
Cache Contention Aware Virtual Machine
Placement and Migration in Cloud Datacenters

Liuhua Chen, Haiying Shen and Stephen Platt
Clemson University, Clemson, South Carolina 29634

Email: {liuhuac, shenh, splatt}@clemson.edu

Abstract—In cloud datacenters, multiple Virtual Machines
(VMs) are co-located in a Physical Machine (PM) to serve
different applications. Prior VM consolidation methods for cloud
datacenters schedule VMs mainly based on resource (CPU and
memory) constraints in PMs but neglect serious shared Last
Level cache contention between VMs. This may cause severe VM
performance degradation due to cache thrashing and starvation
for VMs. Current cache contention aware VM consolidation
strategies either estimate cache contention by coarse VM
classification for each individual VM without considering
co-location and (or) require the aid of hardware to monitor
the online miss rate of each VM. Therefore, these strategies
are insufficiently accurate and (or) difficult to adopt for VM
consolidation in clouds. In this paper, we formalize the problem
of cache contention aware VM placement and migration in cloud
datacenters using integer linear programming. We then propose a
cache contention aware VM placement and migration algorithm
(CacheVM). It estimates the total cache contention degree of
co-locating a given VM with a group of VMs in a PM based on
the cache stack distance profiles of the VMs. Then, it places the
VM to the PM with the minimum cache contention degree and
chooses the VM from a PM that generates the maximum cache
contention degree to migrate out. We implemented CacheVM
and its comparison methods on a supercomputing cluster.
Trace-driven simulation and real-testbed experiments show that
CacheVM outperforms other methods in terms of the number
of cache misses, execution time and throughput.

I. INTRODUCTION

Many cloud systems (such as those in Amazon [1], Google
[2] and Microsoft [3]) provide IaaS service in the form of
VMs. They consolidate multiple VMs on the same physical
machine (PM) in order to optimize the underlying resource
usage of the cloud datacenters when providing service to
different customers. In spite of the high resource utilization
due to resource sharing, the resource contention between VMs
often lead to significant performance degradation of VMs.
After the initial VM allocation to PMs, VM migration methods
[4] are usually used to migrate VMs from overloaded PMs
to underloaded PMs to avoid resource contention. Efficient
and effective VM allocation and migration became one of the
major challenges that datacenter operators face in order to
satisfy Service Level Agreements (SLAs) [5] between a cloud
customer and the cloud service provider, especially when the
number of VMs increases rapidly nowadays in clouds.

An effective VM allocation algorithm should allocate as
many VMs as possible to a PM while i) meeting their
explicit requirements on resources such as CPU and memory

and ii) minimizing contentions on Last Level cache (LLC).
Many previous VM allocation or migration methods provide
a metric to choose destination PM and migration VM to handle
objective i) but neglect objective ii). Current VM placement
and migration approaches mainly consider resource (e.g., CPU
and memory) constraints in PMs. They estimate VM perfor-
mance based on either measured [6]–[10] or predicted [11]–
[13] VM resource utilizations, but neglect resource utilization
overhead [14] due to virtualization such at serious shared LLC
contention between VMs, which may seriously degrade VM
performance. Cache contention refers to the situation that
a VM suffers extra cache misses because other co-located
VMs on the same processor bring their own data into the
LLC, which evicts the VM’s data, and then the VM brings
its own data into the LLC which causes cache misses to other
VMs. Cache contention breaks the protection and isolation
[15] provided by virtualization, thus directly degrading the
performance of VMs. Many applications running on clouds are
characterized by large cache resource consumption and various
cache access behaviors due to their large-scale data inputs
and intensive communications (e.g., between the application
and end users and between front-end servers and back-end
databases of the application) [16]. When multiple VMs that
host these applications are co-located, the problem of LLC
contention becomes even worse.

Some cache contention aware VM consolidation strategies
[17]–[20] in the high performance computing environment
have been proposed. However, they estimate cache contention
by coarse VM classification for individual VM without
considering co-location. First, they conduct VM classification
based on rough estimation of cache contention (e.g., cache
pollution, cache sensitive and cache friendly) and avoid
co-locating VMs that will generate many cache misses (e.g.,
cache pollution VMs and cache sensitive VMs). Then, they are
not suitable for the practical cloud environment, which hosts
numerous VMs with various cache access characteristics.
Second, these strategies estimate the cache contention for
individual VMs without the effect of co-location, that is,
they do not measure how much the VM will suffer or other
VMs will suffer when the VM is co-located with other VMs.
Third, they only aim to isolate cache pollution VMs from
cache sensitive VMs, but fail to evaluate the cache contention
for every possible location for a VM to find the location with
the minimum performance degradation.

In this paper, we formalize the problem of cache contention

aware virtual machine placement and migration in clouds using
integer linear programming. We then propose a heuristic Cache
Contention Aware Virtual Machine Placement and Migration
algorithm (CacheVM). It estimates the total cache contention
degree of co-locating a given VM with a group of VMs in
a PM based on measured cache stack distance profiles of the
VMs. We claim that these profiles are efficient for predicting
VM runtime caching behavior under complex co-location sce-
narios for two reasons. First, a large number of jobs in a com-
mercial cloud recur with predictable resource requirements
[21]. Second, these profiles are obtained when the jobs are run-
ning with full resource provisioning rather than in a resource
constrained environment, where the monitored VM co-locates
with other VMs. Therefore, these profiles are more accurate
in predicting VM caching behaviors. Then, CacheVM places
the VM to the PM with the minimum cache contention and
chooses the VM from a PM that generates the maximum
cache contention to migrate out. Though CacheVM focuses
on reducing cache contention, it can be easily combined with
other VM placement schemes [9], [22] to jointly consider
both cache contention and resource utilization (e.g., CPU and
memory). We used benchmarks and implemented CacheVM
in a supercomputing cluster. Trace-driven simulation and real-
world testbed experiments show that CacheVM significantly
reduces average performance degradation experienced by the
VMs compared to other methods. The contributions of this
paper are summarized as follows:
• We propose a cache contention aware VM performance

degradation prediction algorithm (CCAP) for estimating the
stack distance profiles of VMs.

• We present an optimization formulation for a cache con-
tention aware VM placement problem.

• We propose a cache contention aware VM placement and
migration algorithm (CacheVM) based on CCAP.

• We carry out trace-driven simulation and prototype
CacheVM on a supercomputing cluster.
The rest of this paper is organized as follows. Section II

briefly describes the related work. Section III introduces the
background of cache interference in shared LLC. Section IV
presents the performance degradation prediction method. Sec-
tion V presents the design of CacheVM. Section VI presents
the performance evaluation of CacheVM. Finally, section VII
summarizes the paper with remarks on our future work.

