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Abstract. The fast development of smart-grid technologies and appli-
cations calls for new means to meet the transportation and environment
requirements of the next trend of mainstream vehicles. Electric vehicle
(EV), which has been regarded as an important replacement for present
gasoline-based vehicle, is expected to greatly reduce the carbon emis-
sions meanwhile offer acceptable transportation ability. However, most of
present market-level electric vehicle heavily rely its capacity-constrained
battery which can only support limited driving range. Although there
have been many pioneer works focusing on ameliorating the driving ex-
perience of EVs through tuning the placement of charging infrastructure,
most of them do not consider the heterogeneity of vehicle movement in
different scenarios. In this paper, starting from a fine-grained analysis of
a real-world vehicle trace, a charging station placement algorithm con-
sidering the installation cost, traffic flow and battery capacity, called
EVReal, is proposed. In comparing its performance with other represen-
tative algorithms, EVReal outperforms the others in various metrics.

1 Introduction

Electric vehicles (EVs) have been viewed as the potential solution to greenhouse
gas emission problem for several decades. EVs are worthy to be considered as a
replacement of current gasoline-based vehicles for several reasons (e.g., environ-
ment friendliness, fuel economy). However, EVs also have driving range problems
(typically 60 to 120 miles on a full charge), long recharge time (takes 30 min
to charge up to 80%), and expensive batteries replacement [16]. To make EVs
penetrate faster into consumers under the context of current charging infrastruc-
ture limitations, researchers have proposed various algorithms to optimize the
placement strategy of charging stations, which can be categorized into charging
demand based methods and traffic flow based methods.

In the charging demand based methods, vehicles’ charging demands are gen-
erally analyzed with various models (e.g., queue theory, driver preference, park-
ing positions) [4, 5, 13–16]. Then the decision is made to maximally fulfill the
deduced demands of certain road network. The common problem with these al-
gorithms is that the charging demand deduced by the proposed means cannot



depict the actual charging scenario of the whole road network due to several fac-
tors (e.g., timeliness, traffic pattern) [7,12]. Therefore, some algorithms based on
fine-grained analysis of traffic flow were proposed. The traffic flow is measured
based on EVs’ origin-destination pairs (O-D pairs). The traffic flow of a O-D
pair is defined as the number of vehicles that travel along the paths included in
the O-D pair during a certain period of time [6, 12]. In these works, the vehicle
parameters (e.g., vehicle density on certain road segment, mobility pattern) are
extracted from the movement of vehicles, and the placement of charging stations
is designed to maximally capture (i.e., cover) the traffic flows [7,10,12]. In these
representative works based on traffic flows, [10,12] provide comprehensive mod-
els considering various aspects of traffic flow and road network, but they only
validate their works with very small scenarios (50 positions).

To provide a comprehensive EV charging station placement strategy with
fine-grained analysis of vehicle mobility, we propose EVReal, a charging station
placement method based on real world vehicle movement records. Its design is
based on the trace analysis of a 28-day vehicle trace in Rome. Then in the model
design, the properties and constraints of the vehicles are combined to formulate
an optimization problem. Finally, the performance of EVReal is evaluated using
the trace from various perspectives. In summary, our contributions are threefold:
(1) Our study on a real world trace [3] presents a comprehensive analysis of

vehicles’ mobility parameters related to the placement of charging stations
and their possible influence on the performance of a charging system.

(2) We propose a charging station placement method aiming at maximizing the
coverage of vehicle activities under constraints from the trace analysis.

(3) We have conducted extensive trace-driven experiments to validate the per-
formance of EVReal from various perspectives.
To our knowledge, this work is the first to formulate a charging station place-

ment optimization problem driven by the observations of vehicles’ real-world
movement characteristics. Related work is presented in Section 2. Section 3
presents the analysis of a vehicle mobility trace. Section 4 presents the detailed
design of EVReal model. Then Section 5 evaluates the performance of EVReal.
Section 6 concludes this paper with remarks on our future work.

