of the following algorithms.

(1) A burst-exclusive prediction algorithm that excludes
bursts and noises to find the regular demand pattern, which
improves resource utilization efficiency.

(2) A load-dependent padding algorithm that determines
the padding for each predicted demand based on the
historical predicted and actual demand record in order
to minimize the expected total allocated resource while
guaranteeing SLO.

(3) A responsive padding algorithm that scales the
resource allocation cap up or down to meet the actual
demand rather than simply multiplying resource allocation
cap by a ratio (as in CloudScale) in order to improve
resource utilization.

Algorithms (1) and (2) aim to exclude bursts in demand
prediction and reduce padding to reduce over-provisioning
while satisfying resource demands. Algorithms (3) aims to
handle bursts or workload pattern deviation in a resource-
efficient manner.

Our work is novel in that it significantly reduces allocated
resource in predictive resource provisioning while guarantee-
ing SLO. Please note that we do not claim that our burst-
exclusive prediction algorithm itself is novel. We present this
algorithm only to show the advantage of excluding bursts
in prediction. We conducted comprehensive trace-driven
simulation and real-world testbed experiments to evaluate
the performance of RPRP in comparison with previous
methods. Our experimental results show that by only using
Algorithm (2), RPRP reduces 58.4% of the padding value
compared with CloudScale, and by only using algorithms
(1) and (2), RPRP reduces 18% of the allocated resource
while reducing 30% of the total number of SLO violations
compared with CloudScale on average.

The rest of this paper is organized as follows. Section II
briefly describes the related work. Section III presents the
details of each component of RPRP. Section IV presents
the performance evaluation of RPRP. Finally, section V
summarizes the paper with remarks on our future work.

II. RELATED WORK

There are plenty of researches on resource provisioning
in clouds and datacenters. Some previous works implement
static provisioning [15–22] that allocates physical resources
to VMs only once based on the maximum static VM
resource demands. However, static provisioning cannot fully
utilize resources because of time-varying resource demands
of VMs.

As an alternative of static provisioning, many works [3, 7,
9, 10, 23] dynamically allocate resource for applications by
using workload forecasting techniques to predict expected
workload parameters from measured system metrics. Bo-
broff et al. [3] used a time series forecasting algorithm [24]
to predict demands. Chandra et al. [7] proposed a workload
prediction algorithm using auto-regression and histogram
based methods. Gong et al. [9] proposed an online resource
demand prediction model, which uses a hybrid approach
that employs signature-driven and state-driven prediction
algorithms. The above methods differ from RPRP in that
they only predict the trend of VM resource demand but do
not handle mispredictions or the bursts, which may lead
to insufficient resource allocation. Several works [10, 23]
handle the mispredictions to improve prediction accuracy.
CloudScale [10] employs online resource demand prediction
and prediction error handling to achieve adaptive resource
allocation. However, as explained previously, these meth-
ods tend to allocate more resource than required in burst
prevailing situations and underestimation, which may lead
to low resource utilization. Agile [23] builds a mapping
function between the VM resource pressure (i.e., resource
usage/allocated resource) and the SLO violation rate, and
dynamically adjusts paddings based on monitored resource
pressure to keep the SLO violation rate below a target.
Agile determines paddings based on real resource usage
rather than before resource allocation, while we focus on
proactive padding determination before resource allocation
in this paper.

Some live VM migration methods have been proposed
[25–28] to handle overloads. Sandpiper [25] carries out
dynamic monitoring and hotspot probing on the utility of
system resources and migrates out VMs from hotspot PMs.
Each VM has a volume-to-size ratio (VSR), where the size is
its memory footprint and the volume is the product of CPU,
network and memory loads (i.e., 1/((1−cpu)× (1−net)×
(1−mem))). When selecting VMs to migrate from a hotpot
PM, Sandpiper attempts to migrate the VM with maximum
VSR to the PM with the least volume. VectorDot [26]
utilizes vectors to represent the multi-dimensional resource
requirements of VMs for migration. To reduce migration
cost, RIAL [27] dynamically assigns different weights to
different resources according to their usage intensity in the
overloaded PM. Guo et al. [28] proposed Seagull to handle
burst workload in local clusters by migrating applications

that have the lowest cloud price to the cloud. Unlike these
works that focus on VM migration, RPRP focuses on VM
resource demand prediction and misprediction correction.
These VM migration methods can use the demand prediction
from RPRP in migration scheduling to improve performance.
Our experimental results show the advantage of RPRP in
VM migration.

III. OBJECTIVE AND SYSTEM DESIGN

A. Objective

The VM workload consists of multiple types of resource
such as CPU, memory, I/O and network bandwidth. Like
previous resource provisioning schemes [3, 7, 9, 10, 29, 30],
we also predict the demand of each resource. In this paper,
we use the CPU resource amount (%) as an example to
present our work. We denote a VM’s workload demand
as a time series D = {dt1 , ...,dti , ...,dtN} where ti is a time.
We denote allocated resource (i.e., provisioned resource) as
A = {at1 , ...,ati , ...,atN}, where ati indicates the amount at
time interval from ti−1 to ti. We use the term utilized resource
to represent the actual resource consumption and denote it
as U = {ut1 , ...,uti , ...,utN}. We use resource capacity of a
VM, denoted by C, to refer to the maximum amount of
resource specified for a VM to use upon its creation. D, A
and U are scaled to resource capacities C and fall into the
range [0, 1]. We aim to more accurately predict demand
P = {ptN+1 ,ptN+2 ,...,ptN+T } from the historical records of
utilized resource U, based on which we dynamically allocate
resource A = {atN+1 ,atN+2 ,...,atN+T } to VMs. The goal of
our VM resource provisioning strategy is to dynamically
determine allocated resource A such that dti ≤ ati ≤ C and
meanwhile to minimize ati −dti .