II. RELATED WORK

Current VM placement and migration approaches for cloud
mainly consider CPU and memory resource constraints in
PMs. Chen et al. [6] proposed a resource intensity aware load
balancing method to achieve load balance in cloud datacenters.
The authors also proposed a scheme that predicts VM re-
source utilization and consolidates VMs with complementary
utilization [9]. However, these methods mainly consider CPU
and memory resource constraints in PMs, but neglect the
cache contention between co-located VMs, which can also
significantly degrade VM performance.

Some cache contention aware VM consolidation strategies
have been proposed for the high performance computing
environment. Xie et al. [17] classified the applications into
four different classes based on their miss rate and provided
estimates of how well various classes co-exist with each other
on the same shared cache. Jin et al. [18] applied a similar clas-
sification method to categorize VMs that aims to relieve cache
contention in VM placement. However, these methods roughly
estimate cache contention by coarse VM classification, so they
are insufficiently accurate in the practical cloud environment,
which hosts numerous VMs with various cache consumption
characteristics, because the small number (three or four)
classes are far from sufficient in capturing the performance of a
huge amount of VMs from different applications. Knauerhase
et al. [19] proposed MissRate algorithm that estimates the miss
rates of VMs online, and then allocates a VM to the PM that
has the least sum of the miss rates of its hosted VMs. Kim et
al. [20] proposed a VM consolidation algorithm based on their
cache interference model. It calculates interference-intensity
and interference-sensitivity (based on miss rate and miss ratio)
to classify VMs and tries to co-locate highly interference-
intensive VMs and less interference-sensitive VMs. However,
these two methods only consider the metrics of individual
VMs and hence are not sufficiently accurate to reflect VM
performance in a complex VM co-location environment. As
we indicated in Section I, these methods are not suitable
for the cloud environment. Some other methods [23], [24]
focus on online monitoring and leverage live VM migration to
reduce contentions on the cache. Ahn et al. [23] proposed and
evaluated online VM scheduling techniques for cache sharing
based on LLC misses in hardware performance monitoring
couters. Wang et al. [24] proposed an architecture aware
scheme to take into account cache interference when making
migration decisions. However, these methods rely on hardware
counters to periodically keep track of per-VM LLC misses,
which is not feasible in many cloud vendors.

III. BACKGROUND

We first present a brief review of cache hierarchy, especially
the process to share LLC among CPU cores. Today’s multi-
core processors have a hierarchy of caches, typically one or

A
B
C
D

[A,B,A,B,C,D,D,B]LRU stack

C1

C2

C3

C4

C1 increases 1

C3 increases 1

Fig. 1: LRU stack and coun-
ters in stack distance profile.

more caches private to each
core and a single LLC shared
across all cores. A VM’s
memory is mapped to the
physical memory and data is
inserted into and evicted from
the cache hierarchy at the
granularity of a cache line (64
bytes for most processors).

A stack distance profile (also referred to as marginal gain
counters [25]) captures the temporal reuse behavior of an
application in a fully- or set-associative cache. It is obtained
by monitoring cache accesses on a system with a Least
Recently Used (LRU) cache. When a cache line is accessed,
the line is pushed (or moved) to the top of the LRU stack

Th
e

nu
m

be
r o

f a
cc

es
se

s

Cache Hits

Cache Misses

C1 CA C>A…
Stack distance counters

(a) Stack distance profile

Cache Hits

Original
Cache Misses

C1 CA C>A…
Stack distance counters

Extra
Cache Misses

Th
e
nu

m
be

r o
f a
cc
es
se
s

(b) Extra cache misses in cache contention

Fig. 2: Stack distance profiles.

of a set. As shown in Figure 1, for an A-way associative
cache, a stack distance profile of VM i is represented by
fi = {C1,C2,...,CA,C>A}, where d in Cd corresponds to each
LRU stack position, Cd counts the number of hits to the line
in the dth LRU stack position and C>A counts the number of
cache misses. Note that the first line in the stack is the most
recently used line in the set, and the last line in the stack is
the least recently used line in the set. If it is a cache access to
a cache line in the dth position in the LRU stack of the set, Cd
is incremented. If it is a cache miss, i.e., the line is not found
in the LRU stack, then the miss counter C>A is incremented.

Figure 2(a) shows an example of a stack distance profile.
Applications with temporal reuse behavior usually access
more-recently-used data more frequently than less-recently-
used data. Therefore, typically, the stack distance profile shows
decreasing values from the left to the right. The number of
cache misses for a smaller cache can be easily computed using
the stack distance profile. For example, for a smaller cache that
has A′ (A′ < A) associativity, the new number of misses can
be computed as C>A +

∑A
d=A′+1 Cd.

In order to predict the performance of VMs that are affected
by VM co-locations, it is necessary to compare the stack
distance profiles from different VMs. Because the number
of cache accesses within a unit time collected in different
processors may differ greatly due to their different computing
capabilities, we need to divide each of the counters by the
number of processor cycles in which the profile is collected.
That is, Ci = Ci

CPUcycle
and C>A = C>A

CPUcycle
. Then, we define

the miss frequency as C>A and define the reuse frequency as∑A
i=1 Ci. The sum of these two frequencies is referred to as

access frequency.

IV. DEGRADATION ESTIMATION

A. Cache Contention Prediction

Figure 2(b) shows an example of the transformation of a
stack distance profile due to cache contention. When a VM
is co-located with some other VM, some of its original hits
will turn into misses because of the data eviction by the other
VMs. The original hits that turn into misses due to VM co-
location are referred to as extra cache misses, as indicated by
the grey area. The value of extra misses indicates the extent
that the VM will be affected by co-location.

We propose a profile prediction model that constructs a new
stack distance profile for a VM when it shares LLC with other
VMs. When VM i and VM j compete for a cache line (which
is the dth position in the LRU stack), the probability of VM

i “winning” the competition is proportional to the number of
accesses to this cache line of VM i, but reversely proportional
to the total number of accesses to this cache line of the two
VMs. That is,

qijd =
Cid

Cid + Cjd
(1)

We then extend Equ. (1) to the probability of succeeding in
accessing the dth position when competing with Nv number
of VMs:

qid =
Cid

Cid +
∑Nv

k=1 C
k
d

. (2)

Then, the new stack distance profile of VM i can be estimated
by

f ′i = {qi1Ci1, qi2Ci2, ..., qiACiA, C ′>A}, (3)

where C ′>A =
∑A+1
d=1 C

i
d −

∑A
d=1 q

i
dC

i
d. The second part in

the equation (
∑A
d=1 q

i
dC

i
d) indicates the estimated number of

hits of the VM with profile fi after co-location.