2 Related Work

Charging demand based algorithms. Deploying charging stations based on
deduced charging demands has been extensively studied. Bae et al. [4] proposed
to determine the suitable deployment of charging stations through analyzing
the spatial and temporal dynamics of charging demand profiles at potential
charging stations using the fluid dynamic model. Zheng et al. [16] formulated
an optimization problem trying to maximize the number of EVs charged in the
charging stations while minimizing the life cycle cost of all the stations. Eisel et
al. [5] aimed at dealing with customers’ range anxiety (i.e., fear of being unable
to reach destination due to insufficient charging opportunities on road) through a
model that transforms customers’ preference in charging positions into planning



of station locations. The problems with these works are that the mobility cannot
be modeled with independent sources.
Traffic flow based algorithms. To better capture the charging dynamics of ve-
hicles, several traffic flow based methods were proposed. Lam et al. [7] formulated
the station placement as a vertex cover problem, proved its NP-hardness and
proposed four solutions. Sánchez-Mart́ın et al. [10] proposed to deploy charg-
ing stations at the positions with many parking events and suitable parking
time length with the minimum deployment cost. Wang et al. [12] determined
constraints (e.g., driving range, traffic volume) from EV traffic statistics, and
formulated and solved a multi-objective location optimization problem to max-
imize the coverage of EV traffic. They conducted simulation experiments on a
33-node road network. Although these works have turned their focuses to cap-
turing the vehicles’ activities, they either validate their design on small road
network (e.g., a road network with 34 intersections) [7, 10, 12].

EVReal utilizes various vehicle mobility related parameters , which are ex-
tracted from a real world vehicle trace, in forming the objective function and
corresponding constraints. Therefore, EVReal enables the charging system to
have higher serving performance.

3 Trace Analysis

In this section, we present our trace analysis on the Rome trace [3]. There have
been many works using taxis to analyze traffic flows [3, 9, 17–19]. We use their
insights to support our taxi trace based data analysis. The Rome trace lasts for
30 days from Feb 1, 2014 to Mar 2, 2014. Each taxi reports its location records
(timestamp, ID, GPS position) every 15 seconds. We filtered out positions with
precision larger than 20 meters, and taxis with few appearances (< 500). We
extracted intersections, where vehicles make significant movement changes, as
landmarks. Finally, the Rome trace has 315 taxis and 4638 landmarks. When a
vehicle stays at one landmark for more than 5min, we call this position anchor
position that cut the vehicle’s trace into several trajectories. Each trajectory is
represented as a sequence of landmarks with corresponding arrival timestamps.

3.1 Traffic Flows Deduced from Vehicle Trajectories

When a vehicle follows certain trajectory, it generates traffic flow to the land-
marks consisting the trajectory. During the driving process, there may be multi-
ple vehicles driving on the same landmarks. Correspondingly, for each trajectory,
we define the number of vehicles driving on the consisting landmarks at the same
time as its traffic flow. The traffic flow is crucial because it represents vehicle ac-
tivity, and is closely related to the possible charging load at the landmark [7,20].
The distribution of traffic flow is not balanced. For illustration, we measured
the cumulative distribution function (CDF) of the traffic flows of all trajectories
as shown in Figure 1(a). We see that most of the trajectories (more than 90%)
have vehicle flows lower than 15. The largest traffic flow is higher than 80. About



40% of the trajectories have traffic flows lower than 2. The results demonstrate
that the vehicles’ activities are highly concentrated at certain popular areas
(landmarks). Therefore, properly planning charging stations at these landmarks
to maximize captured traffic is necessary. Meanwhile, almost half of the tra-
jectories cover areas with low vehicle flows, which means several “unpopular”
landmarks also need consideration.
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Fig. 1: Properties related to charging load.

