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Abstract—We consider learning the underlying graph structure
of a network in which infection spreads based on the observations
of node infection times. We give an algorithm based on minimal
hitting set to learn the exact underlying graph structure and
provide sufficient condition on number of cascades required
(i.e. sample complexity) for reliable recovery, which is shown
to be O(logn), where n is the number of nodes in the graph.
We then analytically evaluate performance of minimal hitting
set approach in learning the degree distribution and detecting
leaf nodes of a graph and provide a sufficient condition for
its sample complexity which is shown to be lower than that of
learning the whole graph. We also generalize the exact graph
estimation problem to the problem of estimating the graph within
a certain distortion, measured by edit distance. We show that
this edit distance based graph estimator has a lower sample
complexity. Our experimental results based on both synthetic
network topologies and a real-world network trace show that
our algorithm achieves superior performance than a previously
proposed algorithm based on maximum likelihood.

Index Terms—epidemic spread, infection, maximum hitting set,
minimal hitting set

I. INTRODUCTION

A great extent of work in literature focuses on deriving
properties of the networks based on the knowledge of the
underlying network graph structure [18], [19]. We consider
the inverse problem in this paper, which learns the underlying
network structure based on some observations of the network
in the context of infection spread (as an example of epidemic
cascades) over the network [16]. In addition to the infec-
tion spread, various phenomena can be modeled as epidemic
cascades that have many applications in different disciplines.
Examples include the diffusion of live streaming in peer-to-
peer networks (e.g., CoolStreaming, PPLive and UUSee) [1],
[11], [16], the propagation of ideas and information in social
networks [8], the propagation of Internet worms and malwares
(e.g., “Christma Exce”, November’s Internet Worm, Worm of
December 1988) in computer population [10], and information
disseminate in mobile ad-hoc networks and wireless sensor
networks [9], [12].

We model the network as a weighted directed graph G =
(V,E), where V is a set of vertices and E is a set of edges con-
necting the vertices. We adhere to the Susceptible, Infected and
Recovered (SIR) infection spread model in this paper. Initially
at time t = 0, a subset of nodes (i.e., seeds) get infected. Each
infected node at time t = t0 succeeds in infecting its children

with some unknown infection probability (i.e., weight of the
corresponding edge). Each infected node becomes recovered
and has no more effect on the epidemic process in the next
time instance, t = t0 +1. From each cascade, we observe the
vector of times that each node gets infected, while for the
nodes that never get infected, we set their infection times to
infinity. We use the term “sample” for the infection time vector
of all nodes in one cascade. We are interested in learning the
underlying graph G from a number of samples. It is unlikely to
accurately learn the underlying graph through a single cascade
even for simplest graphs with two nodes [16]. Therefore, in
this paper, we characterize the number of samples (i.e., sample
complexity) required to achieve high fidelity in learning the
unknown topology of the network.

The maximum likelihood approach (ML) [16] can be used to
recover G from infection times. The probability of observing
each sample depends on a set of parameters for the weights
of the graph edges (infection probabilities). Each set of pa-
rameters leads to an associated likelihood of generating the
observed sample. ML picks a set of parameters that maximize
the sum of associated likelihoods over all observed samples
from cascades, then generates an edge in the estimated graph
if the corresponding parameter of the edge is bigger than a
pre-defined threshold.

However, ML is not sufficiently effective and efficient.
First, ML guarantees to detect a subset of the parents of
a node rather than its exact parental set because ML only
detects a node’s neighbors with edge weights higher than a
pre-defined threshold. Second, ML requires a relatively high
sample complexity for reliable graph recovery when the graph
is dense (i.e., nodes have high degree). Third, failing to
predefine a suitable threshold for the edge weight can lead
to poor performance.

To overcome these problems, we propose a minimal hitting
set approach [20] to recover G. A hitting set of a collection
of sets is a set that intersects all of the sets in the collection.
A minimal hitting set of the collection is a hitting set of the
collection of sets and no proper subset of it is a hitting set.
Learning the network graph is equivalent to finding parental
set of each node of the graph. For each node i∈V , we estimate
its parental set as follows. In cascade u, suppose the infection
time of node i is ti, we collect the set of nodes (denoted by
Su

i ) that have infection time ti − 1. The parental set of node



i is the minimal hitting set of the sets of Su
i obtained from

different cascades.
We have theoretically proved a sufficient condition on the

number of samples for correct recovery using the minimal hit-
ting set algorithm (MHS). Specifically, MHS has the following
advantages over ML.
1) Unlike ML that has theoretical guarantees to detect a subset
of parents of a given node, MHS has theoretical guarantees to
detect exact neighbors of each node, and hence can recover
the exact underlying graph structure.
(2) For dense networks with high-degree nodes (degree in this
paper means indegree), minimal hitting set approach has lower
sample complexity than ML.
(3) Unlike ML that depends on an appropriately predefined
threshold parameter for high performance, MHS does not
depend on such parameters as a priori.