B. Burst-exclusive Prediction

Trace analysis. In order to confirm whether resource
utilization bursts resulted from a sudden increase of re-
quests are common in cloud VMs, and whether Cloud-
Scale has relatively low resource utilization, we analyze
three real traces: Google Cluster [31], PlanetLab VM [32]

40

60

80

Re
sc
. u
sa
ge

(%
)

20

40

60

80

Re
sc
. u
sa
ge

(%
)

0 8 16 24

0
20
40
60

0 8 16 24

WorldCup

Google

PlanetLab

Re
sc
. u
sa
ge

(%
)

Time (hr)

0 8 16 24

Figure 2: Resource usage bursts.

and WorldCup [33].
The Google Cluster
trace records the CPU
and memory resource
usages on a cluster of
about 11000 machines
from May 2011 for 29
days. The PlanetLab
trace contains the CPU
utilization of each VM
in PlanetLab every 5
minutes for 24 hours
in 10 random days
in March and April 2011. The WorldCup web server
trace records per-minute workload intensity (in the form

of the number of requests in each minute) and we used
it to generate CPU resource usage every 5 minutes by
multiplying the number with a scaling factor of 0.05.
We picked one VM from each trace and measured the
percentage of the CPU resource consumption of each VM
in its capacity (called CPU usage). Figure 2 displays the
resource usage of each VM over time (in hours) from the
different traces. We can see that bursts are common and
can occur at any time. Note that the pulses in the Google
Cluster trace are not bursts since they are predictable pulse
demands that occur periodically.

From the Google Cluster trace, we manually selected
a low-burst-density VM and a high-burst-density VM that
have fewer and more bursts in a unit time period than the
average, respectively. We used their historical records of 48
hours to predict the demands and determine the paddings
every 5 minutes in the next 24 hours using CloudScale.
Figure 3(a) and Figure 3(b) show the resource demand and
the allocated resource of the low-burst-density VM and the
high-burst-density VM over 24 hours, respectively. These
figures present the average value of every 10 time points
(i.e., 50 mins). We find that CloudScale provides 33% and
17% more resources (i.e., ati−dti) in the low and high burst-
density workloads, respectively.

30

40

50

60

70

80

0 8 16 24

R
e

s
o

u
rc

e
 u

s
a

g
e

 (
%

)

Time (hr)

Allocated Workload

(a) Low burst density.

35

45

55

65

75

0 8 16 24
R

e
s
o

u
rc

e
 u

s
a

g
e

 (
%

)

Time (hr)

Allocated Workload

(b) High burst density.
Figure 3: Burst-based padding results of CloudScale.

Figure 4 shows the median, the 10th and 90th percentiles
of the resource utilization efficiency (i.e., the ratio of the
amount of utilized resource over the amount of allocated
resource) at all the measured time points during the 24
hours. We see that the allocated resource is higher than the
demanded resource most of the time in both workloads, and
CloudScale cannot achieve a resource utilization efficiency
close to 1 in either case. These results confirm that resource
utilization bursts are common in cloud VMs, and CloudScale
cannot achieve high resource utilization, which motivate us
to explore a more accurate prediction scheme that reduces
unnecessary resource provisioning hence increase resource
utilization while guaranteeing SLO compliance.
Algorithm design. We then present the details of the burst-
exclusive prediction algorithm. In order to exclude the
bursts, RPRP relies on Fast Fourier Transform (FFT), which
is a well-known algorithm for repeated pattern identifi-
cation from waveforms. Since VM and server workloads
from datacenters typically show a periodicity (in hours,

days, weeks, and so forth) [34, 35], FFT is applicable for
predicting workload demand in repeated periodic patterns
P = {ptN+1 ,ptN+2 ,...,ptN+T } based on the historical utilization
series (U={ut1 , ..., utN}).

0

0.2

0.4

0.6

0.8

Low High

Burst density

U
ti

li
z
a

ti
o

n
 e

ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

Low High
Burst density

R
e

s
o

u
rc

e
 u

ti
li

z
a

ti
o

n

e
ff

ic
ie

n
c
y

Figure 4: Statistics of resource uti-
lization efficiency at all the measured
time points during 24 hours.

f1
f2
f3

u

The first three components

Figure 5: Fourier decomposition.

C. Load-dependent Padding

Setting padding to a possibly high value leads to over-
provisioning though it can avoid under-provisioning. Actu-
ally, the variation of prediction errors is dependent on load
levels in cloud [19]. Below, we first formulate the problem
of padding determination to achieve both resource efficiency
and SLO guarantee, and then introduce our load-dependent
padding algorithm. To satisfy an SLO requirement that a
certain percentage of demands must be satisfied [36], the
expected probability that the padding can meet the resource
demand must satisfy Pr≥ 1−ε , where ε is a small value.

In the historical predicted and actual demand series during
a time period [t1, tN], we use P={p̂1, p̂2, ..., p̂M} (p̂1<p̂2<
... <p̂M) to represent the M different predicted demand
levels, and use Dp̂i={d1, d2, ..., dn p̂i

} (d1≤d2≤ ... ≤dn p̂i
,

np̂i=|Dp̂i |) to indicate the workload demands that were
predicted to be p̂i in descending order . Noted that N is the
total number of workload demands in the demand series, and
np̂i is the number of workload demands in demand level p̂i.
Then, N = ∑

M
j=1 np̂ j . We use δ (p̂i) to denote the padding

value for p̂i. The probability that the allocated resource
(ati=p̂i+δ (p̂i)) is sufficient to meet the demand is

Pr(p̂i) =
|{d j ≤ p̂i +δ (p̂i)|d j ∈Dp̂i}|

np̂i

. (1)

The expected probability that the allocated resource is suf-
ficient to meet the demand (Pr) is

Pr =
M

∑
i=1

Pr(p̂i)
np̂i

N
=

M

∑
i=1

|{d j ≤ p̂i +δ (p̂i)|d j ∈Dp̂i}|
n p̂i

np̂i

N
(2)

The expected allocated resource amount can be calculated
by

∑
p̂i∈P

[p̂i +δ (p̂i)]
np̂i

N
(3)

Problem: given the probability distribution of the predicted
demand levels (p̂ j), the probability distribution of the actual
demands for each p̂ j and ε , how can we determine the
padding value δ (p̂i) for each p̂i to achieve (Pr≥ 1−ε) and

…

…

… … ݅, ݆ …

…

1 2 …ଵ

…

predicted
demand

ac
tu

al
de

ma
nd

ෝ

ଵଶ… j permitted
violations

ଶ
ெ

(a) (b)

ෝି

…

ෝିଵෝିାଵ

Figure 6: Dynamic programming algorithm. (a) an M×εN dynamic pro-
gramming matrix M. (b) procedure to determine the allocated resource if
we place j permitted violations on predicted demand level p̂i.

meanwhile minimize the expected total allocated resource
(Equ. (3))?