B. Performance Degradation Prediction
Given a group of VMs that are requested by end users,

the cloud provider needs to allocate these VMs to available
PMs. An effective VM allocation algorithm should allocate
as many VMs as possible to a PM while i) meeting their
explicit requirements on resources such as CPU and memory
and ii) minimizing contentions on LLC. Many previous VM
allocation or migration methods provide a metric to choose
destination PM and migration VM to handle objective i) but
neglect objective ii). In this paper, we focus on designing a
metric to measure the performance degradation of the VMs
due to their LLC contention to achieve objective ii). Both
metrics can be jointly considered to achieve both objectives.

In order to minimize the performance degradation of VMs
from LLC contention, we try to avoid co-locating VMs with
intensive cache consumptions so that the average impact of
cache contention on each VM in the system is minimized. In
this section, we first introduce a method to calculate the cache
sensitivity and the cache intensity of a VM. By referring
to [26], we then propose a pain prediction algorithm that
measures the total performance degradation of co-locating
two VMs.

Sensitivity is a measure of how much a VM will suffer
when cache space is taken away from it due to contention.
Intensity is a measure of how much a VM will hurt others
by taking away their space in a shared cache. The sensitivity
and intensity can be obtained from stack distance profiles. By
combining the sensitivity and intensity of two VMs, the pain
of co-locating the two VMs can be estimated. Co-locating a
sensitive VM with an intensive VM should result in a high
level of pain, and co-locating an insensitive VM with any type
of VMs should result in a low level of pain for this VM.

When VM i is co-located with VM j, the probability of its
hit in the dth position becoming a miss is qijd (Equ. (1)). Then,
the cache sensitivity of VM i when co-locating with VM j is
calculated by

Sij =

A∑
d=1

qijd × C
i
d. (4)

Cache intensity of a VM is a measure of how aggressively
a VM uses cache. It approximates how much space the VM
will take away from its being co-located with VMs. The
cache intensity of VM i when being co-located with VM j
is calculated by:

Iij = Sij + C ′>A, (5)

which is measured by the number of LLC accesses per one
million instructions.

The cache sensitivity and cache intensity are combined into
the metric for measuring performance degradation resulting
from VM co-location. The VM performance degradation is
defined as Tco−Tsolo

Tsolo
, where Tco and Tsolo are the total running

time of an application in a VM when the VM runs with
and without other co-located VMs, respectively. Suppose two
VMs vi and vj share the same cache. Then, the performance
degradation of vi suffered from being co-located with vj is
calculated by multiplying the intensity of vj and the sensitivity
of vi when co-located with vj (i.e., SijIji). The rationale
behind multiplying the intensity and the sensitivity is that
combining a sensitive VM with an intensive VM should result
in a high level of performance degradation, and combining
an insensitive VM with a non-intensive VM should result
in a low level of performance degradation. As vi and vj
are co-located, it is necessary to consider the performance
degradation introduced to both vi and vj . The degradation of
co-scheduling vi and vj together is the sum of the performance
degradation of the two VMs:

Pij = SijIji + IijSji. (6)

V. VM PLACEMENT AND MIGRATION ALGORITHM

A. Notations and Assumptions

In this section, we design the CacheVM algorithm to place
VMs on PMs, which already hosts a number of VMs, and to
migrate VMs from overloaded PMs. We regard it as a VM
placement and migration problem.

In practice, the VM placement policy should consider mul-
tiple factors simultaneously besides the cache contention, such
as load balance and energy saving. Hence, the VM placement
policy should be a multi-objective optimization problem. In
this work, we focus on minimizing the VM average perfor-
mance degradation due to cache contention and model the
problem. The model can be easily extended to incorporate
other objectives. We consider different numbers of VM slots in
different PMs, and hide the details about the variance in CPU
and memory resource on different PMs as well as the variance
in the requested resource from different VMs. The proposed
model can be extended to deal with server heterogeneities.

Assume there are Np PMs in the datacenter, denoted by pk
(k = 1, 2, ..., Np). The kth PM has ck CPU cores in total,
of which tk are occupied. There are Nva new VMs to be
allocated, namely vai (i = 1, 2, ..., Nva), and they have cache
distance profiles fi, where

TABLE I: Notations and definitions

Notation Definition
qid Probability of VM i “winning” the dth position in LRU stack
Np The number of PMs
Nva The number of VMs to allocate
Nve The number of existing VMs
Nk

ve The number of existing VMs in pk
Nv Total number of VMs including both existing and new VMs
pk PM k
vi VM i
vai New allocated VM i
vej Existing VM j

ck The number of CPU cores in pk
fi Cache distance profile of vi
f ′i Predicted cache distance profile of vi
π Existing VM to PM mapping
φ VM to PM mapping for new VMs
Pij The pain due to co-location of vi and vj
P Total pain of allocating new VMs

fi : d→ Cid, d = 1, 2, ..., A+ 1.

Assume there are Nve existing VMs allocated in the system,
denoted by vej , (j = 1, 2, ..., Nve). The locations of existing
VMs are given by the following mapping function:

π : [ve1, v
e
2, ..., v

e
Nve]→ [p1, p2, ..., pNp

]

which means that existing VM vej (j = 1, 2, ..., Nve) is located
on server π(vej).

Then, the pain of the co-location of new VM vi and existing
VM vej can be obtained by Equ. (6). For any valid VM
placement trial, there is a corresponding function:

φ : [v1, v2, ..., vNva]→ [p1, p2, ..., pNp
]

which maps the Nva new VMs to the Np PMs.
Our optimization goal is to minimize the total pain of the

co-location of the new VMs with the existing VMs, denoted by
P: Only the VMs that are located in the same PM contribute
to the total pain. Then, P is calculated by:

P =

Nva∑
i=1

Nve∑
j=1

φ(vi)=π(v
e
j)

Pij (7)

The VM placement problem is then transformed as finding a
VM-PM mapping schedule for new VMs (denoted by φ) which
minimizes the total pain P , under the following constraints:

Nva ≤
Np∑
k=1

(ck − tk) (8)

xik =

{
1 φ(vi) = pk
0 φ(vi) 6= pk

,∀i = 1, 2, ..., Nva , k = 1, 2, ..., Np

(9)

tk +

Nva∑
i=1

xik ≤ ck,∀k = 1, 2, ..., Np (10)

Np∑
k=1

xik = 1,∀k = 1, 2, ..., Np (11)

Constraint (8) guarantees that the number of new VMs does
not exceed the total available slots in the datacenter. Constraint
(9) is a boolean matrix [xik]Nva×Np to represent the VM
placement solution, where xik = 1 if VM vi is placed onto
PM pk, (i.e., φ(vi) = pk). Constraint (10) guarantees that

the number of VMs placed in a PM pk does not exceed its
available slots. Constraint (11) means that each VM can only
be placed on one PM.