Some applications may tolerate certain distortions in graph
estimation and some applications may have limited number
of samples. We can sacrifice exact recovery in order to reduce
sample complexity. We measure the distortion by edit distance
between the estimated graph and the true graph, which is
defined as the number of edges in the symmetric difference
between the two graphs’ edge sets. We provide necessary
condition for edit distance based graph estimator to have
reliable recovery. We show that we can have lower sample
complexity in recovering the graph up to a given edit distance.

The rest of the paper is organized as follows. Section II
illustrates preliminaries of the problem. Section III presents
our learning algorithms and provides the proof of our algo-
rithms. Section IV shows the sufficient condition for exact
graph recovery. Section V compares the sample complexity
of our learning algorithms and the maximum likelihood al-
gorithm [16]. Section VI provides necessary conditions for
the edit distance based graph estimators over the collection of
bounded degree graphs and collection of graphs with bounded
total number of edges, respectively. Section VII presents
experimental evaluation of our learning algorithm both on
synthetic network and Google+ trace compared with ML.
Section VIII presents a review of related work. Finally, Section
IX concludes this work with remarks on our future work.

II. PRELIMINARIES

A. System Model

We describe the system model [16] including the epidemic
model and the observation model. For easy reference, Table
I lists main notations used in this paper.

1) Epidemic Model: We model the network as a directed
graph G=(V,E), where vertices correspond to the nodes in the
network and edges correspond to the links between nodes. For
an directed edge ( j, i) ∈ E, we say node j is a parent of node
i. Let Vi := { j : ( j, i) ∈ E} be the parental set of node i. There
is no constraint on the number of parents of a node. We adopt
the SIR model for the epidemic spread model, in which nodes
can be in three states: susceptible, infected or recovered. Nodes
that have not yet been infected are in susceptible state. Each
susceptible node becomes infected if any of its infected parents

TABLE I: Notations

Parameter Description
G = (V,E) True underlying graph structure

G Collection of all possible graph structures
m Number of cascades(samples)
δ Specified error probability i
n Number of nodes in the network

pmin, pmax Lower and upper bounds on the probability that
infected node succeeds in infecting its children)

u Notation for cascade
tu
i Infection time of node i in cascade u

Gn,d Collection of all graphs over n vertices with
maximum node degree being d

r Allowed edit distance

infects it. Each infected node is in the infected status only for
one time unit, after which it becomes recovered and cannot be
infected again. Initially, at time t = 0, each node independent
of other nodes gets infected with probability pinit . Hence, the
expected number of infected nodes at t = 0 equals n · pinit ,
where n = |V | is the number of vertices in the graph. These
initially infected nodes are called seeds. Learning approach in
this paper is independent of the order of magnitude of number
of seeds and our results can be applied to the infection models
with a bounded number of seeds as well. Infections spread
through the network in discrete times. In the infection spread
in the network, each infected node i at time t = k tries to
infect each of its susceptible children j independently with
probability pi j. Node j that was susceptible at time t = k gets
infected at time t = k + 1, if any of its infected parents at
time t = k infects it. Each infected node can be in infected
status only for one time unit. In other words, parent i that
was infected at time t = k gets recovered at time t = k + 1
and cannot either distribute infections anymore or get infected
again. According to the above scenario, it is possible for some
nodes not to get infection at all and stay in the susceptible
status forever, while others have transmissions of susceptible
→ infected for one time step → recovered.

There are other epidemic models as well in the literature
such as SI and SIS model. In the SI model [19] once a
node becomes infected remains infected forever. In the SIS
model once a node is recovered it immediately becomes
susceptible, therefore we have susceptible → infected →
susceptible transition. We adhere to the described SIR model
throughout the paper and consider learning problem over other
epidemic models as our future work.

2) Observation Model: In each cascade u, seeds start to
spread the infection throughout the network under the SIR
model. We observe the time each node i ∈ V gets infected,
denoted by tu

i . We set tu
i = 0 for seed nodes, and set tu

i = ∞
for the nodes that never get infected in the cascade u. Then, for
a cascade u, we have a vector of infection times tu consisting
of the infection time of each node (i.e., sample).

Having information only about infection times, we aim at
finding the underlying graph structure of the network. This
goal cannot be achieved through a single cascade, or equiva-
lently through a single sample time observation vector tu for a
single cascade u even for simplest graphs [16]. Consequently,
we independently run a set of cascades U with |U |=m. Each



cascade is assumed to be generated and observed as above
independent of all others. The question we want to answer is:
what is the smallest m (i.e., sample complexity), such that our
estimated graph structure is “correct” with high probability?
We consider two different notions of “correctness” in this
paper as explained in Section II-B.

B. Graph Estimation
Let G be a collection of possible underlying graph structures

and corresponding edge probabilities (pi j). Given m sample
vectors TU = {ti, i = 1, ...,m} of observations from a true
graph G ∈ G , we consider two different graph estimators and
corresponding notions of “correctness”. Note that the vertex
set V of G is known and we only aim at detecting existence
of an edge between any two nodes i, j ∈ V . Based on our
described model, there is an edge between arbitrary nodes i
and j if and only if either pi j > 0 or p ji > 0. We also assume
that for every edge, the edge probability pi j is bounded by
pmin and pmax, that is, pmin ≤ pi j ≤ pmax.