In the following, we present a solution of the above
problem based on [19]. According to Equ. (2), to satisfy
Pr≥ 1−ε , the number of permitted violations d j > p̂i+δ (p̂i)
during the time period [t1, tN] must be no larger than εN.
Minimizing Equ. (3) can be transformed to minimizing
∑p̂i∈P [p̂i + δ (p̂i)]np̂i . To solve the above problem, we can
distribute εN permitted violations to different predicted
demand levels to minimize ∑p̂i∈P [p̂i + δ (p̂i)]n p̂i . To this
end, we rely on an M×εN dynamic programming matrix
M as shown in Figure 6(a).

In the matrix, M(i, j) represents the minimum total allo-
cated resource when distributing j violations to the first i
predicted demand levels (p̂1, p̂2, ..., p̂i). The arrows indicate
the computation process of the dynamic programming in
calculating each entry M(i, j), where j changes from 1 to εN
and i changes from p̂1 to p̂M . It finally arrives at M(M,εN),
which is the minimum total allocated resource when dis-
tributing all εN violations to all M predicted demand levels,
and the allocated resource ati=p̂i+δ (p̂i) (hence the padding
δ (p̂i)) for each demand level p̂i is also determined.

Figure 6(b) shows how to determine the allocated resource
if we place j permitted violations on predicted demand level
p̂i. There are n p̂i demand values that were predicted to be p̂i,
Dp̂i={d1, d2, ..., dnp̂i

} (d1≤d2≤ ...≤dn p̂i
. If j violations are

permitted in the predicted demand level p̂i, then the allocated
resource is dnp̂i− j, which is the value of (np̂i - j)th demand.
Then, the total allocated resource for p̂i is dn p̂i− j×n p̂i and
the padding is δ (p̂i) = dn p̂i− j− p̂i.

The whole computation process consists of the
initialization and the recurrence phases. The initialization
phase handles the first row, i.e., M(1, j) (j = 1, ...,εN).
That is, it directly calculates the total allocated resource
for placing j (j = 1, ...,εN) violations on demand level p̂1
using the method introduced above. In the recurrence phase,
the algorithm enumerates all the possible placements that i)
place x (x = 0,1, ..., j) violations on p̂i and ii) place j− x
violations on p̂1, p̂2, ..., p̂i−1. The minimum total allocated
resource for part i) is calculated based on the method
introduced above, which equals dn p̂i−x×np̂i . The minimum
total allocated resource for part ii) can be obtained by simply
referring to M(i−1, j−x). We finally find out the placement
that results in minimum M(i, j) for different arrangements:

Time

De
m

an
d

t1 t2 t3t’

Predicted demand Actual demand
Under
estimate

Figure 7: Underestimate correction. Demand prediction and resource allocation
are performed at time t1, t2 and t3. Responsive padding is performed at time
t ′ where the allocated resource becomes insufficient for the demand before
next prediction and allocation.

M(i, j)=min0≤x≤ j{M(i− 1, j − x) + dnp̂i−x × np̂i}. Finally,
we get M(M,εN) and get the padding δ (p̂i)) for each
demand level from this placement schedule.

D. Responsive Padding

Usually VM demand prediction and resource allocation
are carried out periodically (e.g., at time t1, t2 and t3 in
Figure 7). Since VM demand dynamically fluctuates within
each predication period, the allocated resource sometimes
becomes insufficient for the demand. For example, the
allocated resource is detected as insufficient for the demand
from time t ′, long before the next prediction and allocation
time point t3. The resource underestimation occurs from time
t ′ to t3. The same situation can happen to overestimation.

Then, we aim to keep the resource utilization efficiency
within [Tl , Tu], where Tl and Tu are lower bound threshold
and upper bound threshold, so that resource is fully utilized
while SLO is satisfied. A resource utilization efficiency
lower than Tl means overestimation and a resource utilization
efficiency higher than Tu means underestimation. The black-
box monitoring [25] can be used to detect underestimation
(i.e., the utilization exceeds a high threshold for a sustained
time) and overestimation.

Unlike CloudScale that only raises the resource allocation
cap, we also decrease the cap adaptively to reduce over-
provisioning. If underestimation is flagged (resource utiliza-
tion efficiency > Tu) at time t ′, then

at ′+∆ = at ′ +
1
2
(umax−at ′) (4)

where umax is the maximum recorded utilized resource of
this VM, and ∆ is a monitoring interval. If the resource
utilization efficiency is lower than Tl after raising (t ′′), then

at ′′+∆ = at ′′ −
1
2
(at ′′ −ut ′′) (5)

By respectively performing Equ. (4) and Equ. (5), we
can quickly restrict the resource utilization efficiency within
the range of [Tl ,Tu]. Our responsive padding algorithm
can achieve the goal of correcting underestimation while
maintaining high resource utilization efficiency.

IV. PERFORMANCE EVALUATION

In this section, we present performance evaluation of
RPRP in comparison with Sandpiper [25] and CloudScale

0

5

10
CloudScale

P
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

CloudScale

0

2

4

6

8

Google CPU Google Mem PlanetLab

P
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

RPRP(+)
CloudScale(+)
RPRP(-)
CloudScale(-)

(a) Prediction error.

0

2000

4000

6000

8000

A
ll

o
c
a

te
d

 r
e

s
o

u
rc

e

0

1

2

3

4

5

Google PlanetLab Google
mem

S
a

v
e

d
 r

e
s
o

u
rc

e

a
ll

o
c
a

ti
o

n
 (

%
)

(b) Saved resource allocation.
Figure 8: Performance of the burst-exclusive prediction algorithm.