In the next section, we will transform the optimization
problem to an integer linear programming (ILP) model, which
can be solved with existing programming toolkits.

B. Integer Linear Programming

In order to solve the problem using an ILP model, we use
vi (1 = 1, 2, ..., Nv) to represent all the VMs, where Nv =
Nva +Nve .We rewrite the optimization goal Equ. (7) as

P =

Nv∑
i=1

Nv∑
j=1

Np∑
k=1

xikxjkPij (12)

where Pij is the pain of co-locating vi and vj as calculated
by Equ. (6). Given the stack distance profiles of existing and
new VMs, we can calculate the co-location pain of each pair
of VMs and finally derive the Nv ×Nv matrix [Pij].

The optimization goal aims to minimize the total pain for
every VM co-location. The ILP model requires the object
function to be linear, while xikxjk is nonlinear. We relax and
transform the optimization goal by introducing a new variable
yijk = xikxjk. yijk = 1 means that VM vi and VM vj are co-
located on PM pk, while yijk = 0 means VM vi and VM vj
are not co-located on PM pk. It does not necessarily mean that
vi and vj are not co-located (e.g., vi and vj may be co-located
on other PMs other than pk).

From the definition of yijk, we can derive the following
properties:
1). yijk = yjik;
2). yiik = 1 if and only if vi is on pk;
3). If yijk = 1, then yiik = 1 and yjjk = 1;
4). yijk ≤ xik + xjk;
5). yijk ≥ xik + xjk − 1.

The problem can be reformulated as below: Given yiik,
where Nva +1 ≤ i ≤ Nv , and the profiles fi (1 ≤ i ≤ Nv) of
the VMs, find the solution of yiik, where 1 ≤ i ≤ Nva , that

Maximize :

Nv∑
i=1

Nv∑
j=1

Np∑
k=1

yijkPij
subject to:

yijk =

{
1 φ(vi) = φ(vj) = pk
0 else

(13)

Nv∑
i=1

Nv∑
j=1

yijk ≤ c2k (14)

Np∑
k=1

yijk ≤ 1 (15)

yijk = yjik, ∀ i, j, k (16)

yijk ≤ yiik + yjjk, ∀ i, j, k (17)

yijk ≥ yiik + yjjk − 1, ∀ i, j, k (18)

Nv∑
i=1

Np∑
k=1

yiik = Nv (19)

Equ. (14) means that for every PM, there are at most ck
co-located VMs. Equ. (15) means that vi and vj can be co-
located in at most one PM. Equ. (16), Equ. (17) and Equ. (18)
are derived from Properties 1), 4) and 5), respectively. Equ.
(19) guarantees that there are in total Nv VMs.

The VM placement problem that considers cache contention
between new VMs and existing VMs in the datacenter is NP-
hard. A naive way to solve the ILP is to simply remove the
constraint that yijk is integral, solve the corresponding LP
(LP relaxation of the ILP), and then round the entries of the
solution to the LP relaxation. Here, we can apply the branch
and bound method [27] to solve the problem. We use lpsolve
5.5 [28] tool to find the optimal solution for the VM allocation.

The computational complexity of the above method is very
high, especially for a relatively large number of VMs. Then,
we propose a heuristic VM placement and migration algorithm
below.

Algorithm 1 Greedy VM placement algorithm
Input: Nva VMs, each with distance profile fi (1 ≤ i ≤ Nva)

Nve existing VMs, each with profile fj (1 ≤ j ≤ Nve)
Locations of existing VMs π

Output: a feasible placement schedule φ for the VMs
1: Compute the cache hits based on fi (1 ≤ i ≤ Nva) for each VM;
2: Sort the VMs based on cache hits in decreasing order;
3: Compute the total cache hits based on existing VMs vej for each PM;
4: Sort the PMs based on the total cache hits in ascending order;
5: for each VM vai in the sorted list do
6: for each PM pk do
7: Estimate the stack distance profile of vai in pk (Equ. (3));
8: Compute Pk

va
i

based on Equ. (20);

9: if Pk
va
i
< pmin then

10: pmin ← Pk
va
i

;
11: pdest ← pk;
12: end if
13: end for
14: place vai on pk;
15: end for
16: Return φ;

VM placement. Given Nva VMs with their stack distance
profiles fi (1 ≤ i ≤ Nva), our greedy VM placement heuristic
allocates each VM to a PM that leads to the minimum total
performance degradation, i.e., pain (P kvai).

P kvai =
∑

∀ vej in pk

Pij . (20)

Algorithm 1 shows the pseudo-code of the greedy VM place-
ment. The algorithm first sorts the VMs based on cache hits
derived from the input profiles in decreasing order (Line 1-
2), and then sorts the PMs based on the total cache hits in
ascending order (Line 3-4). The total cache hits of a PM pk is
calculated by summing the number of hits of existing VMs in
the PM. The algorithm iterates through the PM list (Line 6)
to find the PM that will result in the least pain with the VM
based on Equ. (20) (Line 7-12). Finally, the algorithm returns
a feasible placement φ for the VMs.
VM migration. When a PM becomes overloaded, it needs to
migrate out VMs to move out its extra load. The VM migration
algorithm needs to select migration VMs from an overloaded

Algorithm 2 VM selection algorithm
Input: VM list with profiles in PM
Output: VM for migration
1: for VM vi in VM list do
2: totalPain← Pk

ve
i

;
3: if totalPain > pmax then
4: pmax ← Pk

ve
i

5: vm← vi;
6: end if
7: end for
8: Return vm;

0

50

100

150

200

0 20 40 60 80 100 120
Stack distance counters

T
h

e
 u

m
b

e
r

o
f

a
c
c
e

ss
e

s

(a) Random profile

0

100

200

300

400

500

600

0 20 40 60 80 100 120
Stack distance countersT

h
e

 n
u

m
b

e
r

o
f

a
c
c
e

ss
e

s

(b) Profile of NPB benchmark LU

Fig. 3: Stack distance profiles.

PM and select the destination PM to host each migration VM.
The basic idea of the VM section algorithm is to select a
VM which generates the maximum pain with other co-located
VMs in the PM. We define the pain induced by vei with other
co-located VMs in pk as

P kvei =
∑

∀ vej in pk,j 6= i

Pij . (21)

Algorithm 2 show the migration VM selection procedure. The
algorithm iterates through the VMs list in the PM (Line 1).
In each iteration, it calculates the pain of this VM with other
VMs (Line 2). The VM that results in maximum totalPain is
selected (Line 3-6) and returned (Line 8). To find a destination
PM to host a migration VM, Algorithm 1 is used to select the
PM that leads to the minimum total pain for the migration
VM based on Equ. (20).