1) Single Graph Estimator: Let Ĝ (TU ) be a graph esti-
mator that takes as input observation of infection times and
outputs a single graph. We define the probability of error of
the single graph estimator as the probability that the estimated
graph is not equal to the true graph, which also considers the
randomness in choosing the true graph:

Pe(Ĝ (·)) := P[G ̸= Ĝ (TU )]

Notice that G and Ĝ (TU ) can only differ in their edge sets,
not in the vertex sets.

2) Edit Distance Based Graph Estimator: We consider
estimating the true graph up to a given distortion measured
by edit distance.

Definition 2.1: Edit distance [3]. For any two graphs G and
Ĝ, edit distance between them ∆(G, Ĝ) is minimum number
of edge deletions or insertions to convert G to Ĝ. Thus
∆(G, Ĝ) can also be considered as the number of edges in
the symmetric difference between edge sets of G and Ĝ, i.e.,
∆(G, Ĝ) = |{(E(G)−E(Ĝ))∪ (E(Ĝ)−E(G))}|.

Let Ĝr(TU ) be a graph estimator that takes as input obser-
vation of infection times and outputs a single graph within edit
distance r of the true graph. We define the probability of error
of the edit distance based graph estimator as the probability
that the estimated graph is not within edit distance r of the
true graph:

Pe(Ĝr(.)) := P[∆(G, Ĝr(TU ))≥ r]
The controllable distortion on the estimation can reduce the
sample complexity. There may exist applications where the
observations of the network are limited. Then, we can first
find out the graphs within edit distance r from the true graph,
and search over these possible graphs to find the true graph.

III. SINGLE GRAPH ESTIMATOR

A. Minimum Hitting Set based Approach
In this section, we introduce a minimum hitting set based

approach [20] to recover the underlying graph G = (V,E) of
the network.

First, we introduce the definition of minimum hitting set.
Given a collection C of subsets P (C = {P1, ...,Pn}), hitting
set H is a set that intersects (“hits”) all the subset in this
collection with at least one element. In other words, every
subset Pi ∈C must contain at least one element in the hitting
set H. Minimum hitting set [20] is the hitting set of the smallest
size. In each observation tu ∈TU from cascade u∈U , assume
that the infection time of a node j is tu

j ,∀ j ∈ V . We further
define Su

j as the set of nodes i with tu
i = tu

j − 1, that is, the
infection time of this set of nodes is tu

j −1,

Su
j = {i : tu

i = tu
j −1}.

Since there are different epidemic cascades, there are a col-
lection of Su

j sets, which are obtained from each cascade u.
Then, we propose a network graph recovery algorithm

based on the minimum hitting set [20] for the single graph
estimator. We can exactly recover the parental set of node j
through finding the minimum hitting set of the collection of Su

j
collected from different observations, as m (i.e., the number of
cascades) is sufficient. In the following, we provide the proof
that the parental set of node j is the unique minimum hitting
set of the collection of Su

j obtained from every cascade, as the
number of cascades increases (i.e., m → ∞).

(i) We use V j denote the parental set of node j in the graph
G = (V,E) of the network. First, each infected node must be
infected by at least one of its parents, which means that in
each cascade u, Su

j must contain at least one element from the
parental set of node j, that is, V j ∩Su

j ̸= /0, and hence V j is a
hitting set of Su

j .
(ii) Next, we prove that V j is the unique minimum hitting

set. If we assume that V j is not the minimum hitting set, then
there exists at least one different hitting set |V̂ j|, whose size
is smaller than or equal to V j (i.e., |V̂ j| ≤ |V j|). Since V̂ j is
different from V j, there must exist at least one node k, which
is in V j but not in V̂ j, that is, k ∈ V j \ V̂ j. In this situation,
we consider an event in a cascade u (denoted as event K) that
only the parent node k of node j is a seed and only node j is
infected. Obviously, this event occurs with positive probability.
As m → ∞, we know that this event will finally occur. Once
this event occurs in one cascade u, it means that in this cascade
u, none of the elements of V̂ j hit Su

j , i.e., V̂ j ∩Su
j = /0, which

contradicts with assumption that V̂ j is a hitting set.
Hence, we can conclude that such k ∈ V j \ V̂ j should not

exist. Therefore, there does not exist such V̂ j, and the parental
set of node j is the unique minimum hitting set as m → ∞.

In this session, we propose an algorithm to find the parental
set of any node j (so the true graph) through finding the
minimum hitting set of a collection of Su

j sets, each of which
is obtained from each observation tu. We also prove that the
parental set of any node j is the unique minimum hitting set
of the collection of Su

j , as m → ∞.

B. Minimal Hitting Set based Approach

Although we show that it is feasible to recover the graph
using the minimum hitting set based algorithm, finding the
minimum hitting set is NP-complete [20]. In order to solve



this, we propose minimal hitting set based algorithm (MHS)
in this section, which has polynomial runtime.