[10], the details of which are explained in Sections I and
II. We used the same parameters from [25] and [10] for
Sandpiper and CloudScale, respectively, except the VM
and PM capacities which were generated by the CloudSim
simulator [32]. For RPRP, we set ε = 5% as the highest
percentage of demands that are not satisfied in the SLO
specification for load-dependent padding, and set Tu=0.9 and
Tl=0.5 for responsive padding. We used three real traces:
Google Cluster [31], PlanetLab VM [32] and WorldCup [33]
in the experiments.

We first used the traces to analyze the effectiveness of
each algorithm in RPRP in comparison with CloudScale
(Section IV-A). We did not include Sandpiper in this section
because it does not have demand prediction and padding. We
then compared RPRP with both Sandpiper and CloudScale
to measure the performance of resource utilization and
SLO compliance through trace-driven experiments on the
CloudSim simulator [32] (Section IV-B) and a prototype
implemented on top of Xen in a real-world testbed (Sec-
tion IV-C). We used 48-hour history utilization data from
each trace to predict the resource demand at every 5 minutes
[37] in the next 24 hours. We set the ratio of PM capacity to
VM capacity to 3 (i.e., a PM can serve 3 VMs with 100%
resource demands). The padding value is measured as the
percentage over VM capacity.

A. Analytical Performance Evaluation

1) Performance of Burst-exclusive Prediction: We first
study the performance of the prediction algorithms without
padding. Figure 8(a) shows the average prediction error of
CloudScale and RPRP calculated by 1

n ∑
n
i=1 |p̂i−di| for the

positive and negative prediction errors, respectively, using
the Google Cluster and PlanetLab traces. We see RPRP has
lower prediction errors than CloudScale. The results verify
the higher prediction accuracy of our burst-exclusive predic-
tion algorithm compared to the average-based algorithm in
CloudScale since RPRP excludes the high-frequency com-
ponents including bursts in predicting the normal demands
while the average value does not exclude the bursts. As we
mentioned previously, RPRP does not focus on improving
CloudScale in the basic demand prediction approach. We
present the experimental result only to show the advantage
of excluding bursts in demand prediction. Compared to
Google Cluster trace, both RPRP and CloudScale have

0

10

20

30

40

0 6 12 18 24

P
a

d
d

in
g

 v
a

lu
e

 (
%

)

Time (hr)

RPRP CloudScale

(a) Google Cluster trace

0

5

10

15

20

25

0 6 12 18 24

P
a

d
d

in
g

 v
a

lu
e

 (
%

)

Time (hr)

RPRP CloudScale

(b) PlanetLab trace

0

5

10

15

20

0 6 12 18 24

P
a

d
d

in
g

 v
a

lu
e

 (
%

)

Time (hr)

RPRP CloudScale

(c) WorldCup trace

0

2000

4000

6000

Google PlanetLab WorldCup

RPRP CloudScale

A
ll

o
c
a

te
d

 r
e

s
o

u
rc

e

0

20

40

60

80

100

Google PlanetLab WorldCup

S
a

v
e

d
 r

e
s
o

u
rc

e

a
ll

o
c
a

ti
o

n
 (

%
)

(d) Saved resource allocation
Figure 9: Performance of the load-dependent padding algorithm.

larger prediction errors in the PlanetLab trace because its
demands have weak periodic patterns. However, RPRP can
still achieve an acceptable prediction accuracy and produces
prediction errors less than CloudScale.

Figure 8(b) shows the saved resource allocation result-
ed from the burst-exclusive prediction algorithm of RPRP
compared to the prediction algorithm of CloudScale (i.e.,
CloudScale−RPRP

CloudScale). We see that the result reaches around 1%
for Google CPU trace and PlanetLab trace, and around 5%
for Google memory trace. The reason is that RPRP filters out
the bursts in prediction, while CloudScale does not exclude
bursts in the average calculation. The result confirms that
the burst-exclusive prediction algorithm in RPRP produces
higher resource utilization compared to the average-based
prediction algorithm in CloudScale. Note that these savings
are resulted merely from excluding bursts, while the cumu-
lative saving can still be substantial when multiple VMs are
co-located. Excluding bursts can reduce 1036%, 1754% and
4592% absolute CPU consumption in a PM hosting 20 VMs
[38] in 24 hours (i.e., 288 allocations) based on the Google
CPU, PlanetLab and Google memory trace, respectively.

2) Performance of Load-dependent Padding: We com-
pare the padding algorithms of CloudScale and RPRP. Figure
9(a)(b)(c) show only the padding values of three VMs picked
from the three traces in RPRP and CloudScale. We see
that CloudScale generates higher padding values than RPRP
most of the time for all the three traces. This is because
CloudScale uses the maximum or the 80th percentile value
of the high-frequency spectrum as the padding. RPRP deter-
mines the padding in order to achieve a certain probability of
satisfying resource requests while minimizing the expected
padding value. CloudScale results in a diverse padding
values (i.e., 5%–35%, 10%–20% and 5%–15% for Google
Cluster, PlanetLab and WorldCup traces, respectively) over
time since high frequency components are often noise which
has random magnitude. The minimum 5% padding means
that the padding of a PM hosting 20 VMs can reach the
capacity of the PM.

Figure 9(d) shows the saved resource allocation of the
padding algorithm in RPRP compared to CloudScale for
the previous three VMs. RPRP reduces 58.6%, 78.2% and
38.6% of the padding values compared with CloudScale
for the Google Cluster, PlanetLab and WorldCup traces,
respectively. RPRP reduces 14968%, 17468%, and 4665%

absolute padding amounts of CloudScale on a PM hosting
20 VMs in 24 hours based on the three traces, respectively.
These reduced padding amounts are substantial in improving
the resource utilization of a PM that hosts multiple VMs.

3) Performance of Resource Provisioning (Prediction
+Padding): We then evaluate the performance of resource
provisioning that combines both the burst-exclusive predic-
tion and load-dependent padding algorithms.

Figure 10(a) shows the saved resource allocation in
resource provisioning consisting of both prediction and
padding algorithms of RPRP compared to CloudScale. R-
PRP saves 18%, 19% and 11% of the allocated resource
in the traces of Google Cluster, PlanetLab and WorldCup,
respectively. Then, by applying RPRP, a PM with 20 VMs
[38] can save 7296%, 15744% and 7968% absolute CPU re-
source during 24 hours based on these traces. The reduction
is relatively smaller than the reduction of the padding value
in Figure 9(d) because padding constitutes a small percent
of the predicted amount.