VI. PERFORMANCE EVALUATION

A. Experiment Settings

We conducted experiments on CloudSim [29], a modern
simulation framework for cloud computing environments and
on our school’s primary high-performance computing (HPC)
cluster (a 21,546-core 500 tera FLOPS HPC system). We
extended CloudSim to model LLC contention between VMs
by adding a stack distance profile to each VM. The profiles are
determined by the trace. The simulator then takes the profiles
as input to predict VM miss rate due to co-location based
on our proposed cache contention model. We simulated a
datacenter that consists of more than 1000 physical nodes.
Each node is emulated to be equipped with HP ProLiant
DL380 G5 (1 x [Xeon 3075 3160 MHz, 4 cores], 4GB). The
characteristics of the VM types correspond to Amazon EC2
instance types [30]: (2.5GHz, 0.85GB), (2.0GHz, 3.75GB),
(1.0GHz, 1.7GB) and (0.5GHz, 613 MB).

To study the performance interference caused by contention
for LLC quantitatively, we conducted the simulation experi-
ments based on both random stack distance profiles (created by
ourselves) and trace-driven profiles. We designed the random
stack distance profiles rather than only using the trace-driven
profiles in order to evaluate the performance for different types
of cache access behaviors.

Random stack distance profiles. Intuitively, a VM’s number
of hits to its Most Recently Used (MRU) positions is larger
than its number of hits to the LRU positions in a cache. In the
random profile based experiment, we created an exponential
model to create a VM’s stack distance profile that emulates
its stack access behavior as shown in Figure 2(a):

Cd = a× e
−(1

b
)×d

0.005×c

where a, b and c are coefficients used to control the shape of
the profile. a controls the number of hits to the MRU position
(i.e., the height of the curve in Figure 2(a)) and b and c together
control the decreasing speed of the curve (i.e., the number of
hits from the left (MRU) to the right (LRU) in Figure 2(a)). A
high value of b or c means a slower decreasing speed. Figure
3(a) shows an example of a random profile with a = 180,
b = 40 and c = 200. In the simulation, we randomly selected
the values for a, b and c in a certain range to generate the
profiles.

Experiments on trace-driven profiles. In the trace-driven
experiment, we selected workloads from the NAS Parallel
Benchmark (NPB) suite [31]. The NPB suite is a small set of
programs (as shown in Table II) designed to help evaluate the
performance of parallel supercomputers. It provides a variety
of memory accessing applications. The workload size of each
program in NPB can be specified as different classes (e.g.,
small, standard, large, etc.) before running. We used the MPI
implementation of the NPB, Version 3.3 (NPB3.3-MPI). We
executed the programs on our HPC cluster and used PinTools
[32] to record the stack distance profiles for the programs. We
then used the measured stack distance profiles in our trace-
driven experiments. We randomly chose a profile from the 8
profiles for each VM in our experiments.

Figure 3(b) shows an example of the measured profile of
NPB benchmark LU with a small workload. Unlike the random
profile in Figure 3(a), the real profile can have a higher number
of accesses for a counter with a high distance than those with
small distance (e.g., the number of accesses for C22 is greater
than the number for C20). Furthermore, the number of cache
misses in the trace is greater than the random profile.

Model validation. In order to study the accuracy of the
proposed model in predicting the behavior of real appli-
cations, we conducted an evaluation experiment. This ex-
periment is performed using a execution-driven simulator
[33]. We chose paired benchmarks from Table II and co-
scheduled them to the simulator. 28 benchmark pairs were
studied in the experiment. We measured the number of
cache misses of the benchmarks when they ran under cache
sharing. We also predicted the number of cache misses

TABLE II: NAS Parallel Benchmarks

Application Specifications
IS Integer Sort, random memory access
EP Embarrassingly Parallel
CG Conjugate Gradient, irregular memory access and communication
MG Multi-Grid on a sequence of meshes, long- and short-distance

communication, memory intensive
FT discrete 3D fast Fourier Transform, all-to-all communication
BT Block Tri-diagonal solver
SP Scalar Penta-diagonal solver
LU Lower-Upper Gauss-Seidel solver

based on our model. We then computed the cache miss
prediction errors, which are the difference in the cache
misses predicted by the model and collected by the simulator

0

20

40

60

80

100

0 5 10 15
Prediction error (%)

C
D

F
 o

f
p

re
d

ic
ti

o
n

e

rr
o

r
(%

)

Fig. 4: Prediction error.

under cache sharing, divided
by the number of cache
misses collected by the sim-
ulator under cache sharing.
Figure 4 shows the cumula-
tive distribution function of
the prediction errors. We see
that 80% of the predictions
have prediction error lower
than 6%. The model achieves a median prediction error of
2%. This result confirms that the proposed model achieves a
high accuracy in predicting cache behaviors.

Comparison algorithms. In order to compare the perfor-
mance of CacheVM with other alternatives, we also imple-
mented new VM placement algorithms in CloudSim based on
CacheVM (denoted by CacheVM), cache contention unaware
algorithm (denoted by Random), classification based algorithm
[17] (denoted by Animal) and miss rate based algorithm
[19] (denoted by MissRate), respectively. Random algorithm
randomly selects a PM and assigns a VM to the PM as
long as the PM has enough capacity (e.g., CPU, memory,
bandwidth) to host the VM. In VM migration, it randomly
selects VMs and migrates them to randomly selected PMs.
Animal algorithm classifies the VMs to four classes based on
the algorithm introduced in [17] and avoids co-locating two
VMs with type Devil on purpose in both VM placement and
migration. MissRate [19] algorithm estimates the miss rate of
each VM and then selects the PM that results in the least total
miss rate of its existing VMs to be the destination of a given
VM. For the performance evaluation of VM placement, we
allocated VMs to PMs according to each allocation algorithm,
and then measured the total number of misses in the system
after the program executions completed without considering
VM migration.