A hitting set of a collection of sets is minimal [6] if
and only if no proper subset of it is a hitting set for this
collection. Recall that minimum hitting set is the hitting set
with the smaller size. For example, consider a collection of
sets {{1,2},{1,3},{1,2,4},{1,3,5}}. Obviously, we see that
{2,3} is a minimal hitting set of the collection but not a
minimum hitting set. On the other hand, {1} is the minimum
hitting set and also a minimal hitting set of the collection.

It is easy to prove that a minimum hitting set of a collection
of sets is also a minimal hitting set, however the other way is
not true. We assume that H is the minimum hitting set of a
collection C. Say if H is not a minimal hitting set, then there
exists a subset H ′ ⊂ H that is a hitting set, according to the
definition of minimal hitting set. Since H ′ ⊂ H, the size of H ′

is no greater than the size of H, i.e., |H ′| ≤ |H|, and hence H is
not the hitting set of the smallest size, which contradicts with
the definition of minimum hitting set. Therefore, a minimum
hitting set of a collection of sets is also a minimal hitting set.

Now we propose the minimal hitting set based algorithm
(MHS). We can exactly recover the parental set of a node
j,∀ j ∈V , by finding the minimal hitting set of the collection
of Su

j obtained from each cascade. The only difference between
MHS and the minimum hitting set based algorithm is that we
use the minimal hitting set of Su

i ({Su
i : u ∈U }) instead of the

minimum hitting set of them. In the following, we prove that
as m → ∞, we can find the parental set of node j by finding
the minimal hitting set of the collection of Su

j .
For any node j ∈V , we suppose that the estimated minimal

hitting set is S̃(m)
j (after m observations) for node j. Now we

discuss V j and S̃(m)
j . Since V j is a minimum hitting set of the

collection of Su
j , we know that V j is also a minimal hitting set

of the collection of Su
j .

(i) First, since V j is a hitting set as mentioned in Section
III-A and S̃(m)

j is a minimal hitting set, we conclude that V j is

not a proper subset of S̃(m)
j (V j ̸⊂ S̃(m)

j ), otherwise S̃(m)
j is not

minimal according to the definition of minimal hitting set.
(ii) Second, if we assume that V j is not exactly equal to

S̃(m)
j , as V j is not a proper subset of S̃(m)

j , then there must

exist at least one node k ∈V j \ S̃(m)
j . However, recall in Section

III-A that it has a positive probability for event K, i.e., node
j is only infected by node k but not infected by any nodes in
S̃(m)

j in an observation tu. Hence, as m → ∞, event K finally
occurs. Once event K occurs in one observation, it means that
in this observation tu, S̃(m)

j does not intersect with Su
j (i.e.,

S̃(m)
j ∩Su

j = /0), which contradicts with the assumption that S̃(m)
j

is a hitting set. Therefore, as m → ∞, there does not exist any
node k in V j \ S̃(m)

j , which indicates that V j ⊆ S̃(m)
j .

Combining (i) and (ii) that V j ̸⊂ S̃(m)
j and V j ⊆ S̃(m)

j , we must

have V j = S̃(m)
j . Therefore, we demonstrate the effectiveness

of MHS algorithm.
In this section, since finding the minimum hitting set is NP-

complete [20], we propose MHS algorithm, which recovers the

parental set of any node j, j ∈V by finding the minimal hitting
set of a collection of Su

j sets. We also prove that if m → ∞,
recovering the parental set of any node j, j ∈V is equivalent
with finding the minimal hitting set of the collection of Su

j .

IV. LOWER BOUNDS

In this section, we turn our attention to establishing the
lower bounds on the number of cascades that need to be
observed for approximate network graph learning.

In Section III, we have proved that as m → ∞, the parental
set of node j, V j can be recovered using the minimum hitting
set algorithm and MHS algorithm. In the following, we further
explore the lower bounds of the sample complexity for these
two method, that is, how many cascades do we need at least
to recover the exact parental set of node j?

A. Minimum Hitting Set based Algorithm

In this section, we explore the lower bound sample complex-
ity for minimum hitting set algorithm to guarantee recovering
the network graph with probability at least 1−δ , for any δ > 0.

The procedure to find a lower bound of the sample com-
plexity is similar to the Theorem 3 in [20]. For any node
j ∈ V , we define the error event C j as the event that the
estimated minimum hitting set Ŝ(m)

j is not equal to the parental
set of node j, V j, after m observations. This only occurs
when |Ŝ(m)

j | ≤ |V j|, because otherwise V j is a feasible hitting

set with a smaller size. When |Ŝ(m)
j | ≤ |V j|, there must exist

k ∈ V j\Ŝ(m)
j . Therefore, the probability of error is equivalent

to the aggregate probability of such kind of node k, that is,

P(C̃ j) = p(∪k∈V j k /∈ S̃(m)
j )

≤ ∑
k∈V j

p(k /∈ S̃(m)
j ).