Figure 10(b) shows the average prediction error of Cloud-
Scale and RPRP for the positive and negative prediction
errors, respectively. We can see that RPRP has lower predic-
tion error than CloudScale in each trace, which indicates that
RPRP achieves higher accurate prediction due to its burst-
exclusive prediction algorithm and load-dependent padding
algorithm, which determines the padding value adaptively
based on the predicted demand level rather than using
a possibly maximum or 80% percentile burst values as
in CloudScale. The prediction error of PlanetLab trace is
relatively higher than other traces because it does not exhibit
as strong periodicity as other traces.

Figure 10(c) shows the resource utilization efficiency (i.e.,
the ratio of total utilized resources and the total allocated
resources, ∑i ui/∑i ai) of CloudScale and RPRP. RPRP can
achieve higher resource efficiency due to its accurate burst-
exclusive prediction algorithm and the resource-saving prop-
erty of its load-dependent padding algorithm. CloudScale
uses a possibly maximum or 80th percentile values of high-
frequency spectrum as padding for different demands, which
wastes resources and leads to low utilization efficiency.
RPRP’s responsive padding further reduces allocated re-
sources compared to CloudScale’s responsive padding. To
be comparable, we used the definition in [10] to measure
the number of SLO violations. That is, an SLO violation

0

5000

10000

15000

A
ll

o
c
a

te
d

 r
e

s
o

u
rc

e

0

5

10

15

20

Google PlanetLab WorldCup

S
a

v
e

d
 r

e
s
o

u
rc

e

 a
ll

o
c
a

ti
o

n
 (

%
)

(a) Saved resource allocation

0

5

10

15

Google PlanetLab WorldCup

P
re

d
ic

ti
o

n
 e

rr
o

r
(%

) RPRP(+) CloudScale(+)

RPRP(-) CloudScale(-)

(b) Prediction error

0

0.2

0.4

0.6

0.8

1

Google PlanetLab WorldCup

R
e

s
c
.

u
ti

li
za

ti
o

n

e
ff

ic
ie

n
c
y

CloudScale

RPRP

(c) Resource utilization efficiency 0

5

10

15

20

25

30
RPRP

CloudScale

#
 o

f
u

n
d

e
r-

p
re

d
ic

ti
o

n
s

0

5

10

15

20

25

30

Google PlanetLab WorldCup

CloudScale

RPRP

#
 o

f
S

L
A

 v
io

la
ti

o
n

s

0

5

10

15

20

25

30

Google PlanetLab WorldCup

CloudScale

RPRP

#
 o

f
S

L
O

 v
io

la
ti

o
n

s

(d) The number of SLO violations
Figure 10: Performance of resource provisioning (prediction+padding).

is an under-prediction, i.e., the predicted demand is less
than the actual demand. Figure 10(d) shows the number
of SLO violations caused by under-predictions of RPRP
and CloudScale from the three traces during the experiment
time period. The number of under-predictions indicates the
number of occurrences that the allocated resource (sum
of predicted demand and padding) that failed to satisfy
the actual demand during the experiment. We can see that
RPRP generates a smaller number of under-predictions than
CloudScale in all the three traces due to the same reasons
indicated above.

4) Performance of Responsive Padding: Now, we analyze
the responsive padding algorithms of CloudScale and RPRP
without other algorithms. Figure 11(a) compares the number
of adaptation steps for the responsive padding algorithms of
CloudScale and RPRP. The minimum and maximum scale-
up ratios in CloudScale are set to the default values in [10].
We can see that both of these two algorithms can quickly
correct the mispredicted values in about two steps. The
number of steps of RPRP is more stable than CloudScale
under different traces because it does not require the tuning
of parameters.

0

1

2

3

Google PlanetLab WorldCup

CloudScale

RPRP

#
 o

f
a

d
a

p
ta

ti
o

n
 s

te
p

s

(a) The number of adaptation steps

0

20

40

60

Google

S
a

v
e

d
 a

ll
o

c
a

ti
o

n
 (

%
)

0

10

20

30

40

50

60

Google PlanetLab WorldCup

S
a

v
e

d
 r

e
s
o

u
rc

e

a
ll

o
c
a

ti
o

n
 (

%
)

(b) Saved resource allocation

Figure 11: Performance of the responsive padding algorithm.

Figure 11(b) shows the saved resource allocation from the
responsive padding algorithms at the end of the experiment
of RPRP compared to CloudScale. It shows that RPRP saves
the allocated resource by 40%-50%. Using RPRP, a PM
hosting 20 VMs can save up to 47348% absolute CPU
resource in 24 hours. RPRP has a lower allocated resource
than CloudScale in all the traces because its responsive
padding algorithm can scale the resource cap up and down
quickly to capture the actual resource demand, while the
algorithm in CloudScale scales the resource cap to and stays
at a high level.

5) Runtime overhead: In order to study the runtime over-
head of the proposed algorithms, we tested the CPU time of
each algorithm in RPRP compared with the corresponding
algorithm in CloudScale with increasing problem sizes.
Figure 12 presents the CPU time in seconds in logarithm
scale for each algorithm. In this figure, R and C represents
RPRP and CloudScale, respectively, and -pre, -pad and -rp
represent the prediction algorithm, basic padding algorithm
and responsive padding algorithm, respectively. The problem
size for these algorithms are the number of predicted de-
mands, the number of padding values to determine, and the
number of adaptation steps. We see that R-pre is only slightly
greater than C-pre (i.e., around 0.03–0.10 second) due to the
reason that the FFT prediction (after FFT decomposition)
in R-pre consumes more time than the average calculation
(after using FFT to identify repeating patterns) in C-pre.
R-pre remains in the same order of magnitude as C-pre
as problem size increases. C-pad needs more time than

0.0001

0.01

1

100

200 250 300 350 400

T
im

e
 (
s
e
c
o
n
d
)

Problem size

C‐pre

C‐pad

C‐rp

R‐pre

R‐pad

R‐rp

Figure 12: Runtime overhead.