B. Trace-driven Comparison with the Optimal Algorithm

Since the computational complexity of the integer linear
programming algorithm is high, it is difficult to solve the
problem with a relatively larger number of VMs. In order
to examine how the proposed ILP optimization algorithm
performs in mitigating cache contention, we carried out the
VM placement experiment in a small scale with 20 PMs

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

20 30 40

T
o

ta
l

#
 o

f
m

is
se

s

The number of VMs

Random
Animal
MissRate
CacheVM
Optimal

(a) Total number of misses

1.0E+06

1.0E+08

1.0E+10

1.0E+12

20 30 40

T
o

ta
l

ti
m

e
 (

n
s
)

The number of VMs

Random Animal
Missrate CacheVM
Optimal

(b) Computation time

Fig. 5: Trace-driven comparison with the optimal solution.

and a varied number of VMs from 20 to 40. Figure 5(a)
shows the total number of misses of all the VMs in the
system. The result with the ILP optimization algorithm is
denoted as Optimal. We see that the result follows Opti-
mal<CacheVM<Animal<Random. It indicates that Optimal
outperforms all the other algorithms for solving small scale
problems. CacheVM’s performance is very close to Optimal
and higher than other algorithms. The number of misses of
MissRate increases faster under different numbers of VMs
than the other algorithms. This is because MissRate does not
consider the contention between co-located VMs by aiming
to minimizing the total miss rate of VMs in a PM. Random
generates the highest number of misses because it does not
consider cache contention in VM placement. Animal improves
Random since it avoids co-locating VMs with serious cache
contention. However, due to its cause classification of VMs,
it has higher number of misses than CacheVM.

In order to study the runtime overhead of the proposed
algorithms, we tested the computation time. The experi-
ment was conducted on a server with 3.00GHz Intel(R)
Core(TM)2 CPU and 4GB memory. Figure 5(b) presents
the CPU time in nanoseconds in logarithm scale for each
algorithm. We see that the computation time follows Mis-
sRate<CacheVM<Random<Animal<<Optimal. Specifically,
MissRate, CacheVM, Random, Animal and Optimal consume
0.041, 0.042, 0.022, 0.029 and 40.908 seconds, respectively.
MissRate consumes the least time because it finds PMs to
host VMs simply based on the total miss rate of VMs in
each PM without extensive computation. Random consumes
more time than CacheVM because it must launch extra runs
when the random VM to PM mapping is infeasible (i.e., the
PM does not have enough capacity). Animal consumes more
time than the previous three algorithms because it involves a
relatively complex procedure to classify the VMs. Optimal
consumes much more time than the other algorithms due
to the high complexity of solving the ILP problem. As the
computational complexity of Optimal is too high, Optimal
is not suitable for large-scale systems. In the following, we
present the performance of CacheVM in comparison with other
algorithms in large-scale systems.

C. Performance with Random Profiles

In this experiment, the stack distance profiles for the VMs
are generated with a randomly selected in [0, 200], b in
[50, 100], c in [0, 200] unless otherwise specified. We set the
number of PMs to 2000, and varied the number of VMs from

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2000 3000

To
ta

l
#

 o
f

m
is

se
s

The number of VMs

Random
Animal
MissRate
CacheVM

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

2000 3000 4000

To
ta

l
#

 o
f

m
is

se
s

The number of VMs

Random
Animal
MissRate
CacheVM

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

2000 3000 4000
To

ta
l

#
 o

f
m

is
se

s
The number of VMs

Random
Animal
MissRate
CacheVM

(a) Different number of VMs on 2000 PMs

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

Scale 1 Scale 2

To
ta

l
#

 o
f

m
is

se
s

Different scales

Animal
MissRate
CacheVM

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

Scale 1 Scale 2 Scale 3

To
ta

l
#

 o
f

m
is

se
s

Different scales

Random
Animal
MissRate
CacheVM

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

Scale 1 Scale 2 Scale 3

To
ta

l
#

 o
f

m
is

se
s

Different scales

Random
Animal
MissRate
CacheVM

(b) Different scales

0.0E+00

2.0E+06

4.0E+06

6.0E+06

Case1 Case2 Case3 Case4

To
ta

l
#

 o
f

m
is

se
s

Different scales

Random Animal
MissRate CacheVM

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

Case1 Case2 Case3 Case4

To
ta

l
#

 o
f

m
is

se
s

Different scales

Random
Animal
MissRate
CacheVM

(c) Different profile models

Fig. 6: Performance in VM placement with random profiles.

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

0 20 40 60

To
ta

l
#

 o
f

m
is

se
s

Time (min)

Random
Animal
MissRate
CacheVM

(a) 2000 PMs and 3000 VMs

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 20 40 60

To
ta

l
#

 o
f

m
is

se
s

Time (min)

Random

Animal

MissRate

CacheVM

(b) 3000 PMs and 4000 VMs

Fig. 7: Performance in VM migration with random profiles.

2000 to 4000. Figure 6(a) shows the median, the 10th and 90th

percentiles of the total number of misses after the initial place-
ment of the VMs. We see that the total number of misses in the
system follows CacheVM<Animal<Random<MissRate. The
experimental result also shows that the variance follows this
order although it is not very obvious in the figure. MissRate
performs the worst due to its insufficiently accurate cache
contention estimation algorithm merely based on the cache
miss rate. VM placement algorithm based on cache miss rate
is not able to efficiently relieve the cache contention problem.
Random does not perform as well as the other two cache
contention aware algorithms because it randomly allocates
VMs to PMs without considering cache interference. Animal
performs worse than CacheVM due to the reason that the
coarse classification of VMs cannot accurately reflect actual
cache interference between VMs hence cannot effectively
avoid interference between VMs. We can also see that the
total number of misses increases as the VM to PM ratio
increases (i.e., as more VMs are allocated in the system), there
is a higher chance for cache intensive VMs being co-located.
When the VM to PM ratio is 1, CacheVM is able to achieve
the minimum number of misses, while the others still lead to
an extra number of misses besides the minimum number of
misses in the system.

We then measure the total number of misses using different
datacenter scales with the same VM/PM ratio including (1000
VMs, 750 PMs), (2000 VMs, 1500 PMs) to (4000 VMs,
3000 PMs). Figure 6(b) shows the median, the 10th and
90th percentiles of the total number of misses with different
datacenter scales. We see that the total number of misses in the
system follows CacheVM<Animal<Random<MissRate, due
to same reasons explained before.

Finally, we study the performance with different stack
distance profiles. We set the number of PMs and VMs to 3000
and 4000, respectively. We designed four categories of profiles
with different a and b values (randomly selected from a range)

in the profile generator, representing different types of cache
visiting behaviors. The settings for the four categories are:
Case 1: a ∈ [0, 50], b ∈ [20, 50]; low MRU hits, slow drop;
Case 2: a ∈ [0, 100], b ∈ [20, 50]; high MRU hits, slow drop;
Case 3: a ∈ [0, 50], b ∈ [50, 80]; low MRU hits, median drop;
Case 4: a ∈ [0, 50], b ∈ [80, 100]; low MRU hits, fast drop.
We set c = 200 for all cases.