3.2 Vehicle Active Time

The charging ability of the system should be consistent with the number of active
vehicles [4,16]. Most previous works only consider transient traffic load. But the
temporal dynamics of vehicle activities also need to be considered. We define the
active time of a vehicle as the total time it spends in transiting. Then we draw
the CDF of the active time of all the vehicles as shown in Figure 1(b).

Around 50% of the vehicles have total active time between 200,000s and
400,000s. But around 20% of vehicles having active time less than 200,000s and
around 15% of vehicles having active time more than 400,000s. These results
demonstrate the fluctuation of the vehicles’ active time. Thus, comprehensively
collecting the traffic flows is crucial for deploying charging stations.
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Fig. 2: Properties of trajectories.

3.3 Properties of Vehicle Trajectory

In this section, we present the analysis of the properties of trajectories. Range
anxiety, which is the EV drivers’ concern that they might not reach a planned
destination due to a discharged battery, needs consideration in placing the charg-
ing stations [5,8,11]. Thus, considering the EV users’ habitual travel distance is
necessary to increase the charging station accessibility and relieve EV drivers’
range anxiety. We define the distance of a travel as the number of landmarks the
trajectory covers, and the duration as its time span. In urban scenario, vehicles



are likely to drive short trajectory. To confirm this, we measured the CDF of the
distance and the duration of vehicles’ travel as shown in Figure 2(a) and Fig-
ure 2(b). We see that the travel times of 90% of vehicles are less than 5min, and
the travel distances of 90% of vehicles are less than 20km. These observations
inspire us that: when a vehicle needs charging, (1) its distance to the nearest
charging station should fit in the distances of majority of travels to avoid range
anxiety; (2) its time spent in reaching the nearest charging station should be
shorter than most vehicles’s travel times.

4 System Design

In this section, we present the details of EVReal. In formulating the problem of
optimizing deployment of charging stations, EVReal utilizes the analysis fruition
of Section 3 and consider other additional constraints as follows:
• Vehicle flows are highly concentrated within certain ranges (Figure 1(a)).
Therefore, our objective is to maximize the totally captured vehicle flows.

• Vehicles’ active time in urban scenario fluctuate (Figure 1(b)). Correspond-
ingly, we collect the traffic flow of every vehicle’s O-D pair as candidates,
and use a binary vector to represent whether a traffic flow should be covered.

• Vehicles in urban scenario usually travel short distance and duration (Fig-
ure 2(a) and Figure 2(b)). We set the amount of energy that can be recharged
at each station to be nonnegative. That is, the vehicles will get charged as
long as a charging station is available at the position.

• Besides the parameters that directly affect the charging coverage, we also
consider the installation cost per station, total budget, battery capacity, etc.
The indices for the parameters and variables are listed in Table 1. The pa-

rameters are listed in Table 2. The variables are listed in Table 3. The meaning
of the parameters and variables are presented in Section 4.1. The formulation of
our optimization model is presented in Section 4.2.

4.1 System Preliminaries

We view the target road network as an undirected graph G = (N,A), where N
and A represent the set of all landmarks, N = {i|i = 1, 2, . . . , n}, and the set of
edges, A = {(i, j)|i, j ∈ N, i �= j}, respectively. Given two candidate landmarks,
i and j, we define dij as the distance of the shortest path connecting these two
landmarks. For each traffic flow, we use r to denote its origin landmark, and
s to denote its destination landmark. The collection of the origin landmarks is
denoted with R, and the collection of the destination landmarks is denoted with
S. We define V R as the driving range, which is the vehicles’ maximum driving
distance after a full charge. For a subset of landmarks N̂ ⊂ N , if a vehicle can
reach at least one landmark j ∈ N̂ , then N̂ is reachable by the vehicle with V R.
Therefore, for a road network, if N̂ is reachable by any vehicle with V R, the
charging stations can capture all vehicle movements on the road network. For
convenience, we summarize the notations as in Table 1.