Let us consider the probability that a parent node k of node
j does not succeed to infect node j in m observations. In
this case, we have k /∈ S̃(m)

j . Obviously, in one cascade u, the
probability that node k succeeds to infect node j (denoted as
pe) follows pe ≥ pinit ∗ pk j, where pinit ∗ pk j is corresponding
to the probability that node k is a seed and it succeeds to infect
node j. Recall that pk j is bounded by pmin and pmax, that is,
pmin ≤ pk j ≤ pmax. Therefore,

P(C̃ j) ≤ ∑
k∈V j

p(k /∈ S̃(m)
j )≤ ∑

k∈V j

(1− pe)
m

≤ ∑
k∈V j

(1− pinit ∗ pk j)
m

≤ d j(1− pinit ∗ pmin)
m, (1)

where d j is the degree of node j. From Formula (1), we notice
that as m → ∞, P(C̃ j) is upper bounded by a value that is
close to zero, which indicates that P(C̃ j)→ 0. It means that
there is no error as m → ∞, and hence it again proves that the
parental set of node j is the unique minimum hitting set of
the collection of Su

j obtained from every observation. Finally,
the probability of the estimated graph ĜH not equal to the true
graph G is:



P(ĜH ̸= G) = P(∪ jC j)≤ ∑
j∈V (G)

P(C j)

≤ ∑
j∈V (G)

d j(1− pinit ∗ pmin)
m

≤ n2(1− pinit ∗ pmin)
m. (2)

Note that in Formula (5), we use the fact that ∑ j∈V (G) d j ≤ n2

for any graph. Obviously, in order to guarantee that P(ĜH ̸=
GH)< δ , the sufficient condition is to guarantee n2(1− pinit ∗
pmin)

m < δ . Therefore, the lower bound sample complexity of
minimum hitting set algorithm is,

m ≥ logδ −2logn
log(1− pinit ∗ pmin)

. (3)

Therefore, from Formula 3, the sample complexity for mini-
mum hitting set algorithm to guarantee that the estimated graph
equals the true graph with probability at least 1−δ is O(logn).

B. Minimal Hitting Set based Algorithm

In this section, we aim to find the lower bound sample
complexity for minimal hitting set algorithm to guarantee
recovering the network graph with probability at least 1− δ ,
for any δ > 0.

For any node j ∈ V , we define the error event C j as the
event that the estimated minimal hitting set Ŝ(m)

j is not equal
to the parental set of node j, V j, after m observations. Since
S̃(m)

j is minimal hitting set and V j is a hitting set, V j is not a

proper subset of S̃(m)
j , otherwise S̃(m)

j is not minimal. On the
other hand, the upper bound of Formula (1) is still valid for
P(C̃ j). Therefore,

P(C̃ j) = p(∪k∈V j k /∈ S̃(m)
j )≤ ∑

k∈V j

p(k /∈ S̃(m)
j )

≤ ∑
k∈V j

(1− pe)
m ≤ ∑

k∈V j

(1− pinit ∗ pmin)
m

≤ d j(1− pinit ∗ pmin)
m. (4)

Again, we see from Formula (4) that, as m → ∞, P(C̃ j)→ 0,
which again demonstrates that we can find the parental set of
node j by finding the minimal hitting set of the collection of
Su

j obtained from every cascade.
The rest of the procedure to explore the lower bound sample

complexity for MHS is similar as Formula (5).

P(ĜH ̸= G) = P(∪ jC j)≤ ∑
j∈V (G)

P(C j)

≤ ∑
j∈V (G)

d j(1− pinit ∗ pmin)
m

≤ n2(1− pinit ∗ pmin)
m. (5)

In order to guarantee recovery of the exact graph with a
probability at least 1−δ , the lower bound sample complexity
for MHS is the same as Formula (3),

m ≥ logδ −2logn
log(1− pinit ∗ pmin)

. (6)

Therefore, from Formula 6, the lower bound of the sample
complexity for MHS to guarantee that the estimated graph
equals the true graph with probability at least 1−δ is O(logn).

V. PERFORMANCE COMPARISON DISCUSSION

(i) Minimum hitting set algorithm and maximum like-
lihood approach [16]. In the following, we discuss the
advantages of the minimum hitting set algorithm over the
maximum likelihood approach (ML) proposed in [16].

(1) Based on the proof in Section III-A, as the number of
cascades goes to infinity, we are able to recover the exact
parental set of node j,∀ j ∈ V in the graph G = (V,E).
However, ML [16] can only guarantee that the estimated
parental set of node j has no false neighbors and provide
theoretical guarantees on recovering strong neighbors of node
i, which means that not all the parent nodes of node i are
recovered.

(2) According to Formula 3, the number of cascades needed
to recover the exact graph is O(logn). However, the number
of cascades needed for ML [16] to learn the true graph
or equivalently for each node i, to learn its parental set is
O(d2

i log |Si|), where di is degree of node i and |Si| is super
graph degree. The super graph of node i contains its true
parents, i.e., Vi ⊂ Si. For network topologies without the
bounded degree assumption, we may have di = O(n), which
leads to sample complexity of O(n2 log(n)) for ML at the
worst case. In current era of big data, more users involve in the
network and hence the number of nodes increases (i.e., n→∞).
As a result, the minimum hitting set algorithm outperforms
ML for dense graphs with high degree nodes.