Figure 6(c) presents the median, the 10th and 90th

percentiles of the results from different types of pro-
files. We see that the total number of misses in the sys-
tem follows CacheVM<Animal<Random<MissRate for Case
1 and Case 2 due to the same reasons mentioned be-
fore. The total number of misses in the system follows
CacheVM<MissRate<Animal<Random for Case 3 and Case
4. MissRate has different performance for different profile set-
tings, while others maintain relatively stable performance. This
is because MissRate finds VM-PM mapping solutions based on
the miss rate metric, which is sensitive to the types of profiles.
In all the four cases, CacheVM produces the fewest misses.

In order to study the performance of the VM migration
algorithms, we extend the previous experiment by deliberately
conducting VM migrations in the system every 5 minutes after
VM placement. Each VM’s workload was randomly generated.
A PM executes the migration VM selection algorithm to select
VM(s) to migrate out, and then the centralized server executes
the destination PM selection algorithm to find destinations for
the migration VMs. We also measured the total number of
misses in the system every 5 minutes. In this experiment, we
test two scenarios with settings of (3000 VMs, 2000 PMs)
and (4000 VMs, 3000 PMs), respectively. The settings are
the same as Figure 6(a) except that we used a in [0, 200],
b in [50, 100] to generate the profiles. Figure 7 shows the
total number of misses as a function of time for the two
testing cases correspondingly. In both figures, we see that
after initial VM placement, the total number of misses of
all the algorithms decreases due to the reason that the al-
gorithms repeatedly migrate VMs out from PMs with high
cache contention to PMs with low cache contention. After
several rounds of VM migrations (e.g., after 40 minutes),
the total number of misses of each algorithms still follows
CacheVM<MissRate<Animal≈Random. The reasons of this
performance order is explained in Case 4 in Figure 6(c). After
several rounds of VM migration, CacheVM still has fewer
misses than the other algorithms although it is not very obvious
in the figure.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2000 3000 4000

To
ta

l
#

 o
f

m
is

se
s

The number of VMs

Random
Animal
MissRate
CacheVM

(a) Different number of VMs on 2000 PMs

0.0E+00

5.0E+06

1.0E+07

Scale 1 Scale 2 Scale 3

To
ta

l
#

 o
f

m
is

se
s

Different scales

Random
Animal
MissRate
CacheVM

(b) Different scales

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

0 20 40 60

T
o

ta
l

#
 o

f
m

is
s
e

s

Time (min)

Random
Animal
MissRate
CacheVM

(c) 2000 PMs and 3000 VMs

0.0E+00

5.0E+06

1.0E+07

0 20 40 60

T
o

ta
l

#
 o

f
m

is
se

s

Time (min)

Random
Animal
MissRate
CacheVM

(d) 3000 PMs and 4000 VMs

Fig. 8: Performance in VM placement and migration in trace-driven simulation.
D. Performance with Real Trace

In this section, we study the performance of the algorithms
with real trace. In these experiments, the environment settings
are the same as the previous section.

Figure 8(a) shows the median, the 10th and 90th percentiles
of the total number of misses under varying VM to PM
ratio. We see that the total number of misses in the system
follows CacheVM<Animal≈Random<MissRate. Compared to
the result in Figure 6(a) for the random profiles, Animal’s
performance is still higher but closer to Random because
merely avoiding co-locating two Devil VMs cannot guaran-
tee minimizing the total number of misses in the system.
CacheVM still achieves a much lower total number of misses
than the other algorithms. The reasons for these results are the
same as Figure 6(a).

Figure 8(b) shows the median, the 10th and 90th per-
centiles of the total number of misses in the system
in different scales presented in Section VI-C. We see
that the total number of misses in the system follows
CacheVM<Animal<Random<MissRate, which is consistent
with previous results in Figure 8(a) due to the same reasons.

Figure 8(c) and Figure 8(d) show the total number of misses
as a function of time. The procedure of the experiment is the
same as in Figure 7. We see that after initial VM placement,
the total number of misses of all algorithms decreases due
to the reasons mentioned in Figure 7. At all rounds of VM
migrations, the total number of misses of each approach fol-
lows CacheVM<Animal≈Random<MissRate because of the
same reasons in Figure 8(a). The result confirms that CacheVM
outperforms the other algorithms in the real trace.

E. Trace-driven Experiments on Real Testbed

We also carried out the experiment on our school’s HPC
cluster. We deployed the experiment with 20 physical nodes.
Each node is equipped with Intel Xeon E5345, 12GB main
memory, and contains 2 quad-core processors. The cores in
each processor share a 4MB, 16-way set associative LLC with
a 64-byte cache line. We used the corresponding algorithms
(i.e., CacheVM, Animal, MissRate) to conduct VM allocation
experiments based on our obtained real trace profiles. Each
VM ran a randomly selected program from the NPB suite with
the medium workload size (i.e., class A). We measured the ex-
ecution time and throughput after all program executions were
completed. Besides comparing the performance of different
VM placement algorithms, we also measured the performance
of each VM when it exclusively ran on a physical node.

In this case, the VM could use all the cache resources, and
hence its performance was not degraded by cache contention.
We denote the results from the exclusive running as Solo and
present these results as the optimal performance. We varied the
number of VMs from 20 to 120 and allocated them to 20 PMs.

Figure 9(a) shows the total execution time of all the VMs.
We see that all the algorithms perform relatively well when
the number of deployed VMs is small (20 VMs) and they
produce a similar total execution time as the optimal total
time. This is because there are sufficient resources for the VMs
and cache contention rarely occurs. When the number of VMs
increases, the total execution time of different algorithms fol-
lows CacheVM<MissRate<Animal<Random. CacheVM out-
performs the other algorithms because it more accurately
estimates the performance degradation of the VMs due to co-
location, appropriately separates the VMs severely interfer-
ences each other to different PMs, and hence minimizes the
total performance degradation. The result is consistent with the
result of Case 4 in Figure 6(c) because of the same reasons.

Figure 9(b) shows the total throughput of all the VMs. The
total throughput of Sole is calculated by checking the programs
running in the VMs and assuming every one of them delivers
optimal throughput. Compared to Solo, all the algorithms
experience performance degradation due to cache contention
between VMs. Among the four VM placement algorithms, the
throughput follows Random<Animal<MissRate<CacheVM
due to the same reasons demonstrated before.