Table 1: Table of notations.
Index Description Index Description

i Index of candidate sites, i ∈ N̂ ⊂ N s
A destination landmark in the network,
s ∈ S ⊂ N

r
An origin landmark in the network,
r ∈ R ⊂ N

a Index of arc set A, a = (i, j) ∈ A

Let frs be the traffic flow from r to s if there are vehicles following the O-D
pair in the records. Ideally, the more traffic flows that the model can capture, the
more power load the charging station can offer, and the higher residential power
the vehicles can maintain. However, the installation cost of charging station Ci

at landmark i, and the total budget m constrains the deployment of charging
stations. Thus, to tune the performance of the station deployment with accept-
able cost, we further consider parameters: the sequence of landmarks composing
the path from r to s, P rs; the distance between landmark i and landmark j,
dij ; and the flag denoting whether recharging opportunity should be offered on
the path from r to s, δrsi . The combination of these parameters formulates the
objective of capturing as many traffic flows as possible, but is constrained by
the battery capacity, β, which determines V R; the constraint denoting the re-
straining effect on the length of path, M ; and the total budget for deployment,
m. For clarity, we summarize the parameters as in Table 2.

Table 2: Table of parameters.
Item Description Item Description Item Description

Ci
The installation cost of a
charging station, i ∈ N

frs Traffic flow from r to s P rs
A sequence of landmarks
on the shortest path from
r to s

β

Onboard battery capacity
(unified in travel
distance), i.e., vehicle
range

frs Traffic flow from r to s dij

Distance between
landmark i and landmark
j

M
A sufficiently large
number denoting
restraining effects

δrsi

δrsi = 1 if node i is in the
sequence of nodes P rs,
δrsi = 0 otherwise; this is
an outcome of the
deviation paths that are
exogenously generated

V R

The maximum distance
that an EV can drive
after it is fully charged to
battery capacity, denoted
by β

We use X = {Xi|i = 1, 2, . . . , n} to represent the decision vector indicating
whether a landmark should be installed with a charging station. Due to the con-
straints, it is possible that not all vehicle flows will be captured. Correspondingly,
we use Y = {Xrs|r ∈ R, s ∈ S} to select the vehicle traffic that will be captured
by the final strategy. The charging system should maximally keep the remaining
driving capacity of vehicles positive whenever the vehicle reaches a landmark in-
stalled with charging station. Meanwhile, the power recharged at a charging sta-
tion should be capped with the maximum battery capacity of the vehicle. Thus,
in formulating the constraints, we use B = {Brs

i |i = 1, 2, . . . , n, r ∈ R, s ∈ S}
to denote the remaining driving range of a vehicle when it arrives at landmark
i on the path from r to s. Similarly, let l = {lrsi |i = 1, 2, . . . , n, r ∈ R, s ∈ S}
be the vector denoting the amount of residual power of a vehicle when it arrives
at landmark i on the path from r to s. For clarity, the variables that can be
manipulated in finalizing the model are summarized in Table 3.

Table 3: Table of variables.
Item Description Item Description

Xi
Xi = 1 if a charging station is located at
landmark i; Xi = 0 otherwise

Brs
i

Remaining range at landmark i on the
path of O-D pair r − s

Y rs Y rs = 1 if the path between r and s can
be completed (taken); Y rs = 0 otherwise

lrsi
Amount of energy recharged at landmark
i on the path of O-D pair r − s



4.2 Model Formulation

Our goal, which is to maximize the captured traffic flow, is formulated as:

max
∑

r,s

Y rsfrs (1)

Additionally, we consider following constraints. First, the power recharging
of an EV can only be accomplished at landmarks equipped with a charging sta-
tion. Therefore, through combining the parameter δrsi (the flag denoting whether
recharging opportunity should be offered on the shortest path from r to s) with
the variable lrsi (the amount of energy recharged at landmark i on the path from
r to s), we set a constraint corresponding to the EVs’ charging behavior. Due to
the EVs’ mobility, the traffic flow is time-varying and depends on various fac-
tors [12]. Thus, we set a constraint to guarantee that the sum of the remaining
power (range) and the power recharged at landmarks is no larger than the max-
imum battery capacity. Besides, the battery consumption should be consistent
with the distance between landmarks. As for the budget m, the total cost of the
charging system is consistent with the sum of the costs of all charging stations
Ci determined by the decision vector X. In summary, the constraints are:

Brs
i + lrsi ≤ M(1− Y rs) + β, ∀r, s; i ∈ P rs (2)

Brs
i + lrsi − dij −Brs

j ≤ M(1− Y rs),

∀r, s; i, j ∈ P rs; (i, j) ∈ A (3)

−(Brs
i + lrsi − dij −Brs

j ) ≤ M(1− Y rs),

∀r, s; i, j ∈ P rs; (i, j) ∈ A (4)
∑

r,s

lrsi δrsi ≤ MXi, ∀i ∈ N̂ (5)

∑

i

CiXi ≤ m (6)

Xi = {0, 1}, ∀i ∈ N (7)

Y rs = {0, 1}, ∀r, s (8)

Brs
i ≥ 0, lrsi ≥ 0, ∀r, s; i ∈ P rs (9)

(2) assures that the total onboard electricity each vehicle carries will not exceed
the EV battery capacity (Brs

i + lrsi ≤ β) if the path of that O-D pair is taken
to electrify; otherwise no restriction exists when Y rs = 0. (3) and (4) work
simultaneously to ensure that the energy consumption conservation Brs

i + lrsi −
dij − Brs

j = 0 holds for all links traversed on the path which is taken to deploy
adequate stations (Y rs = 1). Otherwise, if Y rs = 0, then Brs

i + lrsi −dij −Brs
j ≤

M , namely no restraining effects. (5) implies a logic that recharging is only
available at node i if there is a charging station. Budget is indicated by (6). (7),
(8) and (9) are nonnegativity constraints on remaining power Brs

i and recharged
power lrsi , and binary definition on charging station placement vector X and
traffic flow selection vector Y . The problem is a Binary Integer Programming
(BIP) problem. We refer to an existing toolbox (e.g. GLPK [2], Cbc [1]) to obtain
the integer-feasible solution to the problem.



5 Performance Evaluation

We used the Rome [3] trace for evaluation. The experiments are deployed on
a trace-driven vehicular network simulation platform, called CGod. Unless oth-
erwise specified, the experiment setting is the same as in Section 3. We first
elaborate the charging station placement results in Section 5.1. Then we briefly
explain the comparison methods and the metrics for illustration in Section 5.2.
Finally, we present the experimental results and analysis in Section 5.3.

5.1 Charging Station Placement

In determining the charging positions, we made assumptions as follows:
• The cost of installing a charging station at any landmark is identical, namely
the number of charging stations represents the restriction of budget.

• All the vehicles are homogeneous, having the same vehicle range and fully
charged at origins.

• All the drivers are homogeneous. Namely, they will seek charging station
when their residual power is below 10% of their battery capacity.

Table 4: Deployment of charging stations under different budget scenarios.

sites
Deployment of charging
stations (Landmark ID) sites

Deployment of charging
stations (Landmark ID)

VR=50km VR=100km VR=50km VR=100km

1 3197 2558 7
5, 136, 262, 374, 741, 2957,

3197
-

2 14, 3197 - 8
5, 86, 136, 374, 382, 485, 615,

3197
-

3 14, 136, 3197 - 9
5, 136, 262, 374, 485, 741,

1782, 2980, 3197
-

4 14, 136, 374, 3197 - 10
5, 86, 136, 374, 485, 741,
1097, 1782, 2980, 3197

-

5 86, 136, 374, 382, 3197 - 11
5, 9, 136, 262, 374, 484, 485,

570, 624, 2980, 3060
-

6 136, 262, 374, 741, 2957, 3197 -

We extract the traffic flows as defined in Section 3, and obtained a road
network with 2514 landmarks and 27807 edges connecting these landmarks, and
EV traffic flows with 16443 O-D pairs. Then we applied the model on the net-
work with the landmarks as the candidate charging sites and the O-D pairs for
consideration. Two vehicle ranges are tested for comparison (i.e., VR=50km and
VR=100km). For each range, we first solve the problem with one charging sta-
tion, and then solve problems by gradually increasing the number of stations
until all the travel demand are covered. This is to find the suitable budget for
the planning of the charging stations given the road network and traffic flows.