(3) For the edge probability, ML has a threshold parameter,
which is not known a priori. Inappropriate choice of this
parameter can lead to poor performance of ML on recovering
the graph, that is, increasing the probability of errors. A large
value parameter setting leads to the recovery of only some
parents for each node recovered (i.e., false negatives), while
a small value parameter setting leads to many false parents
recovery for each node (i.e., false positives). However, our
proposed minimum hitting set algorithm does not need any
priori knowledge. In Section VII, our experiments also verify
that the inappropriate setting of the parameter causes poor
performance.
(ii) Minimum hitting set algorithm and Minimal hitting
set algorithm. We compare the performance of the minimal
and minimum hitting set based algorithms in two aspects: (1)
sample complexity of the algorithm; and (2) running time of
algorithm. From Formulas 3 and 6, we see that the the two
algorithms have the same sample complexities (i.e., O(logn)).
However, these two algorithms have different running time.
Since minimum hitting set of a collection of sets is also
minimal hitting, hence it is obvious that minimal hitting set
algorithm has better time complexity than minimum hitting set
algorithm to find the true graph.

Moreover, it is known that finding the minimum hitting set
of a collection of sets is NP-hard [20], however, we can find
a minimal hitting set of the collection in polynomial time. For
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(b) Recovery of 10×10 grids
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(d) Recovery of 10×10 grids
Fig. 1: Single graph estimation of grids.
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(a) 25 nodes, max. degree=4

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

100 150 200 250 300 350 400 450 500 

F
r
a
c
t
io

n
 
o
f
 

r
e
c
o
v
e
r
e
d
 
n
o
d
e
s
 

Number of cascades 

MHS ML0.1 ML0.1Sub 

ML0.2 ML0.2Sub ML0.5 

ML0.5Sub ML0.8 ML0.8Sub 

(b) 25 nodes, max. degree=9
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(c) 100 nodes, max. degree=4
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(d) 100 nodes, max. degree=9
Fig. 2: Single graph estimation of random graphs with different number of cascades.

example, one approach may be first considering the union of
the sets, and starting from the smallest element, we remove
it if the union without that element is still a hitting set, then
go to the next element. It is clear that the resulting set is
minimal hitting set and that this procedure has polynomial
time complexity.

VI. EDIT DISTANCE BASED GRAPH ESTIMATOR

Using the minimum hitting set algorithm (or the MHS
algorithm), we can get an estimated graph that has a certain
edit distance r with the true graph. In this section, we consider
a collection of possible graphs G , rather than a single graph
as Section III. We consider Gn,d , the collection of all graphs
on n vertices with maximum degree of each vertex being d.
For this collection of possible graphs, we show the following
necessary conditions for edit distance based graph estimator,
which is not considered in previous network learning literature.

Recall the definition in Section II-B that the probability
of error of the edit distance based graph estimator as the
probability that the estimated graph is not within edit distance
r of the true graph:

Pe(Ĝr(.)) := P[∆(G, Ĝr(TU ))≥ r].

Necessary Condition for Collection Gn,d:
We denote that Gn,d = {G1, ...,GM} is the collection of

graphs on n vertices with maximum degree of each vertex
being d. Suppose G is chosen uniformly at random from Gn,d .
In the following, we derive the necessary condition for the
graph estimator, that is, if the number of samples m is less
than a number, the probability of error satisfies P(m)

e → 1, as
n → ∞. We derive that if the number of samples m satisfies:

m <
nd
4 log n

8d − log(r
( n2

2
r

)
)

n
, (7)

then for any arbitrary graph estimator, its probability of error
satisfies P(m)

e → 1 as n → ∞. Due to the space limitation,

we do not provide the details of the derivation here. Similar
derivation can be referred to [3].
Summary

From Formula 7, the necessary condition for the sample
complexity is:

nd
4 log n

8d − log(r
( n2

2
r

)
)

n
=

d
4

log
n

8d
−

log(r
( n2

2
r

)
)

n

≈ O(logn)−
log(r

( n2
2
r

)
)

n
< O(logn)

We see that it is less than O(logn), which indicates that
the edit distance based graph estimator has lower sample
complexity than the single graph estimator.

VII. PERFORMANCE EVALUATION

In this section, we validate the performance of the
Minimal Hitting Set algorithm (MHS) in comparison with
the Maximum Likelihood algorithm (ML) [16] through
experimental evaluations on grids, random graphs and
subgraphs of the Google+ real world trace. We set pinit = 0.3
to initialize random seeds and the probability that each active
node succeeds to infect its children was set to 0.8. We set
the predefined infection probability threshold in ML to x=0.1,
0.2, 0.5 and 0.8, respectively, and use MLx (e.g., ML0.1)
to denote corresponding method. We run each experiment
for 20 times and report the average experimental result. We
measured fraction of recovery as the fraction of the nodes
in the graph, whose exact parental set was detected; that is,
the set of estimated parents is exactly the same to the set
of true parents. We also measured the fraction of nodes that
an algorithm recovers a subset of their parental sets; that is,
the set of estimated parents is a subset of true parents. These
results in the figures are denoted by MLxSub.
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(c) 100 nodes, max. degree=4
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Fig. 3: Single graph estimation of random graphs with different average number of infections per node.
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Fig. 4: Single graph estimation of a sub-graph of Google+.
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Fig. 5: Edit distance based estimation of grids with varying edit distance
requirements.

