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Networks are everywhere 
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Human Disease Network 

Facebook Social Network 

The Internet  



Introduction 
 

• Learning the underlying network structure is very important. 

 

 

• In this paper, we consider learning the network structure, 
based on some observations of the network in the context of 
epidemic spreading. 

 

4 



Epidemic Spreading Model 
• Various phenomena can be modeled as epidemic 

spreading model (epidemic cascade). 

– Biological 
• Diseases via contagion 

– Technological 
• Cascading failures 

• Spread of information 

– Social 
• Rumors, news, new technology 

• Viral marketing 

– Wireless 
• Information dissemination 

– Internet 
• Propagation of worms 

 

 
5 



Infection Spread Model 
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• Models of Infection [Easley 10b]: 

– SIS: Susceptible-Infective-Susceptible (e.g., flu) 

– SIR: Susceptible-Infective-Recovered (e.g., 
chickenpox) 



Susceptible, Infected and Recovered 
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• Susceptible 
– the nodes that can catch disease from a network 

neighbor 

• Infected 
– the nodes that have caught the disease and can 

pass it on 

• Recovered 
– the nodes that have recovered and cannot be 

infected again 

 

 

 



Susceptible, Infected and Recovered 
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• How is the epidemic spread in SIR model? 
 

• Process 
– Initially, each node independent of other nodes gets infected with 

probability 𝑝𝑖𝑛𝑖𝑡. These infected nodes are seeds. 
– Each node in the infected state remains infectious for one time step. 
– Each node 𝑖 in the infected state can infect each of its susceptible 

neighbors 𝑗, with a probability of 𝑝𝑖𝑗. 
– After one time step, each infected node is no longer infectious or 

susceptible and enters the recovered state. 
 
 

• This SIR model is suitable for modeling a disease that each 
individual can only catch once during his/her life time. 
 
 
 



Example SIR Epidemic in One Cascade 
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Observation Model 
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• We model the network as a Graph, 𝐺 = (𝑉, 𝐸). 

• We denote 𝑉𝑖 = 𝑗: 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 . 

• Consider a number of cascades. 

• In each cascade 𝑢, seeds start to spread the 
infection. 

• We observe the time that each node 𝑖 ∈ 𝑉 gets 
infected, denoted by 𝑡𝑖

𝑢. 

• We set 𝑡𝑖
𝑢 = 0 for the seeds, and 𝑡𝑖

𝑢 = ∞ for the 
nodes that never get infected. 



Goal 
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Related Work 
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• Maximum Likelihood (ML) [SIGMETRICS’12] 
– ML guarantees to detect a subset of the parents 

of a node rather than its exact parental set 

 

– ML requires a relatively high sample complexity 
for reliable graph recovery when the graph is 
dense (i.e., nodes have high degrees) 

 

– To achieve high performance, ML requires an 
appropriately predefined threshold parameter 



 

 

Our proposal 

13 



Minimal Hitting Set 
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• Hitting set of a collection of sets 

– a set that intersects all of the sets in the collection 

 

• Minimal hitting set of a collection of sets 

– if and only if no proper subset of it is a hitting set for 
this collection 

– Consider a collection of sets 

1,2 , 1,3 , 1,2,4 , 1,3,5 . 2,3  is a minimal 
hitting set of the collection 



Minimal Hitting Set Algorithm 
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• Process 
– We have 𝑚 epidemic cascades. 

– Recovering the network structure is equivalent to 
recovering the parental nodes of every node 𝑗, ∀𝑗 ∈ 𝑉.  

– In each cascade 𝑢, we denote 𝑡𝑗
𝑢 as the infection time of 

the node 𝑗. 

– We denote 𝑆𝑗
𝑢 as the set of nodes 𝑖 that have infection 

time = 𝑡𝑗
𝑢 −1 in observation 𝑢, i.e., 𝑆𝑗

𝑢 = {𝑖: 𝑡𝑖
𝑢 = 𝑡𝑗

𝑢 −1} 

– Therefore, for 𝑚 cascades, we have a collection of 𝑆𝑗
𝑢sets. 

– The parent set of node 𝑗 is the minimal hitting set of the 
collection of 𝑆𝑗

𝑢sets from all the cascades. 



Minimal Hitting Set Algorithm 
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• Theorem: as the sample complexity 𝑚 → ∞, the parent 
nodes of node 𝑗 is the minimal hitting set of the collection of 
𝑆𝑗

𝑢sets. 

 

• For details of the proof, please refer to the paper. 

 

• Simple rationale: the parent nodes of node 𝑗 is definitely a 
minimal hitting set of the collection of 𝑆𝑗

𝑢sets.  A minimal 

hitting set must include all the parents of node 𝑗. Otherwise, 
as 𝑚 → ∞, there must exist one cascade that node 𝑗 is 
infected by the parent that are not in the minimal hitting set. 



Minimal Hitting Set Algorithm 
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• Lower bounds (sufficient condition) 

– Recover the network structure with high probability 
• find the sample complexity 𝑚, ∀𝛿 > 0 

• guarantee that the network structure is recovered with 
probability at least 1 − 𝛿, 𝛿 > 0 

 

– Sample complexity 

• 𝑚 ≥
log 𝛿−2 log 𝑛

log 1−𝑝𝑖𝑛𝑖𝑡∗𝑝𝑚𝑖𝑛
= 𝑂(log 𝑛) 

• 𝑝𝑚𝑖𝑛 is the minimum probability for the edge propagation 

 



Evaluation 
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• Trace-driven simulation 

 

• Comparing method 

– maximum likelihood (ML) 

 

• 𝑝𝑖𝑛𝑖𝑡=0.3, 𝑝𝑖𝑗 = 0.8 

 

• The predefined parameter (infection probability threshold) of ML  

– set to x=0.1, 0.2, 0.5, 0.8, denote as MLx 

 

• Recover only a subset of the parents for ML 

– denoted as MLxSub 

 



Evaluation 
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• Grid Graph. We see the superior performance of 
our proposed minimal hitting set algorithm. 

 



Evaluation 
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• A sub-graph of the Google+ network with 500 
users.  

• We see the superior performance of our proposed 
minimal hitting set algorithm. 

 



Conclusion 
 

• We consider learning the underlying graph structure of 
an epidemic cascade based on infection times of 
nodes. 

 

• We propose a minimal hitting set algorithm to recover 
the network structure. 

 

• We demonstrate the effectiveness of minimal hitting 
set algorithm by trace-driven simulation. 
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Thank you! 

Questions & Comments? 
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