Table 4 presents the detailed deployment of charging stations. Obviously,
given limited battery capacity, the more charging stations deployed, the more
traffic flows can be captured. Table 5 gives more details on this phenomenon.
Moreover, we also observe that vehicle battery capacity (i.e., driving range)
would indirectly affect the deployment of charging stations. For example, when
budget only allows us to place one charging station, the landmark selected for
installing charging station is different for VR=50km and VR=100km. When the



vehicle range is 50km, all the flows are not captured until 11 stations can be
placed at locations as indicated in the table. In contrast, when VR=100km, one
station located at Landmark 2558 can cover all the traffic flows in the network.
This is mainly because for most urban trips, their lengths are within the vehicle
range (100km). Therefore, we assign VR=50km in the following experiments.
In Table 5, we can see the total number of traffic flows captured under various
deployment of charging stations. As the number of charging stations is increased,
we observe a diminishing marginal benefit in terms of coverage of flows.

Table 5: Coverage of flows under different budget scenarios.

sites
Captured traffic flows

sites
Captured traffic flows

sites
Captured traffic flows

VR=50km VR=100km VR=50km VR=100km VR=50km VR=100km
1 640619 645047 5 644386 - 9 644975 -
2 642058 - 6 644786 - 10 645010 -
3 643048 - 7 644875 - 11 645047 -
4 643830 - 8 644959 -

5.2 Settings of Performance Comparison

We compared EVReal with two representative charging station placement meth-
ods. The first one is random placement method (Random in short), which ran-
domly chooses landmarks for deployment. The second one is a traffic density con-
strained, drivers’ interest based method which considers both quantitative and
qualitative attributes of the target road network [5] (MaxInterest). In MaxIn-
terest, the landmarks with the highest average vehicle densities and long vehicle
staying time are treated as candidate charging places. The metrics are:
• Average charging station power load : Power load distribution on charging
stations. It is calculated by averaging the total power that vehicles recharged
in different hours during a day.

• Average vehicle residual power : The vehicles’ average residual power under
different hours during a day. It illustrates the methods’ ability in keeping
the vehicles’ operability on road network.

• Average number of necessary charges: The average number of charges for
keeping each vehicle operable per day under different number of charging
stations. We define a necessary charge is needed when a vehicle’s residual
power is lower than 10%. It illustrates the methods’ ability in capturing
vehicles’ traffic flows.

• Average travel time to the nearest charging stations: The average travel time
to the nearest charging stations when a necessary charge is needed. It is used
to measure the methods’ performance in properly distributing the charging
stations considering the reachability of vehicles.

5.3 Experimental Results

We conducted two kinds of experiments. In one experiment, given that the num-
ber of total charging stations is 11, we measured the average power load of
charging stations and the average residual power of vehicles under different hours
during a day. In the other experiment, we varied the total number of charging
stations from 1 to 11 and measured the average number of charges and the
average travel time to the nearest charging station a vehicle needs per day.
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Average Charging Station Power Load Figure 3 shows the measured aver-
age charging station power loads. We see the results follow:MaxInterest>EVReal>Random.
The power load of EVReal is higher than the others at all times. Note that the
results are obtained with 11 landmarks installed with charging stations. This
means the determined positions for placing charging infrastructure of EVReal
can serve more vehicles than others with comparative power load pressure.