A. Single Graph Estimation
Grids. We tested on 5×5 and 10×10 grids. Figures 1(a),

1(b), 1(c), 1(d) show the fraction of recovered nodes versus the
number of cascades, and the average number of infections per
node. As evident from Figures 1(a) and 1(b), in all methods,
as the number of cascades increases, the fraction of recovery
increases though it is not obvious for ML and ML-Sub. Also,
we observe that a larger scale network (10×10 grid compared
to 5×5 grid) needs more cascades to have comparable reliable
graph recovery. We make the same observations from Figures
1(c) and 1(d). In all figures, MHS produces a higher fraction
of recovered nodes than ML and ML-Sub, which validates the
superiority of MHS over ML. Also, ML-Sub gives a higher
fraction of recovered nodes than ML because ML-Sub recovers
a subset of each node’s parental set while ML recovers the
exact set of each node’s parental set. Comparing ML with
different thresholds, we note that the 0.5 threshold gives better
performance than other thresholds. Inappropriate selection of
the threshold parameter can lead to a poor performance of
ML. A too small threshold (e.g., 0.1 and 0.2) would lead to
many false positives, while a too large threshold (e.g., 0.8)
would lead to many false negatives. The results indicate ML’s
drawback of setting a pre-define threshold in graph recovery.

Random Graphs. We tested on random graphs with d-
ifferent combinations on a scale (25 and 100 nodes) and a
maximum degree (4 and 9). Figures 2 and 3 show the fraction
of recovered nodes versus the number of cascades and the
average number of infections per node, respectively. In Figures
2, for all methods, a larger number of cascades produce a
higher fraction of recovery generally. We also observe that
the number of cascades needed to obtain a given fraction of
recovery increases as the network scale increases. Finally, for a
given number of nodes, a graph with a higher maximum node
degree requires more cascades to achieve a given fraction of
recovered nodes. The same results hold in Figures 3 with a

varying average number of infections per node. From both
sets of figures, we see that MHS produces a higher fraction
of recovered nodes than ML, which validates its superiority
over ML. Also, ML-Sub gives a higher fraction of recovered
nodes than ML because recovering a subset of the graph is
less constraint than recovering the whole graph. Also, note
that the thresholds 0.5 and 0.8 give better performance than
other threshold values.

Google+. We then tested on a sub-graph of the Google+
network with 500 users. Figures 4(a) and 4(b) plot the fraction
of nodes that the algorithms can recover their true parents
versus the number of cascades and the average number of
infections per node, respectively. For all methods, increasing
the number of cascades leads to an increase in the fraction of
recovery. MHS has better performance than ML as it produces
a higher fraction of recovered nodes. Also ML-Sub generates a
higher fraction of recovered nodes than ML. Note that setting
the threshold of ML to 0.8 gives better performance than other
thresholds, and ML0.1 and ML0.2 significantly degrades the
performance of ML.

B. Edit Distance based Graph Estimation

In this experiment, we measure two metrics. One metric
is probability of recovery which measures the fraction of
recovered graphs that are within a certain edit distance r of the
true graph. The second metric is the average of edit distances
of all recovered graphs from the true graph. Unless otherwise
indicated, the number of cascades was set to 50.

Grids. Figures 5 and 6 show the results of experiments
for 5× 5 and 10× 10 grids. Figures 5(a) and 5(b) show that
a large network scale requires much higher edit distance to
achieve the same probability of recovery for the same number
of cascades. We also find that MHS produces a higher fraction
of recovery for the same edit distance compared to ML, and
ML0.5 has a better performance than other thresholds. All
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Fig. 6: Incurred edit distance in edit distance based estimation of grids.
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Fig. 7: Edit distance based estimation of random graphs with varying edit
distance requirements.

1 

10 

100 

1000 

10000 

10 60 110 160 

E
d
it
 
d
is

t
a
n
c
e
 

Number of cascades 

MHS ML0.1 

ML0.2 ML0.5 

ML0.8 

(a) 100 nodes, max degree=4

120 

480 

1920 

10 110 210 310 410 

E
d
it
 
d
is

t
a
n
c
e
 

Number of cascades 

MHS ML0.1 

ML0.2 ML0.5 

ML0.8 

(b) 100 nodes, max degree=9
Fig. 8: Incurred edit distance in edit distance based estimation of random
graphs with different number of cascades.
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Fig. 9: Incurred edit distance in edit distance based estimation of random
graphs with different average infections per node.

figures in Figure 6 show that increasing number of cascades
(or average number of infections per node) leads to lower edit
distance, and that MHS achieved lower edit distance than ML.