R-pad and increases more
rapidly than R-pad. This
is because C-pad conducts
FFT to determine high and
low frequency components
for the demand of each
VM to determine padding
value, while R-pad exe-
cutes the dynamic program
algorithm one time for de-
termining all padding val-
ues in spite of its high time complexity. Note that R-pad
runs periodically based on historical records to adapt to the
changes. R-rp consumes less CPU time than C-rp because
R-rp raises and decreases allocated resource more quickly
than C-rp to reach the designed range. In total, CloudScale
consumes more CPU time than RPRP, especially for the
padding determination algorithm. From the figure, we can
see that RPRP scales better than CloudScale.

B. Trace-driven Simulation

In this section, we evaluated the performance of RPRP
in comparison with Sandpiper [25] and CloudScale [10]
on the CloudSim simulator [32]. Sandpiper considers the
multi-attribute feature of cloud resource and conducts VM
migration from overloaded PMs based on the current VM

0

20

40

60

80

WorldCup Google PlanetLab

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

Sandpiper CloudScale

RPRP

0

20

40

60

80

WorldCup Google PlanetLab

T
o

ta
l

#
 o

f
S

L
A

v

io
la

ti
o

n
s

Sandpiper CloudScale

RPRP

0

20

40

60

80

WorldCup Google PlanetLab

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

Sandpiper CloudScale

RPRP

(a) Total number of overload PMs

0

50

100

150

200

WorldCup Google

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

Sandpiper CloudScale

RPRP

0

50

100

150

200

WorldCup Google PlanetLab

T
o

ta
l

#
 o

f
S

L
A

v

io
la

ti
o

n
s

Sandpiper CloudScale

RPRP

0

50

100

150

200

WorldCup Google PlanetLab

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

Sandpiper CloudScale

RPRP

0

50

100

150

200

WorldCup Google PlanetLab

Sandpiper CloudScale

RPRP

T
o

ta
l
#

 o
f

S
L
O

 v
io

la
ti

o
n

s

(b) Total number of SLO violations

0

50

100

150

200

WorldCup Google PlanetLab

 Sandpiper

CloudScale

RPRP

T
h

e
 #

 o
f

m
ig

ra
ti

o
n

s

(c) The number of migrations

0

10

20

30

40

Google PlanetLab WorldCup

S
a

v
e

d
 a

ll
o

c
a

ti
o

n
 (

%
)

(d) Saved resource allocation
Figure 13: Trace-driven simulation results.

loads. Both RPRP and CloudScale employ online resource
demand prediction and responsive padding (in RPRP) or un-
derestimate handling (in CloudScale) algorithms to achieve
prediction-based resource allocation, and use the VM mi-
gration method RIAL in [27] to conduct VM migration
from PMs that are predicted to be overloaded and are
actually overloaded. A PM’s predicted load is the sum of
the predicted demands of its VMs.

In the default setup, we set the number of PMs in the
cloud to 1000, with capacities of 1.5GHz CPU, and 1536
MB memory, and set the number of VMs in the system to
2000, with capacities of 0.5GHz CPU and 512 MB memory.
The threshold of resource utilization to check if a PM is
overloaded was set to 0.9. We assume that the historical VM
demand records are available at the beginning of simulation.
At the beginning of the simulation, we randomly allocated
the 2000 VMs to the 1000 PMs, which made a portion
of the PMs overloaded (i.e., scaling conflict for VMs in
the PM). After we started the simulation, every 5 minutes,
Sandpiper uses the runtime utilization information to detect
and eliminate overloaded PMs by VM migrations, and RPRP
and CloudScale predict workload demands and migrate VMs
out from predicted overloaded PMs and actually overload
PMs. We measured the number of PM overloads and the
number of VM migrations during one hour simulation time.

1) The Number of Overloads and SLO violations: Figure
13(a) shows the total number of overloads detected by PMs
during one hour simulation. Figure 13(b) shows the total
number of SLO violations during one hour simulation. The
error bars indicate the 10th and 90th percentiles of the exper-
imental results from ten repeated simulations. Both results
in the two figures follows RPRP<CloudScale<Sandpiper.
RPRP and CloudScale predict the VM resource demands
and migrate out VMs from the PMs that are predicted to
be overloaded. Thus, both of them reduce the number of
overload occurrences and the number of SLO violations. We
see that RPRP always generates fewer overloads and SLO
violations than CloudScale in each trace, since it has more
accurate forecasting and padding algorithms as we discussed
in Section III. Compared to CloudScale, RPRP reduces 23%,
36% and 32% of the number of overloads in the Google
Cluster, PlanetLab and WorldCup traces, respectively. It
also reduces 32%, 51% and 41% of the number of SLO
violations in the three traces, respectively. We further see

that both the number of detected overloads and deviation
(length of error bars) follow WorldCup<Google<PlanetLab
due to their obviousness of demand patterns.

2) The Number of VM Migrations: Live VM migration
would lead to a short service downtime, negatively affecting
applications running on the migrated VMs. It also requires
an extra amount of network bandwidth and cache warm-
up at the destinations [39–41]. Thus, we should try to
minimize the number of VM migrations. Figure 13(c) shows
the number of migrations in the three methods with dif-
ferent workload traces. Sandpiper has the least VM migra-
tions because it triggers migration only when detecting an
overloaded PM, while CloudScale and RPRP conduct VM
migration based on their predicted overloads, which may
not be accurate. CloudScale produces more VM migrations
than RPRP because its prediction accuracy is lower. RPRP
is able to provide sufficient resource for the VMs in the
cloud with a smaller number of VM migrations. The results
indicate that the accurate resource demand prediction and
padding algorithms of RPRP make it produce a comparable
number of VM migrations to Sandpiper while producing
fewer overload PMs than CloudScale.

3) Total Allocated Resource: We calculated the cumulat-
ed allocated resources at the end of simulation. Figure 13(d)
shows the saved resource allocation of RPRP compared to
CloudScale. RPRP saves 12.6%, 35.6% and 7.7% of the
allocated resource in the traces of Google Cluster, PlanetLab
and WorldCup, respectively. RPRP can save 303%, 855%
and 185% absolute CPU resource during one hour. This is
because RPRP can more accurately predict resource demand
and determine padding. The saved resource allocation fol-
lows WorldCup<Google<PlanetLab. This is because there
are many bursts in the PlanetLab trace but fewer bursts in
Google and WorldCup, leading to high estimation values
in PlanetLab and more accurate estimation in Google and
WorldCup. Compared to CloudScale, RPRP filters out bursts
in prediction and avoids setting the padding to an amount
as large as the burst in the past, and hence avoids resource
waste.