MaxInterest has the second highest power load. This is because it focuses
on satisfying the charging need of most vehicles by placing charging stations
at vehicles’ most visited places. During rush hours, these charging stations can
fulfill the need of most vehicles. But during normal hours (e.g., 14:00∼16:00),
MaxInterest ’s power load is much lower than the one of EVReal. To illustrate
the difference of the methods in fulfilling vehicles’ charging needs, we further
measure the vehicles’ residual power in Figure 4. Random always achieves the
lowest power load on landmarks. This is because vehicles have highly biased
preference on visiting landmarks. Randomly placing charging infrastructure on
landmarks can hardly meet the charing requirement of most vehicles.

Average Vehicle Residual Power Figure 4 shows the average vehicles’ resid-
ual power in different hours during a day. We see that the results follow: EVReal>MaxInterest>Random.
We also measured the minimum vehicle’s residential power, which follows: EVReal-
min>Random-min>MaxInterest-min.

EVReal has the highest vehicle residual power. This is because the charging
stations determined in EVReal can timely fulfill the charging need of vehicles.
The residual power of vehicles can be kept at relatively stable level within dif-
ferent hours. Besides, there are two obvious drops at around 8:00 and 16:00,
which correspond to the peaks in Figure 3. This means that the rush hours with
active vehicle movements can affect the vehicle residual power. MaxInterest has
the second highest vehicle residual power. This is because MaxInterest aims to
place charging stations at landmarks that can maximize the charging need of
most vehicles. Random has the lowest vehicle residual power. The reason is that
most vehicles cannot be charged timely. Furthermore, we measured the average
number of charges that vehicles can have under different number of charging
stations, as shown in Figure 5. EVReal can still maintain the vehicles’ residual
power at around 35% under the worst case. Random achieves the second highest
minimum vehicle’s residual power. MaxInterest results in the lowest minimum
metric. This is because MaxInterest concentrates on the areas with dense vehicle
movements, so some vehicles in non-dense areas cannot be sufficiently charged.
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Average Number of Necessary Charges Figure 5 shows the average number
of the vehicles’ necessary charges under various number of charging stations. We
see the results follow: Random>MaxInterest>EVReal.

EVReal has much lower number of necessary charges, and the gap increases
along with the increasing of the number of charging stations. This is because
EVReal aims to cover most of the traffic flows. As for MaxInterest and Random,
their performance is comparative with EVReal only when the total number of
charging stations is small. The reason is similar to that explained in vehicles’
residual power.

Average Travel Time to Nearest Charging Stations Figure 6 shows the
average travel time to the nearest charging station under various number of
charging stations. We see the results follow: MaxInterest≈Random>EVReal.

Vehicles in EVReal always have much shorter travel distances to the nearest
charging stations. This is because EVReal aims to maximize the covered vehicle
flows in balanced manner. Note that when the number of charging stations is
larger than 4, the improvement of the metric becomes smaller than before. This
is because when VR=50km, EVReal can use 5 charging stations to fulfill the
charging needs. In contrast, MaxInterest results in locating the charging stations
at popular places (e.g., downtown area). Therefore, vehicles need to travel longer
distances to these positions. Random cannot guarantee reasonable placement of
charging stations, leading to bad reachability in charging.

6 Conclusion

Electric vehicle is expected to fulfill the blueprint of zero pollution meanwhile
offering acceptable transportation ability. However, most current market-level
EVs have limited driving range. Multiple pioneer works focusing on tuning the
placement of charging stations have been proposed. They fail to support the
continuous movement of the EVs due to lack of vehicle mobility analysis. In this
paper, we establish EVReal, which considers various factors which are critical
for the planning of charging stations based on a real-world trace. Driven by
our trace analysis, we determined the parameters that need consideration, and
formulated an optimization model composed by these parameters. Compared
with other representative methods, EVReal outperforms in distributing power
load, vehicle residual power, the number of charges needed and travel time to



the nearest charging station. In the future, we will explore more in the effect of
traffic events (e.g., jam, accident) in placing charging stations.
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