In order to investigate how the placement algorithms in-
fluence the performance of individual VMs, we first normal-
ized the execution time and the throughput of each VM to
the optimal execution time and throughput of the VM, and
then calculated the average normalized execution time and
throughput per VM. Figure 9(c) shows the average normalized
execution time of the VMs. Similarly, the result follows
CacheVM<Animal<MissRate<Random. CacheVM improves
the cache contention-unaware algorithm (i.e., Random) with
9.0%, 14.2%, 26.6% and 17.0% lower normalized total ex-
ecution time for the experiment with 20, 60, 90 and 120
VMs, respectively. Figure 9(d) shows the average normalized
throughput per VM. The average normalized throughput fol-
lows Random<Animal<MissRate<CacheVM. CacheVM im-
proves Random with 6.0%, 5.1%, 7.3% and 4.7% higher
average normalized throughput for the four test cases. The
orders of the performances of Figure 9(c) and Figure 9(d) are
consistent with Case 3 and Case 4 in Figure 6(c) due to the
same reasons.

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

20 60 90 120

The number of VMs

Random Animal
MissRate CacheVM
Solo

T
o

ta
l

e
x
e

c
u

ti
o

n
 t

im
e

 (
s)

(a) Total execution time

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

20 60 90 120

The number of VMs

Random Animal
MissRate CacheVM
Solo

T
o

ta
l

th
ro

u
g

h
p

u
t

(M
o

p
/s

)

(b) Total throughput

0.0

0.5

1.0

1.5

2.0

20 60 90 120

N
o

rm
a

li
ze

d
 t

im
e

The number of VMs

Random Animal
MissRate CacheVM

(c) Avg. normalized execution time per VM

0.0

0.3

0.6

0.9

1.2

1.5

20 60 90 120

The number of VMs

Random Animal
MissRate CacheVM

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

(d) Avg. normalized throughput per VM

Fig. 9: Performance of real-testbed experiments.

VII. CONCLUSION

Cache contention in LLC can lead to serious performance
degradation on VMs in a cloud datacenter. Previous VM place-
ment and VM migration algorithms neglect such cache inter-
ference. In this paper, we proposed a cache contention aware
VM performance degradation prediction algorithm based on
stack distance profiles. Based on the estimation, we formu-
lated a cache contention aware VM placement problem to
minimize the total performance degradation. We transformed
this problem to an integer linear programming (ILP) model
and solved it with existing programming toolkits. We then
proposed a heuristic cache contention aware VM placement
and migration algorithm, called CacheVM, as a problem
solution. Trace-driven simulation and real-testbed experiments
show that CacheVM reduces average performance degradation
experienced by the VMs due to cache contention and improves
the execution time and throughput compared with previous
methods. In the future, we will develop a decentralized version
of the proposed algorithm to make it scalable to large-scale
cloud datacenters.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research Faculty Fellowship
8300751.

REFERENCES

[1] “Amazon web service,” http://aws.amazon.com/.
[2] “Google Cloud,” https://cloud.google.com/.
[3] “Microsoft Cloud,” http://www.microsoft.com/enterprise/microsoft

cloud/default.aspx#fbid=MlUrRhT5amn.
[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in Proc. of NSDI,
2005, pp. 273–286.

[5] “Service Level Agreements,” http://azure.microsoft.com/en-us/support/
legal/sla/.

[6] L. Chen, H. Shen, and K. Sapra, “RIAL: Resource intensity aware load
balancing in clouds.” in Proc. of INFOCOM, 2014.

[7] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for
cloud computing.” in Proc. of HotPower, 2008.

[8] Y. Hong, J. Xue, and M. Thottethodi, “Dynamic server provisioning to
minimize cost in an IaaS cloud.” in Proc. of SIGMETRICS, 2011.

[9] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters.” in Proc. of INFOCOM,
2014.

[10] Y. Lin, H. Shen, and L. Chen, “Ecoflow: An economical and deadline-
driven inter-datacenter video flow scheduling system,” in Proc. of
Multimedia, 2015, pp. 1059–1062.

[11] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems.” in Proc. of SOCC, 2011.

[12] L. Chen, H. Shen, and K. Sapra, “Distributed autonomous virtual re-
source management in datacenters using finite-markov decision process,”
in Proc. of SOCC, 2014, pp. 1–13.

[13] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, “Stochastic
load balancing for virtual resource management in datacenters,” IEEE
Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[14] L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and understanding
virtualization overhead in cloud,” in Proc. of ICPP, 2015, pp. 31–40.

[15] L. Soares, D. Tam, and M. Stumm, “Reducing the harmful effects of
last-level cache polluters with an OS-level, software-only pollute buffer,”
in Proc. of ISM, 2008.

[16] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter,
“Characterization of scientific workloads on systems with multi-core
processors,” in Proc. of IISWC, 2006, pp. 225–236.

[17] Y. Xie and G. Loh, “Dynamic classification of program memory
behaviors in CMPs,” in Proc. of CMP-MSI, 2008.

[18] H. Jin, H. Qin, S. Wu, and X. Guo, “CCAP: a cache contention-aware
virtual machine placement approach for HPC cloud,” IJPP, pp. 1–18,
2013.

[19] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS
observations to improve performance in multicore systems,” IEEE micro,
no. 3, pp. 54–66, 2008.

[20] S. Kim, H. Eom, and H. Y. Yeom, “Virtual machine consolidation based
on interference modeling,” SC, 2013.

[21] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in Proc. of SigComm, 2015, pp. 407–420.

[22] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation for
the cloud,” in Proc. of SOCC, 2012.

[23] J. Ahn, C. Kim, J. Han, Y.-R. Choi, and J. Huh, “Dynamic virtual
machine scheduling in clouds for architectural shared resources,” in
Proc. of HotCloud, 2012.

[24] H. Wang, C. Isci, L. Subramanian, J. Choi, D. Qian, and O. Mutlu, “A-
drm: Architecture-aware distributed resource management of virtualized
clusters,” in Proc. of VEE, 2015, pp. 93–106.

[25] G. E. Suh, S. Devadas, and L. Rudolph, “Analytical cache models with
applications to cache partitioning,” in Proc. of SC, 2001.

[26] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Proc.
of SIGARCH CAN, vol. 38, no. 1, 2010, pp. 129–142.

[27] V. I. Norkin, G. C. Pflug, and A. Ruszczyński, “A branch and bound
method for stochastic global optimization,” Mathematical programming,
vol. 83, no. 1-3, pp. 425–450, 1998.

[28] “lpsolve 5.5,” http://lpsolve.sourceforge.net/5.5/Java/README.html.
[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and

R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms.” SPE, 2011.

[30] “EC2 Instance types,” http://aws.amazon.com/ec2/instance-types/.
[31] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks summary and prelimi-
nary results,” in Proc. of SC, 1991, pp. 158–165.

[32] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proc. of ACM Sigplan,
2005.

[33] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
January 2005, http://sesc.sourceforge.net.