C. Real-World Testbed Experiments
In this section, we evaluate the VM migration algorithm

performance of RPRP, Sandpiper and CloudScale on a real-
world testbed. The testbed consists of 5 PMs (2.00GHz
Intel(R) Core(TM)2 CPU, 2GB memory, 60GB HDD) and a

2

4

6

8

10
T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

0

2

4

6

8

10

Sandpiper CloudScale RPRP

T
o

ta
l
#

 o
f

S
L
A

v
io

la
ti

o
n

s

0

2

4

6

8

10

Sandpiper CloudScale RPRP

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

(a) The number of overloads 0

2

4

6

8

10

T
o

ta
l
#

 o
f

o
v
e

rl
o

a
d

s

Sandpiper
CloudScale
RPRP

0

2

4

6

8

10

0 20 40 60

T
o

ta
l

#
 o

f
o

v
e

rl
o

a
d

s

Time (min)

Sandpiper
CloudScale
RPRP

(b) Cumulated number of overloads

0

2

4

6

8

10

Sandpiper CloudScale RPRP

T
h

e
 #

 o
f

m
ig

ra
ti

o
n

s

(c) The number of migrations

2100

2200

2300

2400
RPRP
CloudScale

T
o

ta
l

a
ll

o
c
a

te
d

 r
e

s
o

u
rc

e

(d) Total allocated resource
Figure 14: Real-world testbed experimental results.

Network File System (NFS) server with a capacity of 80GB.
We then implemented the three schemes in Java using the
XenAPI library [42] running in a management PM (3.00GHz
Intel(R) Core(TM)2 CPU, 4GB memory, running Ubuntu
11.04). The management PM gathered runtime resource
utilization information every 5 minutes from the 5 PMs by
calling XenAPI, and then sent out VM migration decisions
to the 5 PMs asynchronously. All PMs were connected
with a Cisco Catalyst 2950 switch. We created 11 VMs
(1VCPU, 256MB memory, 8.0GB virtual disk, running
Debian Squeeze 6.0) in the cluster and randomly assigned
them to the PMs at the beginning of the experiment. We used
the publicly available workload generator lookbusy [43] to
generate CPU workloads of the VMs based on the Google
Cluster trace. Similar to the trace-driven simulation, the VM
migration algorithms were executed once every 5 minutes
in the management PM. Since the workload deployed in the
VMs keeps fluctuating, it is difficult to arrange exactly the
same initial state for different strategies. To make the three
methods comparable, we started testing different methods
using the same initial VM-PM random mapping and ran
each experiment 10 times. We assume that the historical VM
demand records are available at the beginning of experiment.
We used the historical records that cover 48 hours to predict
the resource demands in the next 24 hours.

Figure 14(a) shows the median, 10th and 90th percentiles
of the number of overloads detected during one hour
experiment. Sandpiper has the highest median number since
it triggers VM migrations only when an overloaded PM
is detected. Also, it conducts VM migrations only based
on current VM resource utilizations, thus failing to prevent
overloading PMs in advance. RPRP outperforms CloudScale
due to its more accurate prediction as discussed in Section
III. The results are consistent with the simulation results in
Figure 13(a) due to the same reasons. The reduction of the
number of overloads here is not so obvious as in Figure
13(a) due to the smaller cluster size.

Figure 14(b) presents the cumulative number of overloads
over time. Starting with the same VM-PM random mapping
in the experiment, VM migration algorithms detect or pre-
dict overloaded PMs and trigger VM migrations. As shown
in the figure, Sandpiper resolves currently overloaded PMs
but cannot prevent future overloads, resulting in an increas-
ing cumulative number of overloads over time. CloudScale

and RPRP do not generate overloaded PMs after 20
minutes, which shows the advantage of demand prediction
based resource provisioning. RPRP improves CloudScale
by reducing the number of overloads due to more accurate
demand prediction and padding determination. The figure
also shows that most of the detected overloads by the
two prediction methods are at the starting time of the
experiments due to the initial random VM-PM mapping.

We notice that in the real-world testbed experiments,
RPRP and CloudScale still cannot completely prevent the
occurrence of overloaded PMs. This is caused by two
reasons. First, due to the high variability and intensity of
PM workloads in the clusters, the potentially overloaded
PMs may not find PMs to migrate their VMs. Second, the
VM migration algorithms consume computing and storage
resource. When a PM is busy with VM migration, its
resource utilization might reach a very high level, making
the resource demand prediction more difficult.

Figure 14(c) presents the median, 10th and 90th percentiles
of the number of VM migrations triggered by the three meth-
ods during one hour. Compared to CloudScale, RPRP has
fewer migrations due to its accurate prediction, which helps
avoid unnecessary migrations. These experimental results
are consistent with the simulation results in Figure 13(c).
Figure 14(d) shows the total allocated resource during the
test. We can calcaulate that RPRP saves 7.0% of the allocat-
ed resource compared to CloudScale, due to the advantage of
RPRP mentioned previously. The results confirm that RPRP
significantly reduces the over-provisioning of CloudScale.

V. CONCLUSIONS

To reduce unnecessary resource provisioning while pro-
viding SLO guarantee, in this paper, we proposed RPRP,
which consists of three algorithms: 1) a burst-exclusive
prediction algorithm, 2) a load-dependent padding algorithm,
and 3) a responsive padding algorithm. RPRP excludes
bursts in deriving the dominant demand pattern and has
specific algorithms to handle bursts in a resource-efficient
manner. It adaptively determines padding based on demand
amounts to minimize allocated resource while satisfying
SLO. Its responsive padding algorithm adaptively adjusts
co-located resources to more exactly meet the demands. We
implemented RPRP on the top of Xen and conducted both
trace-driven simulation and real-world testbed experiments.