Random Graphs. We consider spreading infections on ran-
dom graphs with 100 nodes and show the experimental results
in Figures 7, 8 and 9. For a fixed number of cascades, we
observe that a larger network scale requires a higher allowed
edit distance to achieve the given probability of recovery.
Finally, for the given number of nodes and the number of
cascades, a graph with a lower maximum node degree has a
higher probability of recovery for the same edit distance. We
further observe that for a fixed edit distance, MHS recovers
the graph with a higher probability compared to ML, and the
0.8 and 0.5 thresholds result in better ML performance than
other thresholds. Finally, we see that the incurred edit distance
decreases as the number of cascades (or average number of
infections per node) increases, and that MHS produces better
performance than ML.

Google+. Figure 10 shows the experimental results for a
subset of Google+ with 500 nodes. MHS performs better
than ML with a higher probability of recovery and ML0.8
performs better than ML0.1, ML0.2 and ML0.5. Increasing
the number of cascades (or average number of infections per
node) leads to lower incurred edit distance. Also, MHS incurs
the lowest edit distance compared to ML and ML0.8 achieves a

lower edit distance than ML0.1,ML0.2 and ML0.5. From these
observations, we conclude that MHS has better performance
than ML.

VIII. RELATED WORK

A number of previous works aim to find infec-
tion/information sources [18], [19]. Shah et al. [18], [19] mod-
eled the virus spread as a variant of SIR model, constructed a
maximum likelihood estimator based on rumor centrality for
a class of graphs. Chalermsook et al. [2] modeled the viral
marketing for online advertising as a model of influence spread
across the social network. They proposed a polynomial time
approximation algorithm to place the seeds for the advertiser
to maximize the revenue of the social network provider.
Massoulie et al. [13] proposed Greedy-Bayes, an algorithm
to select the users who are interested in the news whose topic
is yet unknown, while not spamming too many uninterested
users. Fanti et al. [4] presented a message protocol that spreads
the message fast and perfectly hide the source in a tree network
for anonymous messaging platforms. Our work differs from
the above works that we aim to recover the exact graph.

Many works focus on graph learning in epidemic cascades
based on different kinds of information [5], [15]–[17].
Netrapalli et al. [16] analyzed the sample complexity of graph
learning in epidemic cascades solely based on infection times.
They proposed an algorithm based on maximum likelihood
and compared it with the greedy algorithm. Their learning
algorithm finds an approximate graph structure, while we
propose a MHS algorithm that finds the exact graph structure.
Rabbat et al. [17] considered inferring network structure from
“co-occurrence” data. They modeled co-occurrence observa-
tions as independent realizations of a random walk on the
network and derived an expectation-maximization to estimate
the random walk parameters. Gripon et al. [7] proposed an
algorithm for exact graph recovery from indirect observations.
Each observation is the unordered set of nodes that are activat-
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Fig. 10: Edit distance based estimation of a sub-graph of Google+.

ed along a path through the network. They provided necessary
and sufficient conditions for the reconstruction algorithm.
Milling et al. [15] considered diagnosing the causative network
of an epidemic or contagion using noisy and highly incomplete
data. Milling et al. [14] provided sufficient conditions for
different graph topologies so that it is possible to distinguish a
random infection model from a spreading epidemic model with
asymptotically zero probability of misclassification. In contrast
to the above works, our work is the first that proposes a
polynomial time algorithm to recover the underlying structure
of the network based on infection times of the nodes.

Yang et al. [20] used the minimum hitting set algorithm
to learn the interference graph of a wireless network based
on passive traffic monitoring. They provided both necessary
and sufficient conditions on the number of samples required
for the learning problem in both static networks and time-
varying networks. Their minimum hitting set approach cannot
be directly applied to our scenario due to the environmental
differences including assumptions on edge probabilities and
nodal degree which results in different bounding procedure.
Due to different setup of the problems, we relax some of the
constrained assumptions in [20] and use different bounding
procedures to derive the sufficient condition in Formula 3,
which leads to different results. In particular, they assumed
that each sensor node has bounded number of direct and
hidden interferers. We do not have such bound assumption
on node degrees, which is more practical for dense networks.
Since finding minimum hitting set is NP-hard, we use minimal
hitting set (MHS) that has a polynomial runtime.

IX. CONCLUSIONS AND FUTURE WORK

We consider learning the underlying graph structure of an
epidemic cascade based on infection times of nodes. For a
cascade in which a given node is infected, we consider a set
of nodes with infection time one less than the infection time of
the node. We estimate parental set of the node as the minimal
hitting set of these sets. We show that the estimation error
probability goes to zero as we increase the number of cascades
and derive the sufficient condition for its sample complexity.
We then consider learning the graph up to a given edit distance
and provide a necessary condition on the sample complexity.
However, our algorithms require the knowledge of infection
times of all nodes in the network, which may not be practical
in real scenarios due to hidden and missing data. We will study
learning the graph structure with missing infection times in our
future work.
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