The experimental results show the effectiveness of the pro-
posed algorithms and that RPRP achieves higher resource
utilization, more accurate demand prediction, and fewer
SLO violations than previous schemes. Our experimental
results show that algorithm 2) reduces 58.4% of the allocated
resource of CloudScale. Also, by only using algorithms 1)
and 2), RPRP reduces 18% of the allocated resource while
reducing 30% of the total number of SLO violations com-
pared with CloudScale on average. These reduced padding
values are substantial in improving the resource utilization
of a PM that hosts multiple VMs. In the future, we will
extend RPRP to deal with resource provisioning for multiple
co-located VMs with various priorities.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research Faculty Fellowship
8300751. We would like to thank Dr. John Wilkes from
Google for his valuable discussions and comments.

REFERENCES

[1] “Amazon web service,” http://aws.amazon.com/.
[2] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-

chant, and K. Salem, “Adaptive control of virtualized resources in
utility computing environments.” in Proc. of EuroSys, 2007.

[3] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations.” in Proc. of IM, 2007.

[4] J. Liu, H. Shen, and L. Chen, “Corp: Cooperative opportunistic
resource provisioning for short-lived jobs in cloud systems,” in Proc.
of MASS, 2016.

[5] A. Sarker, C. Qiu, and H. Shen, “A decentralized network with fast
and lightweight autonomous channel selection in vehicle platoons for
collision avoidance,” in Proc. of MASS, 2016.

[6] L. Yan and H. Shen, “TOP: vehicle trajectory based driving speed
optimization strategy for travel time minimization and road congestion
avoidance,” in Proc. of MASS, 2016.

[7] A. Chandra, W. Gong, and P. J. Shenoy, “Dynamic resource allocation
for shared data centers using online measurements.” in Proc. of
SIGMETRICS, 2003.

[8] Z. Li and H. Shen, “Designing a hybrid scale-up/out hadoop ar-
chitecture based on performance measurements for high application
performance,” in Proc. of ICPP, 2015.

[9] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic resource
scaling for cloud systems.” in Proc. of CNSM, 2010.

[10] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems.” in Proc. of SOCC,
2011.

[11] L. Chen, H. Shen, and K. Sapra, “Distributed autonomous virtual
resource management in datacenters using finite-markov decision
process,” in Proc. of SOCC, 2014.

[12] C. Qiu, H. Shen, and L. Chen, “Probabilistic demand allocation for
cloud service brokerage,” in Proc. of INFOCOM, 2016, pp. 1–9.

[13] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, “Stochastic
load balancing for virtual resource management in datacenters,” IEEE
Transactions on Cloud Computing, 2016.

[14] C. Qiu, H. Shen, and L. Chen, “Towards green cloud computing:
Demand allocation and pricing policies for cloud service brokerage,”
in Proc. of Big Data, 2015, pp. 203–212.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks.” in Proc. of SIGCOMM, 2011.

[16] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing.”
in Proc. of SIGCOMM, 2012.

[17] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing.” in Proc. of HotPower, 2008.

[18] B. Wu and H. Shen, “A time-efficient connected densest subgraph
discovery algorithm for big data,” in Networking, Architecture and
Storage (NAS), 2015 IEEE International Conference on. IEEE, 2015,
pp. 305–314.

[19] Y. Hong, J. Xue, and M. Thottethodi, “Dynamic server provisioning
to minimize cost in an IaaS cloud.” in Proc. of SIGMETRICS, 2011.

[20] B. Wu and H. Shen, “Discovering the densest subgraph in mapreduce
for assortative big natural graphs,” in 2015 24th International Con-
ference on Computer Communication and Networks (ICCCN), 2015,
pp. 1–6.

[21] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation
for the cloud,” in Proc. of SOCC, 2012.

[22] B. Kocoloski, J. Ouyang, and J. Lange, “A case for dual stack
virtualization: consolidating hpc and commodity applications in the
cloud,” in Proc. of SOCC, 2012.

[23] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic
distributed resource scaling for infrastructure-as-a-service,” in Proc.
of ICAC, 2013.

[24] G. Jenkins, G. Reinsel, and G. Box, Time Series Analysis: Forecasting
and Control. Prentice Hall, 1994.

[25] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration.” in Proc. of
NSDI, 2007.

[26] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtual-
ization: integration and load balancing in data centers.” in Proc. of
SC, 2008.

[27] L. Chen, H. Shen, and K. Sapra, “RIAL: Resource intensity aware
load balancing in clouds.” in Proc. of INFOCOM, 2014.

[28] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. J. Shenoy, “Seagull:
Intelligent cloud bursting for enterprise applications.” in Proc. of ATC,
2012.

[29] Y. Lin, H. Shen, and L. Chen, “Ecoflow: An economical and deadline-
driven inter-datacenter video flow scheduling system,” in Proc. of
Multimedia, 2015, pp. 1059–1062.

[30] L. Chen, H. Shen, and S. Platt, “Cache contention aware virtual
machine placement and migration in cloud datacenters,” in Proc. of
ICNP, 2016.

[31] “Google Cluster Data,” https://code.google.com/p/googleclusterdata/.
[32] R. Calheiros, R. Ranjan, A. Beloglazov, C. Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms.”
SPE, 2011.

[33] “The IRCache Project,” http://www.ircache.net/.
[34] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity

management and demand prediction for next generation data centers.”
in Proc. of ICWS, 2007.

[35] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters.” in Proc. of INFO-
COM, 2014.

[36] “Service Level Agreements,” http://azure.microsoft.com/en-us/support
/legal/sla/.

[37] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger,
and X. Zhu, “VMware distributed resource management: Design,
implementation, and lessons learned,” VMware Technical Journal,
2012.

[38] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proc. of SOCC, 2012.

[39] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines.” in Proc. of
NSDI, 2005.

[40] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott, “Proactive fault
tolerance for HPC with Xen virtualization.” in Proc. of ICS, 2007.

[41] L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and understanding
virtualization overhead in cloud,” in Proc. of ICPP, 2015.

[42] “Xenapi,” http://www.xenproject.org/developers/teams/xapi.html.
[43] “lookbusy,” http://devin.com/lookbusy/.

